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Abstract: We extend several result of Lagarias, Reeds, Wright and Wright [17] for various
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1 Introduction
The Nelder–Mead (NM) simplex method [22] is a direct search method for the so-
lution of the minimization problem

f (x)→ min ( f : Rn → R) ,

where f is continuous. It is widely used in derivative-free optimization ([30], [14],
[5], [1], [15], [26], [18], [12]) and in various application areas (see, e.g., [30], [27]).
The Nelder–Mead method can be found in many software libraries as well, such as
IMSL, NAG, Matlab, Scilab, Python SciPy and R ([21]). Although there are plenty
of numerical testing for the NM method (see, e.g., [28], [20], [26]), only a few
theoretical results are known on the convergence (see, e.g., [17], [16], [32], [26],
[18]).

Kelley [13], [14] gave a sufficient-decrease condition for the average of the objective
function values (evaluated at the simplex vertices) and proved that if this condition
is satisfied during the process, then any accumulation point of the simplices is a
critical point of f . Han and Neumann [11] investigated the effect of dimensionality
on the function f (x) = xT x (x ∈Rn) (for another approach to dimensionality effects,
see Gao and Han [10]). If f : R2 → R is a strictly convex functions with bounded
level sets, then Lagarias, Reeds, Wright and Wright [17] proved that the function
values at all simplex vertices converge to the same value. McKinnon [19] gave
a strictly convex function f : R2 → R with continuous derivatives on which the
Nelder–Mead algorithm converges to a nonstationary point of f . For the restricted
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Nelder–Mead algorithm, where no expansion step is allowed, Lagarias, Poonen and
Wright [16] proved that if f :R2 →R is a twice-continuously differentiable function
with bounded level sets and everywhere positive definite Hessian, then it converges
to the unique minimizer of f .

The results of [17] and [16] are clearly important steps toward the theoretical foun-
dation/analysis of the Nelder-Mead method. Nesterov et al. [23] considers [17] and
[16] as the first non-empirical justification of the NM method for low-dimensional
problems. It is a fact that Google Scholar lists 9118 citations of paper [17] and 73
citations of paper [16] as of 9-8-2023.

If the objective function f does not satisfy the strict convexity conditions of Lagarias
et al. [17], [16] or n ̸= 2, then the Nelder–Mead algorithm may have different types
of convergence behavior ([7], [8]). The convergence of the Nelder-Mead simplex
sequence to a common limit point is studied in [6], [8] and [9] up to 8 dimensions.

Here we extend several results of Lagarias, Reeds, Wright and Wright [17] to convex
and quasiconvex functions. The main convergence result of [17] is also generalized
to convex functions. The proof exploits many key elements of [17], and it is simpler
than that of [17]. We also provide some examples to show the tightness of the new
result.

2 The Nelder-Mead simplex method

We first present the Nelder-Mead method according to Lagarias, Reeds, Wright and
Wright [17], and derive a matrix form to be used in later analysis.

The initial simplex S(0) is assumed to be nondegenerate and its vertices are denoted
by x(0)1 ,x(0)2 , . . . ,x(0)n+1 ∈ Rn. We assume that vertices x(0)1 ,x(0)2 , . . . ,x(0)n+1 are ordered
such that

f
(

x(0)1

)
≤ f

(
x(0)2

)
≤ ·· · ≤ f

(
x(0)n+1

)
(1)

and this condition is maintained during the iterations of the Nelder-Mead algorithm.
The simplex of iteration k is denoted by S(k) =

[
x(k)1 ,x(k)2 , . . . ,x(k)n+1

]
∈Rn×(n+1). De-

fine x(k)c = 1
n ∑

n
i=1 x(k)i and x(k) (λ ) = (1+λ )x(k)c −λx(k)n+1. The reflection, expansion

and contraction points of simplex S(k) are defined by

x(k)r = x(k) (1) , x(k)e = x(k) (2) , x(k)oc = x(k)
(

1
2

)
, x(k)ic = x(k)

(
−1

2

)
,

respectively. The function values at the vertices x(k)j and the points x(k)r , x(k)e , x(k)oc

and x(k)ic are denoted by f
(

x(k)j

)
= f (k)j ( j = 1, . . . ,n+ 1), f (k)r = f

(
x(k)r

)
, f (k)e =

f
(

x(k)e

)
, f (k)oc = f

(
x(k)oc

)
and f (k)ic = f

(
x(k)ic

)
, respectively.

The Nelder-Mead simplex method is defined as follows.
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for k = 0,1,2, . . .

1. Order: Order the vertices of S(k) =
[
x(k)1 ,x(k)2 , . . . ,x(k)n+1

]
so that

f (k)1 ≤ f (k)2 ≤ ·· · ≤ f (k)n+1.

2. Reflect: If f (k)1 ≤ f (k)r < f (k)n , then terminate

the iteration with S(k+1) =
[
x(k)1 ,x(k)2 , . . . ,x(k)n ,x(k)r

]
.

3. Expand: If f (k)r < f (k)1 and f (k)e < f (k)r , then terminate

the iteration with S(k+1) =
[
x(k)1 ,x(k)2 , . . . ,x(k)n ,x(k)e

]
.

If f (k)r < f (k)1 and f (k)r ≤ f (k)e , then terminate

the iteration with S(k+1) =
[
x(k)1 ,x(k)2 , . . . ,x(k)n ,x(k)r

]
.

4. Contract outside: If f (k)n ≤ f (k)r < f (k)n+1 and f (k)oc ≤ f (k)r , then

terminate the iteration with S(k+1) =
[
x(k)1 ,x(k)2 , . . . ,x(k)n ,x(k)oc

]
.

5. Contract inside: If f (k)r ≥ f (k)n+1 and f (k)ic < f (k)n+1, then

terminate the iteration with S(k+1) =
[
x(k)1 ,x(k)2 , . . . ,x(k)n ,x(k)ic

]
.

