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Abstract: Nowadays, risk assessment has become the focus of many research efforts, which 
is the result of environmental, health and/or war related situations. One of the most 
important trends for the risk assessment models is the use of different patient surveillance 
systems, which can be used for various purposes, from performance monitoring of athletes 
to remote monitoring of the elderly. If the aim of the monitoring is to determine the current 
risk levels, based on the measured values, special care is required. Two fundamental 
requirements for these kinds of patient monitoring systems are personalization and timely 
availability of results. However, the proper personalization and the appropriate accuracy, 
but quickly available result are still difficult issues for researchers. In this article, the 
authors provide an overview of the methods they propose to address the above questions.  
In terms of customization, a personal profile-based evaluation is proposed that works with 
the patient's health characteristics. The applicability of the statistics, generated from 
previous measurements, in the evaluation is also presented, as well as a method for 
handling interactions between the input factors. In order to improve the reaction time, the 
authors propose some methods modifying the traditional Mamdani evaluation, and 
applying the Higher Order Singular Values Decomposition (HOSVD) method. 
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1 Introduction 

Risk management has been of particular importance in the last decade. Due to 
environmental and climatic changes, the pandemic and the war situation, it is 
gaining more and more attention in everyday life and in research. One of the main 
directions of risk management is related to surveillance systems. Due to today's 
technological development and the appearance of smart devices, the possibilities 
for using monitoring systems for different purposes are expanding [1]. At the 
same time, in order to ensure reliability and customization of these systems, the 
demand for the use of computational intelligence methods has increased.  
The complexity of the systems has increased to such an extent that traditional 
methods are no longer sufficient in all cases. This is the reason for the increasing 
popularity of computational intelligence methods, as they enable the 
implementation of much more flexible and adaptable systems that intelligently 
adapt to the circumstances and manage the lack of information, the inaccuracy, 
uncertainty, and subjectivity that appear in the data and in the evaluation process 
[2]. 

Monitoring during physical activity is of great importance to avoid unexpected 
emergency situations. In medical applications, the treatment of blurred boundaries 
is particularly important, since in the case of physiological characteristics, a sharp 
boundary cannot be defined to describe the normal and abnormal ranges. As a 
result, the need for a fuzzy approach is obvious. Another advantage of the method 
is that not only the shape of the functions and the operators used during the 
evaluation can be chosen flexibly, but even in the case of the complete system, the 
function parameters, or even the number/type of the inputs can also be changed 
flexibly, according to the patient's capabilities [3]. 

In this type of system, a result determined on the basis of personalized value limits 
and available on time is essential [4]. In the literature there are several solutions 
proposed to solve these issues. M. Moazeni, L. Numan et al. proposed a 
personalized remote patient monitoring algorithm, in which the longitudinal 
measurements of stable HF patients were compared to the measured values of a 
patient and based on this comparison a personal threshold was defined [5]. In the 
study of Z. Jia, Y. Shi and J. Hu a metalearning-based algorithm is presented, 
which is able to generate a customized neuram network for each patient separately 
[6]. K. Wu et al. introduced an adaptive action-aware model to personalize the 
generally defined thresholds, taking into account the patients’ reactions and the 
motion form as well [7]. T. M. Tuan, L. T. H. et al proposes a rule-base reduction 
technique to reduce the computational complexity of the Mamdani inference using 
similarity measures in granular computing [8]. In the paper of N. Rathnayake, T. 
L. Dang, and Y. Hoshino a cascaded ANFIS model is introduced, which consists 
of two parts, the first is used to select the best match for the inputs and the training 
part generates the output [9]. 
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In this paper, a model is studied that determines the current risk level, based on 
measured physiological parameters focusing on personalization and complexity 
reduction. For this purpose, the authors propose a risk assessment framework that, 
with the help of a personal profile, enables flexible determination of both the 
choice of the factors to be measured and their limits. In order to further improve 
reliability, a method is also presented that refines the personalized value limits by 
taking into account statistics created from previous measurement data.  
The management of interactions between input factors is also an important issue, 
for this reason a possible way of handling this issue is also presented by the 
authors. In the aspect of improving the response time, the authors deal with 
methods related to reducing the computational complexity. In order to handle this 
issue a modified structure of the traditional Mamdani inference and an HOSVD-
based reduction method are proposed. 