6. Shrink:
Evaluate f at the points zi =

1
2

(
x(k)1 + x(k)i

)
, i = 1,2, . . . ,n+1,

and terminate the iteration with S(k+1) = [z1,z2, . . . ,zn,zn+1]
endfor

Note that the shrink operation may occur only if f (k)n ≤ f (k)r < f (k)n+1 and f (k)oc > f (k)r or

f (k)r ≥ f (k)n+1 and f (k)ic ≥ f (k)n+1. Hence the related logical conditions of the operations
2-6 are mutually exclusive.

There are two rules that apply to reindexing after each iteration. If a nonshrink step
occurs, then x(k)n+1 is replaced by a new point v∈

{
x(k)r ,x(k)e ,x(k)oc ,x

(k)
ic

}
. The following

cases are possible:

f (v)< f (k)1 , f (k)1 ≤ f (v)< f (k)n , f (k)n ≤ f (v)< f (k)n+1.

If

j(k) =

{
1, if f (v)< f (k)1

max2≤ℓ≤n+1

{
f (k)ℓ−1 ≤ f (v)< f (k)ℓ

}
, otherwise

. (2)

then the new simplex vertices are

x(k+1)
i =


x(k)i

(
1 ≤ i ≤ j(k)−1

)
,

v
(

i = j(k)
)
,

x(k)i−1

(
i = j(k)+1, . . . ,n+1

)
.

(3)
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This rule inserts v into the ordering with the highest possible index. If shrinking
occurs, then

z1 = x(k)1 , zi =
(

x(k)i + x(k)1

)
/2 (i = 2, . . . ,n+1)

plus a reordering takes place. If the insertion rule (3) is adopted at iteration k (no
shrink step), then

f (k+1)
i =


f (k)i

(
1 ≤ i ≤ j(k)−1

)
,

f (v)
(

i = j(k)
)
,

f (k)i−1

(
i = j(k)+1, . . . ,n+1

)
.

(4)

The insertion rule guarantees that f (k+1)
i ≤ f (k)i (i ̸= j(k)), f (k+1)

j(k)
< f (k)

j(k)
, and

f (k+1)
1 ≤ f (k+1)

2 ≤ ·· · ≤ f (k+1)
n+1 . (5)

holds for k ≥ 0.

Assume that simplex S(k) =
[
x(k)1 ,x(k)2 , . . . ,x(k)n+1

]
satisfies condition (5) and define

the matrix

T (α) =

[
In

1+α

n e
0 −α

]
∈ Rn×(+1)

(
e = [1,1, . . . ,1]T

)
.

Define the permutation matrix

Pj =
[
e1, . . . ,e j−1,en+1,e j, . . . ,en

]
∈ R(n+1)×(n+1) ( j = 1, . . . ,n+1) ,

where j = j(k). For nonshrinking operations, the new simplex is given by S(k+1) =
S(k)T (α)Pj. If shrinking occurs, the new simplex is

S(k+1) = S(k)TshrP
(

Tshr =
1
2

In+1 +
1
2

e1eT
)
,

where the permutation matrix P∈Pn+1 is defined by the ordering condition (5) and
Pn+1 is the set of all possible permutation matrices of order n+ 1. The following
cases are possible

Operation New simplex
1. Reflection S(k+1) = S(k)T (1)Pj ( j = 2, . . . ,n)
2a) Expansion(v = x(k)e ) S(k+1) = S(k)T (2)P1

2b) Expansion(v = x(k)r ) S(k+1) = S(k)T (1)P1

3. Outside contraction S(k+1) = S(k)T
( 1

2

)
Pj ( j = 1, . . . ,n+1)

4. Inside contraction S(k+1) = S(k)T
(
− 1

2

)
Pj ( j = 1, . . . ,n+1)

5. Shrink S(k+1) = S(k)TshrP (P ∈ Pn+1)
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Define the set

T =

{
T (α)Pj : α ∈

{
−1

2
,

1
2

}
, j = 1, . . . ,n+1

}
∪{TshrP : P ∈ Pn+1}∪

{
T (1)Pj : j = 1, . . . ,n

}
∪{T (2)P1} . (6)

It follows that

S(k) = S(k−1)TkP(k) = S(0)Bk (k ≥ 1) , (7)

where

Bk =
k

∏
i=1

TiP(i)
(

TiP(i) ∈ T
)
. (8)

Hence the convergence of the simplex sequence
{

S(k)
}

depends of the convergence

of the infinite matrix product ∏
∞
i=1 TiP(i) (see [6], [8]). Set T consists of 3n +

3+(n+1)! matrices. For the restricted NM method of Lagarias et al. [16], the
expansion step 2a), that is v = x(k)e is prohibited, and T (2)P1 is not an element of
T . The matrices of set T have a common similarity form (10). Define the matrix

F =

[
1 −eT

0 In

] (
e = [1,1, . . . ,1]T ∈ Rn

)
. (9)

Lemma 1. ([6], [8]) For all TiP(i) ∈ T , matrix F−1TiP(i)F has the form

F−1TiP(i)F =

[
1 0
bi Ci

]
, (10)

where bi ∈ Rn and Ci ∈ Rn×n depends on TiP(i).

The matrices TsP(s) and Cs are numbered as follows:

TsP(s) ∈ T ↔ Cs
T (1)Pj+1 ↔ C j ( j = 1, . . . ,n−1)
T (2)P1 ↔ Cn
T (1)P1 ↔ Cn+1

T
( 1

2

)
Pj ↔ Cn+1+ j ( j = 1, . . . ,n+1)

T
(
− 1

2

)
Pj ↔ C2n+2+ j ( j = 1, . . . ,n+1)

TshrP (P ∈ Pn+1) ↔ C3n+3+ j ( j = 1, . . . ,(n+1)!)

where the numbering of permutations P ∈ Pn+1 follows the perms function of
Matlab (in actual computations).

3 The results of Lagarias, Reeds, Wright and Wright
Here we summarize the most relevant results of [17] with some additions and ob-
servations. The insertion rule (2)-(3)-(4) implies the following simple but important
results.
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Lemma 2. (Lemma 3.3 of [17]) If function f is bounded from below on Rn and only
a finite number of shrink iterations occur, then each sequence

{
f (k)i

}∞

k=0
converges

to some limit f ∗i for i = 0,1, . . . ,n+1 and f ∗1 ≤ f ∗2 ≤ ·· · ≤ f ∗n+1.

This result guarantees a kind of convergence under rather weak conditions. At the
same time it also shows that the functions values at the vertices are improving step
by step.

Lemma 3. (Lemma 3.4 of [17]) If f is bounded below on Rn, no shrink iterations
occur and for some integer ℓ (1 ≤ ℓ≤ n)

f ∗ℓ < f ∗ℓ+1, (11)

then there is an index K such that for all k ≥ K, index j(k) satisfies j(k) > ℓ, i.e. the
first ℓ vertices of all simplices remain fixed after iteration K.

Proof. Let δ > 0 be so that f ∗ℓ + δ = f ∗ℓ+1. Then there exist an index K > 0 such
that for k ≥ K,

f ∗ℓ ≤ f (k)ℓ < f ∗ℓ +δ = f ∗ℓ+1 ≤ f (i)ℓ+1 (i ≥ 0) . (12)

If j(k) ≤ ℓ for any k ≥ K, then the insertion rule (3) imply that f (k+1)
ℓ+1 = f (k)ℓ , which

is a contradiction.

Corollary 1. (Corollary 3.1 of [17]) If f is bounded below on Rn, no shrink itera-
tions occur and x(k)1 ̸= x(k+1)

1 infinitely many times, then f ∗1 = f ∗2 = · · ·= f ∗n+1.

This case is shown by the Examples 1 and 2 of [8], where only two types of expan-
sion steps occur resulting in unbounded simplex sequences

{
S(k)
}

.

Lemma 3 and Corollary 1 show an important characteristic of the convergence be-
havior of the Nelder-Mead method. Corollary 1 can be rephrased so that if for some
1 ≤ t ≤ n, x(k)t ̸= x(k+1)

t holds infinitely many times, then f ∗t = f ∗t+1 = · · · = f ∗n+1.
Assume that f ∗j < f ∗j+1 for some j (t ≤ j ≤ n). Then by Lemma 3 there is an index
K such that the first j vertices ( j ≥ t) remain fixed for all k ≥ K, which is contradic-
tion.

In general the limit values { f ∗i }
n+1
i=1 can be different as shown by the following two

examples. For other cases, see Examples 3, 4 and 5 (see also [7], [8]).

Example 1. Assume that n = 3, f (x1,x2,x3) = g1 (x1)g2 (x2)h(x3) with h(x) =
1+ x2,

g1 (x) = max
(

15
16

− 21
16

∣∣∣∣x− 1
3

∣∣∣∣ , ∣∣∣∣x− 23
32

∣∣∣∣− 7
32

)
,

g2 (x) = max
(

2
3
− 1

2

∣∣∣∣x− 1
3

∣∣∣∣ , ∣∣∣∣x− 7
12

∣∣∣∣− 1
12

)
.
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If the initial simplex is

S(0) =

 1 0 0 1
3

0 1 0 1
3

0 0 0 1

 ,
then

S(k) =

 1 0 0 1
3

0 1 0 1
3

0 0 0 1
2k

 , x(k)r =


1
3
1
3

− 1
2k

 , x(k)ic =


1
3
1
3
1

2k+1

 (k ≥ 0) .

It is easy to check that f (k)1 = 1
32 , f (k)2 = 1

6 , f (k)3 = 1
4 , f (k)4 = 5

8 +
5

22k+3 = f (k)r and

f (k)ic = 5
8 +

5
22k+5 . Hence we obtained the inequality

f (k)1 < f (k)2 < f (k)3 < f (k)ic < f (k)4 = f (k)r (k ≥ 0)

and
f ∗1 =

1
32

< f ∗2 =
1
6
< f ∗3 =

1
4
< f ∗4 =

5
8
.

Note that f has a global minimum point at (1,1,0) with fmin =
1

48 . However x(k)4 →( 1
3 ,

1
3 ,0
)

and f ∗4 = 5
8 . f also has an isolated local minimum point at (0,0,0) with

f (0,0,0) = 1
4 . Also note that only vertex x4 is changing.

Example 2. Assume that

f (x,y) = min
(

max
(∣∣∣∣y+ 1

2

∣∣∣∣ ,1) ,

∣∣∣∣y− 3
2

∣∣∣∣)+ x2

and

S(0) =

[
0 0 − 1

2

1 0 1
2

]
.

Then

S(k) =

[
0 0 − 1

2k+1

1 0 1
2

]
, x(k)r =

[
1

2k+1

1
2

]
, x(k)ic =

[
− 1

2k+2

1
2

]
(k ≥ 0)

and

f (k)1 =
1
2
< f (k)2 = 1 < f (k)ic =

1
22k+4 +1 < f (k)3 =

1
22k+2 +1 = f (k)r .

Hence x(k)1 = x(0)1 , x(k)2 = x(0)2 , x(k)3 →
[
0, 1

2

]T
= 1

2

(
x(0)1 + x(0)2

)
and f (k)3 → 1. f has

a global minimum point at
(
0, 3

2

)
with fmin = 0 and f ∗1 = 1

2 < f ∗2 = f ∗3 .

In general we can only say that if f ∗t < f ∗t+1 and t is the maximal index, then the first
t vertices will be unchanged for all k ≥ K with some K > 0.
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Definition 1. Let f be a function defined on a convex set S ⊂Rn. (i) The function f
is said to be convex on S if for every x,y ∈ S

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y) , ∀λ ∈ [0,1] . (13)

(ii) The function f is said to be strictly convex on S if for every x,y ∈ S, x ̸= y,

f (λx+(1−λ )y)< λ f (x)+(1−λ ) f (y) , ∀λ ∈ (0,1) .