The remainder of this paper is organized as follows: In Section 2 the applied basic 
definitions and the basic monitoring system model is presented. In Section 3 
methods related to model personalization are proposed in three subsections: 
Section 3.1 illustrates the importance and use of the personal profile-base risk 
assessment framework, Section 3.2 presents the application of the previous 
measurement statistics in the personalization, while Section 3.3 describes the issue 
related to the interaction handling between the input factors. Section 4 is devoted 
to the complexity reduction methods. In Section 4.1 a modification of the 
traditional Mamdani inference structure is proposed, while in Section 4.2 a 
HOSVD-based method is introduced. Section 5 concludes and summarizes the 
proposed methods. 

2 Preliminaries 

2.1 Related Definitions 

Fuzzy membership functions: 

The fuzzy membership function, which is the basis of fuzzy logic, can be 
described by a mapping [ ]A (x) : R 0,1µ →  that specifies the extent to which a 

given element belongs to a set [10]. One of its most frequently used forms is the 
trapezoidal function, which can be defined as follows: 
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A

0 if x a
x a if a x b
b a

(x) 1 if b x c
d x if c x d
d c

0 if d x

≤
 − ≤ ≤

−
µ = ≤ ≤
 − ≤ ≤

−
 ≤

 (1) 

where a,b,c,d are the membership function parameters a b≠  and c d≠ . 

Ruspini-partition: 

{ }1 nA ,...,A set family belonging to an input variable is considered as a fuzzy 

partition of X if these sets cover the base set together, i.e. have positive 
membership information for all possible input values, x X∀ ∈ , 

[ ] ( )ii 1, n : A x∃ ∈ ≥ ε , 0ε > . In the case of the Ruspini-partition there are two 

additional conditions as follows [11]: 

Sum normalization:  

Non-negativity: , ,  

Aggregation operators: The function [ ] [ ]nh : 0,1 0,1→  can be considered as an 

aggregation operator on n fuzzy sets (n≥2) in the case when the arguments of the 
function are the fuzzy sets ( ) ( )1 nA x ,...,A x  on the base set X, and this function 

(h) generates a fuzy set for every x∈X using the membership values of the 
arguments, i.e., ( ) ( ) ( )( )1 nA x h A x ,...,A x= . A well-defined aggregation 

operation must also satisfy the following axiomatic conditions [12]: 

H1:  ( )h 0,...,0 0=  and ( )h 1,...,1 1=  

H2:  h is monotonically incresing in its each argument, i.e., for two arbitrary 
n-tuple 1 na ,..., a  and 1 nb ,..., b , [ ]i ja , b 0,1∈ and i ja b< , 

[ ]i 1, n∀ ∈  then ( ) ( )1 n 1 nh a ,..., a h b ,..., b≤ . 

H3:  h is a continuous function 

In addition to the above conditions, further restrictions can be made: 
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H4: h is a symmetric function in its each argument, i.e., 

( ) ( )1 n1 n p ,...,ph a ,..., a h a= , where p is an arbitrary permutation of the 

numbers 1,…,n 

H5:  h is idempotnent, i.e., ( )h a,..., a a= , [ ]a 0,1∀ ∈  

Ordered Weighted Average (OWA) operator: OWA operator is a specific 
aggregation operator. 

Definition: Let the weight vector be w=〈w1,…,wn〉, for every wi∈[0,1], i∈[1,n] it is 

fulfilled that ∑
=

=
n

1i
i 1w . The OWA operator associated with this weight vector is 

hw:Rn→R a hw(a1,…,an)= w1b1,…, wnbn, where bi is the i-th largest element of 
(a1,…,an), which means that vector b=〈b1,…,bn〉 is a permutation of a=〈a1,…,an〉 in 
descending order i.e., bi≥bj if i<j, i,j∈[1,n] [12]. 

Singular Value Decomposition (SVD): The method is based on the 
decomposition of a real-valued matrix as follows: 

( ) ( ) ( ) ( )1 1 1 2 2 21 2

T
1, n n n n 2, n nn n

C A B A
× × ××

=  (2) 

where matrices 
k

A  (k=1,2) are orthogonal, i.e., EAA T
kk
= , and matrix B  is 

diagonal containing the singular values (λi) of the matrix C  in descending order. 