Lagarias et al. [17] showed that no shrinking occurs if f is strictly convex.

Lemma 4. (Lemma 3.5 of [17]) Assume that f is strictly convex on Rn. Then no
shrink steps may occur.

Lagarias et al. [17] proved the following two results also for strictly convex func-
tions.

Lemma 5. (Lemma 3.6 of [17]) If f is strictly convex on Rn and bounded below,
then f ∗n = f ∗n+1.

Theorem 1. (Theorem 5.1 of [17]) Assume that f is a strictly convex function on R2

with bounded level sets. Assume that S(0) is nondegenerate. Then the Nelder-Mead
simplex method converges in the sense that f ∗1 = f ∗2 = f ∗3 = f ∗.

Theorem 1 is generally considered as the main result of [17]. We now prove the
following supplement to this.

Theorem 2. Assume that f is strictly convex function on R2 with bounded level
sets and S(0) is nondegenerate. Then for any accumulation point S′ of the simplex
sequence

{
S(k)
}∞

k=0
, S′ = [x′,x′,x′] and fi (x′) = f ∗ (i = 1,2,3).

Proof. f has a unique global minimum point xmin with fmin = f (xmin). The only
local minimizer of f is the global minimizer. The compactness of level sets implies
that

{
S(k)
}∞

k=0
⊂ ×n+1

i=1 L
(

f , f
(

x(0)n+1

))
is also bounded. The Bolzano-Weierstrass

theorem implies that we can select a subsequence
{

k j
}∞

j=0, k j → ∞, such that

S(k j) → S∗ = [x∗1,x
∗
2,x

∗
3] and f (

k j)
i = f

(
x(

k j)
i

)
→ f (x∗i ) = f ∗ (i = 1,2,3). It is

also clear that f ∗ ≥ fmin. It is not possible that x∗1, x∗2 and x∗3 are pairwise different,
that is x∗i ̸= x∗j (i ̸= j, i, j = 1,2,3). If they are pairwise different, there are two pos-
sible cases. (i) If x∗1, x∗2 and x∗3 are not collinear, they form a nondegenerate triangle.
The strict convexity of f implies that for y ∈ (x∗1,x

∗
3), y ∈ (x∗3,x

∗
2) or y ∈ (x∗2,x

∗
1),

f (y) < f ∗. Hence we have three different local minimum points, which is contra-
diction. (ii) If x∗1, x∗2 and x∗3 are collinear, then one point is between the other two.
For simplicity, assume that x∗3 ∈ (x∗2,x

∗
1). Then we have two local minimum points

in the intervals (x∗1,x
∗
3) and (x∗3,x

∗
2), which is also contradiction. Hence we cannot

have three pairwise different limit points. It is also not possible that we have two
different limit points x∗i and x∗j (i, j ∈ {1,2,3}). Assume that we have two different
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limit points x∗i1 , x∗i2 (x∗i1 ̸= x∗i2 ),while the third limit point x∗i3 is identical with one
of the two different limit points (i1, i2, i3 is a permutation of the numbers 1,2,3 so
that i1 < i2). Let S j = S

(
x∗i2 ,δ

)
( j = 1,2) be an open ball with δ <

∥∥∥x∗i1 − x∗i2

∥∥∥/2.

Assume first that x∗i3 = x∗i1 . Let K > 0 be large enough such that x(
k j)

i1
,x(

k j)
i3

∈ S1 and

x(
k j)

i2
∈ S2 for all k j ≥ K. The strict convexity of f implies that

f (y∗) = f
(

1
2
(
x∗i1 + x∗i2

))
<

1
2

f
(
x∗i1
)
+

1
2

f
(
x∗i2
)
= f ∗ ≤ f (k)1 (k ≥ 0) .

The continuity of f implies that

f
(

y(k j)
)
= f

(
1
2

(
x(

k j)
i1

+ x(
k j)

i2

))
→ f

(
1
2
(
x∗i1 + x∗i2

))
< f ∗ (k j → ∞)

and f
(

z(k j)
)
= f

(
1
2

(
x(

k j)
i2

+ x(
k j)

i3

))
→ f (y∗) < f ∗ (k j → ∞). Hence for a suf-

ficiently large K′ ≥ K, we have two local minimum points in the open intervals(
x(

k j)
i1

,x(
k j)

i2

)
and

(
x(

k j)
i2

,x(
k j)

i3

)
, which is contradiction. Assume now that x∗i3 = x∗i2

and x(
k j)

i1
∈ S1 and x(

k j)
i2

,x(
k j)

i3
∈ S2 for k j ≥ K. For k j → ∞,

f
(

w(k j)
)
= f

(
1
2

(
x(

k j)
i1

+ x(
k j)

i3

))
→ f

(
1
2
(x∗1 + x∗2)

)
< f ∗.

Thus we have two local minimum points in the open intervals
(

x(
k j)

i1
,x(

k j)
i2

)
and(

x(
k j)

i1
,x(

k j)
i3

)
, which is contradiction. Thus the accumulation point S∗ is of the

form S∗ = [x∗1,x
∗
1,x

∗
1].

Note that f ∗ is the smallest value of f achievable by the NM method (see Lemma
2). The strictly convex example of McKinnon [19] indicates that f ∗ can be different
from fmin. Hence, in general, we cannot expect that the limit or accumulation point
is the minimum point.

If f ∗ = fmin, we have only one accumulation point [xmin,xmin,xmin]. If
{

x(
k j)

i

}
is

such that x(
k j)

i → y ̸= xmin (i = 1,2,3) and f (y) = fmin. Then for any z ∈ (xmin,y∗),
f (z)< fmin, which is contradiction. So there is only one accumulation point.