Singular values are intended to indicate the importance of the column 
k

A  to 

which they belong. The maximum number of the relevant singular values 
depending on the size of the matrix is defined as nSVD=min(n1,n2). The matrices 
obtained after the decomposition can be divided into two submatrices during the 
reduction as follows [11]: 

( ) ( )( )k r k k r

r o
k k, n n k, n n n

A A A
× × −

=  (3) 

( )

( ) ( )( )

r r

1 r 2 r

r
n n

o
n n n n

B 0
B

0 B

×

− × −

=  (4) 

where r denotes the parts to be kept, while o is used to denote the parts that can be 
omitted. It is an important requirement that condition nr≤nSVD must always be met. 
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2.2 Risk Assessment Model 

In this study a risk assessment model is examined that estimates the risk level 
based on the patient-related factors, including the real-time measured 
physiological parameters. For easy handling, the basic model has a hierarchical 
structure as illustrated in Fig. 1. This kind of structure ensures easy expansion and 
high adaptivity. In the system basic parameters of the patient are analyzed in the 
first subsystem, and in the second subsystem the characteristics of the activity are 
evaluated. These subsystems perform the evaluation offline, while the third 
subsystem is responsible for the real-time evaluation. Here inputs are the 
measured physiological parameters. The main goal of the system is to recognize a 
possible risky situation, i.e., if the measured values differ from the permissible 
ones. During the evaluation Mamdani-type inference was applied. 

 
Figure 1 

Basic model structure 

3 Personalized Risk Assessment 

In the case of patient monitoring systems, personalized evaluation is particularly 
important. The range of physiological values considered normal for a specific 
patient depends on several factors. In addition to the patient's gender and age, the 
patient's basic health condition and activity level should obviously be taken into 
account, among other things. In this section, the options for personalization are 
reviewed. 
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3.1 Risk Assessment Framework 

A risk assessment framework greatly supports customization during patient 
monitoring. The basis of this framework is the personal profile, which contains all 
the important factors that should be considered related to the patient. This includes 
basic personal characteristics, such as the patient's age, gender, and other health-
related characteristics, as well as the information necessary to identify the patient 
(e.g., Social Security Number). In the profile, the characteristic data of chronic 
diseases and the related medical recommendations regarding the normal range of 
physiological values are stored, as well as the factors recommended to be 
measured. In addition, the typically performed physical activities must also be 
stored, including the forms of movement, their typical duration, frequency, and 
intensity. The available measuring devices are also important factors, therefore 
their registration in the personal profile is also essential. The structure of the 
relational database representing the user profile is presented in detail in [13]. 

The applied model is an improvement of the basic model presented in Fig. 1 in 
Section 2.2, and it can be considered a framework in the sense that it can be 
flexibly customized based on the personal profile. On the one hand, the number 
and type of inputs can be changed according to needs, i.e., based on the medical 
recommendations (which factors should be measured), and/or based on the 
available devices. In order to determine the factors to be measured, the currently 
chosen form of movement must also be taken into account, since in the case of 
movements with different intensities, other factors contain relevant information. 
On the other hand, the value limits of the measured physiological characteristics 
must be set in accordance with the medical recommendation. It is important to 
keep in mind that even for patients of the same age and gender, the limits of the 
normal range can differ significantly, since an athlete and a patient with chronic 
diseases cannot be loaded to the same extent. Even in the case of the same person, 
it may be necessary to modify the limits of the normal range depending on the 
intensity of the chosen activity (e.g., walking, running, cycling, etc.). The most 
important relations of the database are summarized in Table 1. Of course, the 
personal profile must always be up-to-date so that the system can flexibly adapt to 
changes in the patient's condition. 

Table 1 
Relations in the database 

Relation name Attributes Explanation 
Users TAJ, Name, Address, Birth, 

Gender, Height, Weight 
basic data of the user 

Sports TAJ, sport user’s typical activity forms 
Monitored 
parameter 

TAJ, Name, Address, Birth, 
Gender, Height, Weight 

the parameters to be tested are 
user- and sport-specific 

Antecedent_number param, MFnumber varies depending on the 
characteristics of the given 
parameter 
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Antecedent name param, MFname specifying the names of 
antecedent sets 

Parameter limits TAJ, MFname, limit, sport user-specific limits of 
parameters according to 
medical recommendations 