The result of Theorem 2 is somewhat reminiscent to that of Kelley [13].

4 Extensions for various types of convex functions
Here we extend several results of the previous section for convex and quasiconvex
functions.
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Definition 2. Let f be defined on a convex set S ⊂ Rn. The function f is said to be
quasiconvex on S if

f (λx1 +(1−λ )x2)≤ max{ f (x1) , f (x2)}

for every x1,x2 ∈ S and for every λ ∈ [0,1] or, equivalently

f (x1)≥ f (x2)⇒ f (x1)≥ f (x1 +λ (x2 − x1))

for every x1,x2 ∈ S and for every λ ∈ [0,1].

Definition 3. Let f be defined on a convex set S ⊂ Rn. The function f is said to be
strictly quasiconvex on S if

f (λx1 +(1−λ )x2)< max{ f (x1) , f (x2)}

for every x1,x2 ∈ S and for every λ ∈ [0,1] or, equivalently

f (x1)≥ f (x2)⇒ f (x1)> f (x1 +λ (x2 − x1))

for every x1,x2 ∈ S, x1 ̸= x2, and for every λ ∈ (0,1).

If f is convex, then it is also quasiconvex. If f is strictly convex, then it is strictly
quasiconvex. If f is strictly quasiconvex, then it is quasiconvex (see, e.g. Avriel et
al. [2] or Cambini et al. [4], Thm. 2.2.1).

The nonshrinking assumption is an essential element in the results of Lagarias et al.
[17]. The strict convexity assumption of f excludes shrinking and for such functions
Lemma 2 clearly holds.

For quasiconvex (convex) functions, where shrinking may occur, we have the fol-
lowing convergence result.

Lemma 6. If f is quasiconvex and bounded below on Rn, then for i= 0,1, . . . ,n+1,
the sequence

{
f (k)i

}∞

k=0
is monotone decreasing and converges to some limit f ∗i .

Furthermore f ∗1 ≤ f ∗2 ≤ ·· · ≤ f ∗n+1.

Proof. If shrinking occurs then f (z j)≤ f
(

1
2

(
x(k)1 + x(k)j

))
≤ f (k)j ( j = 1, . . . ,n+1).

Since f (zi)≤ f (k)i ≤ f (k)j , there are at least j new function values f (zi) that are less

than or equal to f (k)j . After ordering the vertices of the shrunken simplex S(k+1), the

new function values at the vertices satisfy f (k+1)
j ≤ f (k)j ( j = 1,2, . . . ,n+1). Hence

each sequence
{

f (k)i

}∞

k=0
is monotone decreasing and bounded from below.

For quasiconvex functions, the shrinking can be characterized as follows.

Lemma 7. (i) If f is strictly quasiconvex on Rn, then no shrink steps may occur. (ii)
If f is quasiconvex on Rn, then shrinking may occur if and only if f (k)r ≥ f (k)n+1 and

f (k)ic = f (k)n+1.
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Proof. Shrinking may occur if either f (k)n ≤ f (k)r < f (k)n+1 and f (k)oc > f (k)r or f (k)n+1 ≤
f (k)r and f (k)ic ≥ f (k)n+1. By definition f (k)c ≤ f (k)n . If f is strictly quasiconvex, then

f (k)oc = f
(

1
2

(
x(k)r + x(k)c

))
< max

{
f (k)r , f (k)c

}
≤ max

{
f (k)r , f (k)n

}
. If f (k)n ≤ f (k)r <

f (k)n+1, then f (k)oc < f (k)r and x(k)oc is the incoming vertex. Similarly,

f (k)ic = f
(

1
2

(
x(k)c + x(k)n+1

))
< max

{
f (k)c , f (k)n+1

}
= f (k)n+1

and x(k)ic is the incoming vertex. If f is quasiconvex and f (k)n ≤ f (k)r < f (k)n+1, then

f (k)oc = f
(

1
2

(
x(k)r + x(k)c

))
≤ max

{
f (k)r , f (k)c

}
≤ max

{
f (k)r , f (k)n

}
= f (k)r .

If f (k)r ≥ f (k)n+1, then f (k)ic = f
(

1
2

(
x(k)c + x(k)n+1

))
≤ f (k)n+1. It follows that shrinking

occurs if and only if f (k)r ≥ f (k)n+1 and f (k)ic = f (k)n+1.

Corollary 2. If f is convex on Rn and an index 1≤ j ≤ n exists such that f (k)j < f (k)n+1,

then f (k)ic < f (k)n+1 and no shrinking occurs in iteration k.

Proof. Assume that f (k)r ≥ f (k)n+1 and f (k)j < f (k)n+1 ( j ≤ n). Then f (k)ic ≤ 1
2n ∑

n
i=1 f (k)i +

1
2 f (k)n+1 < f (k)n+1.

We can characterize the situation f (k)r ≥ f (k)n+1 = f (k)ic as follows.

Lemma 8. Assume that f is quasiconvex on Rn and f (k)ic = f (k)n+1. If f (k)c < f (k)n+1,

then f is constant on the interval
[
x(k)ic ,x(k)n+1

]
.

Proof. It is clear that f (k)c ≤ f (k)n . By definition f (z) ≤ f (k)n+1 if z ∈
[
x(k)ic ,x(k)n+1

]
.

Assume that there exists an element z ∈
(

x(k)ic ,x(k)n+1

)
such that f (z) < f (k)n+1. Then

x(k)ic ∈
[
x(k)c ,z

]
and f (k)ic ≤ max

{
f (z) , f (k)c

}
< f (k)n+1, which is contradiction.

Lemma 9. Assume that f is convex on Rn and f (k)r ≥ f (k)n+1 = f (k)ic . Then f is constant

on the interval
[
x(k)c ,x(k)n+1

]
.