Rules param1,…,paramn, output related to each parameter 
combination 

Interactions TAJ, sport, index, value the relative importance of the 
parameters 

3.2 Statistics-based Evaluation 

The flexible risk assessment framework described in the previous subsection 
provides a high degree of customization, but it can be further improved. The basic 
idea of the statistics-based approach is that previous measurement results, stored 
in the personal profile, can also be taken into account during the evaluation. These 
values represent the typical reactions of the patient under given conditions. It is 
important that measurements carried out under the same conditions (duration, 
intensity, sample frequency, resting heart rate) as the current ones can be taken 
into account. The essence of the method is to create statistics, more precisely a 
histogram, from previous measurements. These statistics can be used to further 
refine medical recommendations. If these values are typically lower than the 
highest value allowed in the medical recommendation, then the value limits must 
be modified accordingly in order to ensure a safer assessment. In the case that the 
measured value is still adequate compared to the original medical 
recommendation, but is higher than recorded in the statistics, it cannot be 
considered a normal value, as it differs from the patient's typical reaction. 

Previous statistics are taken into account by first fitting a piecewise-linear function 
to the histogram using (5) as illustrated in Fig. 2 [14]. 

( ) ( )( )
( )

i

H i i 1
i i

i i 1

1 if H x sup H (x)
(x) (x ) (x )(x ) x x otherwise

x x
+

+

 =
µ =  µ −µ
µ + − −

 (5) 

where i=1,…,n, n is the number of histogram values; xi, µ(xi) and xi+1, µ(xi+1) are 
the coordinates of the adjacent breakpoints. 

The function fitted to the histogram must be normalized in accordance with the 
fuzzy membership functions so that they fall into the range [0,1] using 
µ(xi)=yi/max(H(x)), where yi represents the histogram value of the interval i. 
Furthermore, the interpretation range is given as a percentage of the patient's 
maximum value. 
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Figure 2 

Histogram and the fitted function [15] 

After the statistics-based membership function has been generated, it should be 
used to tune the membership function available based on medical 
recommendations using (6), (7), (8) [15]. 

( )
( )( )

i

S M S 1

SA 2

x x x / 2 if c

x 1 if c
0 otherwise

µ + −
µ = 



 (6) 

where xM, xS, x, xϵX denote the points where the values of the medical 
recommendation-based, the statistics-based and the improved function are the 
same, the conditions c1, c2 can be defined as follows: 

i i 1 i 2 iA l0 A max(h) A max(h) A r0
1

a x b x c x d x
c : x or x

2 2 2 2
+ + + +

< < < <  (7) 

i 1 i 2A max(h) A max(h)
2

b x c x
c : x

2 2
+ +

≤ ≤  (8) 

where  are the parameters of the membership function for the 

medical recommendation,  are the parameters of the 
statistics-based function. 

The above method describes the modification of the membership function 
representing the normal range, but it is also necessary to modify the adjacent 
functions. Taking advantage of the fact that the original membership functions 
formed a Ruspini partition (see Section 2.1), this property should be kept even 
after the modification, so it is necessary to modify the parameters of the adjacent 
functions accordingly. 
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3.3 Interaction Handling 

In the case of patient monitoring systems, not only the definition of input factors 
and their value limits can cause difficulties, but also the management of 
interactions between input factors. Regarding heart rate, which is one of the most 
important factors, about thirty other factors can be mentioned that influence its 
value, the most important of which are illustrated in Table 2. 

Table 2 
The effect of other parameters on the heart rate value 

Parameter name Parameter value Effect on heart rate 
Age increasing Decreasing 
Gender woman Higher 
Weight overweight Increasing 
Part of the day morning lower (then gradually 

increasing) 
Medicines anti-inflammatories, 

stimulants, sedatives 
depending on the drug 

effect 
Smoking yes Increasing 
Special conditions pregnancy Increasing 
Activity during/after Increasing 
Fitness good Decreasing 
Environmental conditions extreme air temperature, 

high humidity 
Increasing 

Taking into account the cumulative effect of various factors is a big challenge 
even for experts. A possible solution is to examine the factors in pairs, thereby 
simplifying the complex relationship system. during the process, the pairwise 
comparison is done using the well-known aggregation operators [16].  
The evaluation structure is shown in Fig. 2. Traditional Mamdani inference 
(fuzzification, firing strength calculation, implication, aggregation, 
defuzzification) is supplemented with a preprocessing step, where the aggregation 
operator is applied to tune the input membership functions. The membership 
functions used in the system are trapezoidal and can be calculated using (1).  
The input membership functions of the system are the aggregated membership 
functions representing the interaction. Due to the different weight of the influence 
of the factors, the use of OWA operators (see Section 2.1) can be the most 
effective during aggregation in this type of system. 
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Figure 2 

Evaluation structure 

4 Reduction of Computational Requirements 

In the case of real-time evaluation, in addition to customization, the availability 
time of the result is also of fundamental importance. Reducing this time is 
possible by reducing the computational demand of the mathematical model. In this 
section, the investigated ways to reduce the computational complexity are 
presented. 

4.1 Modification of the Mamdani Inference Structure 

The great advantage of the Mamdani-type inference system used in this study is 
that it is very close to the human way of thinking. However, the high 
computational demand of defuzzification can cause problems in the case of tasks 
requiring real-time evaluation. However, the proposed Mamdani-like structure 
presented in this section is able to combine the advantageous properties of the 
Mamdani and Sugeno models, while the obtained results are equivalent to the 
result of the original Mamdani structure. The essence of the discretization is that 
the defuzzification is done separately for each rule output, followed by the 
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aggregation of the resulting crisp values. Consequently, compared to traditional 
Mamdani-type inference, the evaluation steps are reversed. It is important to note 
that in this case the defuzzification is reduced to a simple calculation, since the 
rule outputs are typically simple, piecewise linear functions. Another important 
aspect that the simplification can be performed equivalently only for certain 
operator combinations. The equivalence of the traditional Mamdani-type and the 
Mamdani-like structure with discretized output has been proven in the literature, if 
product implication, sum aggregation and Centre of Gravity (COG) 
defuzzification are used during the evaluation [17]. 

The authors proved (see details in [18]) that if the Zadeh norms are applied during 
implication and aggregation, and the rule-by-rule defuzzification is performed 
using the Mean of Maxima (MOM) method, then an equivalent evaluation is also 
obtained. The MOM values of the trapezoidal consequent sets can be calculated 
by (9), while for triangular sets it is simply equal to ci. 

2
cbMOM ii

i
+

=  (9) 

where i=1,…,n, n is the number of the rules, bi and ci are the membership function 
parameters belonging to the highest function values of the consequent set 
belonging to rule i. 

The comparison of computational requirements is illustrated in Table 3. It is taken 
into account that in the case of the traditional evaluation structure, the aggregation 
must be applied to an equidistant division of a suitable fineness. Let Y be the input 
domain [ymin,ymax] and the set containing its equidistant base points: 

[ ]N111i y;...;2yΔ;y;yY ∆++=  (10) 

where N is the number of equidistant base points and ∆=(ymax-ymin)/(N-1) is the 
distance between the points. Aggregation must be performed in the points, 
obtained this way. 

Table 3 
Comparison of the computational requirements 

(n – number of the rules, N – number of the discrete points) 

Inference step Traditional Mamdani-
type structure 

Mamdani-like 
structure 

Aggregation ( )N n 1−  n 1−  

Defuzzification (+,-) ( )2 N 1+  n  

Defuzification (*,/) 5  n  

It is clear from the comparison that the operation requirements of the aggregation 
can be significantly reduced by using the modified structure. In the case of 
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defuzzification, the improvement is not so obvious, but taking into account the 
fact that it is necessary to use a large number of basis points for a sufficiently fine 
division, it can be stated that N is significantly larger than n (number of rules). 
Consequently, it can be concluded that the number of multiplicative operations is 
slightly greater in the case of the modified structure, but a significant 
improvement can be achieved in the case of additive operations. 

4.2 HOSVD-based Reduction 

The reduction option presented above serves to speed up the general operation of 
the system. However, there are situations where additional reduction is necessary 
to adapt to a special situation. In the case of a patient monitoring system, such an 
unexpected situation can occur when some deviation can be detected based on the 
risk level calculated from the measured characteristics. In such a case, a faster 
assessment of the situation is necessary to assess how dangerous the situation is 
and whether intervention is necessary. One possible method for this type of 
reduction is the Higher Order Singular Value Decomposition (HOSVD) method. 
By using this method, redundancies inherent in the evaluation and parts that play a 
less relevant role in determining the result can be filtered out, thereby reducing the 
complexity of the calculation and the time of the evaluation. 