Proof. fc = f (k)n+1, for if fc < f (k)n+1, then fic ≤ 1
2

(
f (k)c + f (k)n+1

)
< f (k)n+1, which is

a contradiction. Hence f (z) ≤ f (k)n+1 for z ∈
[
x(k)c ,x(k)n+1

]
. Assume that there is a

point z1 ∈
(

x(k)c ,x(k)ic

)
such that f (z) < f (k)n+1. Then x(k)ic ∈

(
z1,x

(k)
n+1

)
and f (k)ic ≤

λ f (z1)+ (1−λ ) f (k)n+1 < fn+1 for some λ ∈ (0,1), which is contradiction. If there
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is a point z2 ∈
(

x(k)ic ,x(k)n+1

)
such that f (z2)< f (k)n+1, then x(k)ic ∈

(
x(k)c ,z2

)
, and f (k)ic ≤

µ f (k)n+1 +(1−µ) f (z2)< fn+1 for some µ ∈ (0,1).

We prove the following variant of Lemma 3.

Lemma 10. Assume that f is convex and bounded below on Rn. If for some integer
ℓ (1 ≤ ℓ≤ n)

f ∗ℓ < f ∗ℓ+1, (14)

then there is an index K > 0 such that for all k ≥ K, j(k) > ℓ, that is, the first ℓ
vertices do not change.

Proof. There is an index such that for all k ≥ K,

f ∗ℓ ≤ f (k)ℓ < f ∗ℓ +δ = f ∗ℓ+1 ≤ f (i)ℓ+1 (i ≥ 0) . (15)

Since f (k)ℓ < f (k)n+1, there is no shrinking (Corollary 2) and the result follows from
the insertion rule (3).

We extend Lemma 5 for convex and strictly quasiconvex functions.

Lemma 11. If f is convex (strictly quasiconvex) and bounded below on Rn, then
f ∗n = f ∗n+1.

Proof. It follows from Lemma 6 that f ∗n ≤ f ∗n+1. Assume that f ∗n < f ∗n+1. If f
is convex (strictly quasiconvex), then by Lemma 10 ( Lemma 3) there exists an
index K such that for all k ≥ K, j(k) > n. Hence the first n vertices do not change
and only x(k)ic or x(k)oc is accepted in place of x(k)n+1 for k ≥ K. Hence x(k+1)

i = x(K)
i

(i = 1,2, . . . ,n), S(k+1) = S(k)T (α) (α ∈
{
− 1

2 ,
1
2

}
), and for k ≥ K,

S(k) = S(K)
k

∏
i=K

T (αi) = S(K)T

(
(−1)k−K

k

∏
i=K

αi

) (
αi ∈

{
−1

2
,

1
2

})
. (16)

Thus for k → ∞,

S(k) → S(K)T (0) = S(K)

[
In

1
n e

0 0

]
=

[
x(K)

1 , . . .x(K)
n ,

1
n

n

∑
i=1

x(K)
i

]
.

Hence f ∗n = f
(

x(K)
n

)
, f ∗n+1 = f

(
x(K)

C

)
= f

(
1
n ∑

n
i=1 x(K)

i

)
≤ f

(
x(K)

n

)
= f ∗n , which

is contradiction. In the case of strict quasiconvexity we have f ∗n+1 < f
(

x(K)
n

)
= f ∗n ,

which is contradiction.

Remark 1. If f is quasiconvex on R2 and bounded below, then f ∗2 = f ∗3 also holds.
The proof, however, is more complicated due to the possible presence of shrinking
operations (case f (k)r ≥ f (k)n+1 = f (k)ic ). Hence the proof is omitted here.
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The convexity assumption on f is indeed essential here. If f is not convex or strictly
quasiconvex, then it may happen that f ∗n < f ∗n+1 (see Example 4 and Lemma 5 of
[8]). The following example is related to saddle points (see, e.g. [7] or [8]).

Example 3. Assume that f (x,y) is separable of the form

f (x,y) = g(x)−h(y) , (17)

where g and h are continuous real functions, g(x) > 0 for x ̸= 0, g(0) = 0, g(x)
is strictly monotone increasing for x ≥ 0, g(x) is strictly monotone decreasing for
x < 0, g(−x) ≥ g(x) (x ≥ 0), h(y) > 0 for y > 0, h(0) = 0 and h(−y) ≥ h(y) for
y ≥ 0. Set the initial vertices as x(0)1 = (0,−a), x(0)2 = (0,a) and x(0)3 = (b,0) with

a,b > 0. Then x(k)i = x(0)i (i = 1,2), x(k)3 =
(

b
2k ,0

)
. Hence x(k)3 converges to the

saddle point x(0)c = (0,0) = 1
2

(
x(0)1 + x(0)2

)
, and here f ∗2 =−h(a)< f ∗3 = 0.

5 A generalization of Theorem 1 to convex functions
We now prove the following generalization of Theorem 1, which was the main result
of Lagarias, Reeds, Wright and Wright [17].

Theorem 3. Assume that f is a convex function on R2 and bounded below. Then
the Nelder-Mead simplex method converges in the sense that f ∗1 = f ∗2 = f ∗3 .

Proof. It follows (Lemmas 6 and 11) that f ∗1 ≤ f ∗2 = f ∗3 . Assume now that f ∗1 < f ∗2 .
It follows from Lemma 10 that there exists an index K > 0 such that for k ≥K, x(k)1 =

x(K)
1 . Hence only x(k)2 and x(k)3 may change. The insertion rule (and the impossibility

of shrinking) implies that only the following cases are possible
(i) f (k)1 ≤ f (k)r < f (k)2 ;
(ii) f (k)2 ≤ f (k)r < f (k)3 and f (k)1 ≤ f (k)oc ≤ f (k)r ;

(iii) f (k)3 ≤ f (k)r and f (k)1 ≤ f (k)ic < f (k)3 .

In case (i) x(k)r replaces x(k)2 and S(k+1) = S(k)T (1)P2. For the other two cases we
have to assume that K > 0 is big enough, so that for k ≥ K, f ∗1 ≤ f (k)1 < f ∗1 + ε ,
f ∗2 ≤ f (k)i < f ∗2 + ε (i = 2,3) , where ε > 0 is such that f ∗1 +4ε ≤ f ∗2 . In case (ii)

f (k)oc = f
(

1
2

x(k)c +
1
2

x(k)r

)
≤ 1

4
f (k)1 +

1
4

f (k)2 +
1
2

f (k)r

≤ 1
4
( f ∗1 + ε)+

3
4
( f ∗2 + ε)≤ f ∗2 .

Hence x(k)oc replaces x(k)2 and S(k+1) = S(k)T
( 1

2

)
P2. In case (iii)

f (k)ic = f
(

1
2

x(k)c +
1
2

x(k)3

)
≤ 1

4
f (k)1 +

1
4

f (k)2 +
1
2

f (k)3

≤ 1
4
( f ∗1 + ε)+

3
4
( f ∗2 + ε)≤ f ∗2 .
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Hence x(k)ic replaces x(k)2 and S(k+1) = S(k)T
(
− 1

2

)
P2. It follows that

S(k+K) = S(K)
k

∏
j=1

T (α j)P2, k ≥ 0, α j ∈
{

1,
1
2
,−1

2

}
.

Lemma 1 implies that

F−1T (1)P2F =

 1 0 0
0 1 1
0 −1 0

=

[
1 0
0 C1

] (
C1 ∈ R2×2) ,

F−1T
(

1
2

)
P2F =

 1 0 0
0 3

4 1
0 − 1

2 0

=

[
1 0
0 C5

] (
C5 ∈ R2×2) ,

F−1T
(
−1

2

)
P2F =

 1 0 0
0 1

4 1
0 1

2 0

=

[
1 0
0 C8

] (
C8 ∈ R2×2) .

Hence

S(k+K) = S(K)F
[

1 0
0 ∏

k
j=1 Ci j

]
F−1.

Consider C5 =
{

∏
5
j=1 Ci j : i j ∈ {1,5,8}

}
which is the set of all possible products

of Ci j ’s of length 5. Here we have max{ρ (G) : G ∈ C5} = 1, where ρ (A) denotes
the spectral radius of matrix A. The maximum spectral radius appears exactly at one
element (C1C1C1C1C1), while

max{ρ (G) : G ∈ C5\{C1C1C1C1C1}}= 0.8431.

Define the matrix norm

∥A∥s =
∥∥S−1AS

∥∥
2

(
S =

[
1.5934 −0.9069
0 1.6413

])
. (18)

Then Q = max{∥G∥S : G ∈ C5}= 1.1217, and only the 3 elements of

F = {C1C1C1C1C1,C1C1C5C1C1,C1C1C8C1C1} ⊂ C5

have norm greater than 1. For the rest of the elements,

q = max{∥G∥S : G ∈ C5\F}= 0.9707. (19)

The three cases of F coincide with those that are mentioned in the proof of Lemma
5.1 of [17] (p. 141). They represent the following simplex chains of F in order

– 198 –



Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

In these cases the incoming vertex in step 5, coincides with the worst vertex of the
”starting simplex”, which is impossible by the insertion rule (3). Also note that
matrix T (1)P2 is a 6-involutory matrix (see Trench [29]). So we can exclude these
three cases from C5 and define the set

Ĉ5 = C5 \F . (20)

Assume that k = 5m+ r (m,r ∈ N, 0 ≤ r < 5). Then

k

∏
j=1

Ci j =

[
m

∏
j=1

(
Ci5( j−1)+1 · · ·Ci5 j

)]
Ci5m+1 · · ·Ci5m+r .

If all Ci5( j−1)+1 · · ·Ci5 j ’s are from Ĉ5, then∥∥∥∥∥ k

∏
j=1

Ci j

∥∥∥∥∥
S

≤ qmQr ≤ qmQ4 = q⌊
k
5⌋Q4,

where ⌊x⌋ denotes the lower integer part of x. Hence for the allowed simplex chains,
we have ∏

k
j=1 Ci j → 0 (k → ∞) and

S(k+K) = S(K)F
[

1 0T

0 ∏
k
j=1 Ci j

]
F−1 → S(K)F

[
1 0T

0 0

]
F−1.

Since

F
[

1 0T

0 0

]
F−1 =

 1 1 1
0 0 0
0 0 0

 ,
we have

S(k+K) → S(K)

 1 1 1
0 0 0
0 0 0

=
[
x(K)

1 ,x(K)
1 ,x(K)

1

]
.
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It follows that f ∗1 = f
(

x(K)
1

)
, f ∗2 = f

(
x(K)

1

)
and f ∗3 = f

(
x(K)

1

)
, which is contradic-

tion. Hence f ∗1 = f ∗2 = f ∗3 .

Remark 2. The bondedness of the level sets of f is not assumed unlike Lagarias,
Reeds, Wright and Wright [17].

Remark 3. The proof exploits the Jensen inequality for convex functions. Nikodem
[24] proved that a function f defined on a convex open subset D of Rn is convex if
and only if it is midconvex and quasi-convex (for extensions, see [3], [33]). Hence
the proof does not apply to quasiconvex functions.

We consider now the limitations of Theorem 3. The following example (see also
Example 2 of [8]) indicates that the boundedness of f from below is essential.

Example 4. The expansion point x(k)r is the incoming vertex infinitely many times if

f (k)r < f (k)1 < f (k)2 < f (k)3 and f (k)r ≤ f (k)e (k ≥ 0) . (21)

Consider the simplex sequence

S(k) =
[

c+(k+1)δ c+ kδ c+(k−1)δ

(−1)k
γ (−1)k+1

γ (−1)k
γ

]
(k ≥ 0) (22)

with

x(k)r =

[
c+(k+2)δ

(−1)k+1
γ

]
, x(k)e =

[
c+
(
k+ 7

2

)
δ

2(−1)k+1
γ

]
.