In Section 2.1 the SVD method was presented. However, in the case of fuzzy 
systems, usually matrices with a higher number of dimensions are applied, which 
require an extension of the SVD algorithm. This extended method, the so-called 
HOSVD is presented below. The precondition of the reduction method described 
below is that the antecedent sets are in a Ruspini partition (see Section 2.1). The t-
norm used in the algorithm is the product operator, the t-conorm is the sum 
operator, and the defuzzification method is the COG method. The matrix C  

which is the input of the algorithm contains the center of gravity and area of the 
consequent sets. 

The reduction is performed step by step (number of steps is N), reducing one 
dimension of the matrix C  at each step according to the algorithm below. Input 

of the algorithm is 
i

C , the size of the matrix 
i

C  in step i is 

n1ii
r

1i
r
1 n...nnn...n ×××××× +− , respectively. 

Algorithm 1 
The HOSVD algorithm 

Loop from i=1 to N 

i
C is transformed to a 2-dimensional matrix ( ) ( )r rj,k

i 1 i 1 i 1 n
ii n n ... n n ... n

S : s
− +× ∗ ∗ ∗ ∗ ∗
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Reduction: *
ii

T
iii

SA'ABAS =≈ , ( ) rj,k
i i

ii n n
A : a

×
, ( ) ( )r r rj,k

i 1 i 1 i 1 n
ii n n ... n n ... n

S : s
− +× ∗ ∗ ∗ ∗ ∗

 

Transformation on 
i

A to fulfill Sum normalization and Non-negativity conditions 

Generate ( ) r r rj,k
1 i 1 i i 1 n

i 1i 1 n ... n n n ... n
C : c

− +
++ × × × × × ×

by transforming 
i

S into n-dimensional 

Loop end 

The output ( )n
C  produced by the algorithm contains the consequence parts of 

the reduced rule base. As a result of the reduction, new membership functions 
must be defined, which have the following form: 

( ) ( )∑∑
= =

=
r
i i

jk,ik,

n

1i

n

1j
ij,k,kAkA' axμxμ  (11) 

where xk is the input k, ( )kA xμ
jk,

 is the membership function j belonging to input 

k, and ak,j,i is an element of the matrix
1

A . 

While the size of the reduced rule base is r
n

r
1 n...n ∗∗  instead of the original 

n1 n...n ∗∗ . 

The extent of the reduction depends on the boundary conditions, i.e., the accuracy 
requirement of the reduction and the acceptable error level. The reduction is exact 
if the oB  given in (4) contains only zero singular values. In other cases, only an 

approximate result can be given within the defined error level, which can be 
calculated based on the abandoned singular values using (12). 

o

RSVD j
j 1

E λ
=

≤∑  (12) 

where o is the number of the omitted singular values. 

The reduction can be performed offline, so it does not increase the computation 
time of the real-time evaluation. In the case of a potential emergency, simply the 
reduced evaluation is executed instead of the original one. 

Conclusions 

There is an increasing demand for patient monitoring systems, and as a result, 
related research, is increasing. The two main issues related to these kinds of 
systems are the reliability of the result and the availability, in time. 
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In this paper the authors proposed some solutions for the above-mentioned issues. 
In order for the evaluation to be sufficiently accurate, it is necessary to work with 
personalized parameters and value limits as much as possible. For this reason, as 
the authors highlighted, the use of a well-designed and up-to-date personal profile 
is essential. In this personal profile, in addition to the basic characteristics, it is 
possible to store medical recommendations, typical forms of activity, and even 
available devices. The greatest advantage of the evaluation framework created on 
the basis of this profile is that the number and type of factors to be measured, as 
well as the value range of the physiological parameters, can be flexibly changed 
according to the recommendation and the form of movement. These personalized 
thresholds can be further improved using the statistics created from the previously 
measured values. The authors also presented proposals related to the other basic 
requirement, the improvement of the system's reaction time. In the first solution, 
the traditional Mamdani inference process was modified, by swapping the order of 
the aggregation and defuzzification, i.e., the discretization of the rule consequents 
is used to reduce the computational requirements. Operational requirements of the 
traditional and the modified inference were also compared and the modified 
structure proved to be the better one. The second solution, is based on the 
HOSVD-based reduction, where the redundant or less relevant parts of the system 
are eliminated. It has been shown that in this way the number of evaluation rules 
can be significantly reduced. This method can be used as an alternative solution in 
the critical situation, when the quickly available result has of vital importance in 
avoiding a potential emergency. Consequently, the latter method is particularly 
advantageous for any time systems. 

The proposed methods can be used separately, or for greater reliability, the 
personalized methods should be used together. 
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