Observe that the simplex sequence
{

S(k)
}

is unbounded, while diam
(

S(k)
)

is con-

stant. If γ ≥
√

δ

2 , the convex function f1 (x,y) =− 1
2 x+ y2 satisfies (21) and f (k)i →

−∞ (i = 1,2,3, k → ∞). Note that f1 has no bounded level sets. The function
f2 (x,y) = e−x + y2 is strictly convex, its Hesse matrix is everywhere positive defi-
nite and f2 is bounded below. For a large enough c > 0 and for any small δ ,γ > 0, it
satisfies (21), and f2

(
x(k)i

)
→ γ2 (i = 1,2,3) for k → ∞, while inf f (x,y) = 0. Note

that the level sets of f2 are not bounded.

The example also shows that the Nelder-Mead method is sensitive to the initial
simplex (see also [25], [31]).

The next example shows that even if we have the convergence of simplex vertices
to finite limit points, they are not necessarily identical.

Example 5. Consider the (pig-through) function

f (x,y) =
1
2
(x+ y)2 ,

which is convex and bounded below. Take the initial simplex

S(0) =
[

− 1
2

√
2 1

2

√
2 1

4

√
2

1
2

√
2 − 1

2

√
2 1

4

√
2

]
.
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Then

S(k) =

[
− 1

2

√
2 1

2

√
2

√
2

2k+2
1
2

√
2 − 1

2

√
2

√
2

2k+2

]
with x(k)1 = x(0)1 , x(k)2 = x(0)2 , f (k)1 = f (k)2 = 0, f (k)3 = 1

22k+2 . Since x(k)c = (0,0), x(k)r =

−
( √

2
2k+2 ,

√
2

2k+2

)
, f (k)r = 1

22k+2 , x(k)ic =
( √

2
2k+3 ,

√
2

2k+3

)
and f (k)ic = 1

22k+4 , x(k+1)
3 = x(k)ic .

Hence x(k)3 → (0,0) and f (k)3 → 0 (k → ∞). Note that limk x(k)3 = 1
2

(
x(0)1 + x(0)2

)
.

6 Closing remarks
Considering the counterexamples of this paper and those of [19], [7], [6], [8] we
may conclude that even for (strictly) convex functions, there is no guarantee that the
simplex sequence

{
S(k)
}

converge to a minimum point. Hence the most general
convergence result for the NM method is Lemma 2 of Lagarias et al. [17], which
proves the monotone convergence of the function values at the vertices and the limit
values are the best available (the NM method starting from S(0) generates a unique
simplex sequence with the aforementioned property).

The ideal situation would be as follows: the simplex sequence converges to a limit
of the form x̂eT , where x̂ is a (local/global) minimum or at least stationary point of
f . The matrix form of the Nelder-Mead method is

S(k+1) = S(k)TkP(k) (k = 0,1, . . .)

which is a nonstationary iteration with
∥∥∥TkP(k)

∥∥∥ ≥ 1. Hence the convergence de-

pends on the convergence of the right infinite matrix product ∏
∞
i=1 TiP(i). The con-

vergence of simplex vertices to a common limit point is studied in [6], [8] and [9].
If S(k) → x̂eT for some vector x̂, then f ∗1 = · · ·= f ∗n+1 = f (x̂).

Under the assumptions of Lemma 2 or Lemma 6 plus those of [6], [8] and [9] we
may conclude that f (x̂) is the best available value (starting from S(0)). As noted
earlier f (x̂) is not necessarily a local minimum of f . However it is certainly an
improvement of the initial function value f

(
x(0)1

)
.
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[20] J.J. Moré and S.M. Wild. Benchmarking derivative-free optimization algo-
rithms. SIAM J. Optimiz., 20(1):172–191, 2009.

[21] C. J. Nash. On best practice optimization methods in R. Journal of Statistical
Software, 60(2):1–14, 2014.

– 202 –



Acta Polytechnica Hungarica Vol. 21, No. 10, 2024

[22] J. A. Nelder and R. Mead. A simplex method for function minimization. Com-
put. J., 7:308–313, 1965.

[23] Y. Nesterov and V. Spokoiny. Random gradient-free minimization of convex
functions. Found Comput Math, 17:527–566, 2017.

[24] K. Nikodem. On some class of midkonvex functions. Annales Polonici Math-
ematici, L:145–151, 1989.

[25] J.M. Parkinson and D. Hutchinson. An investigation into the efficiency of
variants on the simplex method. In Lootsma. F.A., editor, Numerical Meth-
ods for Non-linear Optimization, pages 115–135, London, New York, 1972.
Academic Press.

[26] L.M. Rios and N.V. Sahinidis. Derivative-free optimization: a review of algo-
rithms and comparison of software implementations. J Glob Optim, 56:1247–
1293, 2013.

[27] A.S. Rykov. System Analysis. Models and Methods of Decision Making and
Search Engine Optimization (in Russian). MISiS, 2009.

[28] H.-P. Schwefel. Evolution and Optimum Seeking. Wiley-Interscience, 1995.

[29] W.F. Trench. Characterization and properties of matrices with k-involutory
symmetries. Linear Algebra and its Applications, 429:2278–2290, 2008.

[30] F.H. Walters, S.L. Morgan, L.R. Parker, and S.N. Deming. Sequential Simplex
Optimization. CRC Press LLC, 1991.

[31] S. Wessing. Proper initialization is crucial for the Nelder-Mead simplex
search. Optimization Letters, 13:847–856, 2019.

[32] M.H. Wright. Nelder, Mead, and the other simplex method. Doc. Math., Extra
Volume: Optimization Stories, pages 271–276, 2012.

[33] X.M. Yang, K.L. Teo, and X.Q. Yang. A characterization of convex function.
Applied Mathematics Letters, 13:27–30, 2000.

– 203 –


