
Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 307 ‒

Big Data Deduplication in Data Lake

Jakub Hlavačka, Martin Bobák* and Ladislav Hluchý

Institute of Informatics, Slovak Academy of Sciences
Dúbravská cesta 9, 845 07 Bratislava, Slovakia
e-mails: xhlavackaj@is.stuba.sk martin.bobak@savba.sk,
ladislav.hluchy@savba.sk

*Corresponding author: M. Bobák, https://orcid.org/0000-0002-2905-4999

Abstract: Data lakes are the next generation of technology to process and store big data. As
usual, new challenges and problems arise inevitably with new technologies. One of these
problems is the occurrence of duplicate data in the storage. Our paper aims to address this
challenge during the data ingestion phase that is currently overlooked or addressed
insufficiently. The first part discusses the design of a suitable architecture for the data lake
and deduplication workflow for processing structured and unstructured data. The proposed
solution is evaluated through experiments that deal with the flexible deduplication window,
the scalability of the proposed solution, the suitable hash function, and the advantages of an
in-memory pointer repository.

Keywords: data lake; deduplication; big data

1 Introduction

The volume and variety of data are constantly increasing [1]. Most technologies that
work with big data cannot adapt to this trend. Therefore, to solve these problems,
the technology of data lakes [2] was created. Its main advantage is flexible work
with data stored in low-budget storage [3]. Another benefit is minimal or no data
processing before storing, which prevents the loss of data that may show potential
value in the future.

Despite all the advantages, this technology has not yet perfected the work with big
data. There are still open issues [4]. One of them is the occurrence of duplicate
records in data lake storage [5]. Our work is focused on this problem. The proposed
solution is based on the application of a deduplication process in the data ingestion
phase when the data lake receives uploaded data.

mailto:xhlavackaj@is.stuba.sk
mailto:martin.bobak@savba.sk
https://orcid.org/0000-0002-2905-4999

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 308 ‒

2 Background and Related Work

2.1 Data Lakes

Every large organization uses a certain way of storing and processing data. In recent
years, data warehouses have been used for these purposes, but data lakes [6] are
being used more often. Data warehouses have become overwhelmed with data
processing and storage due to the increasing volume and variety of data that need
to be processed [7]. Since data warehouses process, clean, and then store the
received data, it can lead to potential data loss. The raw data appeared to be useful
over time because it could be used for other purposes [8]. It was necessary to react
to emerging shortcomings of data warehouses, which is why the technology of data
lakes was created. Modern data lake is a decentralized system (often exploiting
cloud computing) that allows to store big data in its natural format.

Another important aspect is scalability. Cloud computing paved the way for scalable
[9] and effective [10] infrastructures and platforms that can handle even big data
stored in data warehouses or data lakes [11]. To obtain results from the data
warehouses, the user must first understand their schema, structure, and quality. For
this reason and to be able to store raw data, data lake works on the principle of
schema-on-read.

There are several architecture types for data lakes. When the structure of the data
stored in a data lake is known their analysis is easier. The most suitable architectural
type is based on the principle of data ponds which divides the data in the data lake,
according to their structure, into four basic ponds [8]. When the granularity of this
approach is too low, zone architecture is more appropriate. Its main idea is the
division of the data into several zones according to the stage of processing [12].
A special type of zone architecture is lambda architecture. It is divided into two
zones: a batch processing zone for bulk data and a real-time processing zone for fast
data (e.g. edge devices, IoT [13]) [14].

2.2 State of the Art

Data lake driven by data pipelines [15]: The data lake collects heterogeneous data
from various sources. Its architecture is based on the principle of a data pipeline
[16]. The data lake is designed to receive, process, store, analyze and visualize data.
The whole process is divided into several phases. The first phase is custom data
collection that takes advantage of multiple data extraction tools to collect data from
sources such as web pages, application programming interfaces, or files in various
formats. The data ingestion phase mainly gathers data from the data collection phase
[17] carried out mainly by Apache Flume. It solves data loss problems that can
occur during the collection of data. Thus, the data lake becomes reliable and fault

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 309 ‒

tolerant. The proposed approach supports manual data ingestion (the user uploads
data directly into the data lake), as well as automatic data ingestion. The data are
stored directly in the Apache Hadoop file system, which supports storing data in
different formats. Afterward, the user can analyze the stored data by Apache Solr
and Apache Spark. The last phase is data visualization using the Hue web interface
together with Matplotlib.

Data lake lambda architecture [18]: Its architecture is divided into four layers:
data collecting, data storing and processing, data querying and analytics. Since the
data come from various sources and their format is not uniform, the first layer
collects the data using Apache Flume. It is capable of handling data source diversity
and data heterogeneity. Its main advantage is ensuring that data are saved in storage,
even when disconnections or outages occur. Protection against data loss is solved
by virtual memory channels. Each of these channels contains data that have been
removed only after they are fully migrated to storage. Data storage and processing
are performed by the batch layer and the speed layer. The batch sublayer uses
Hadoop as a distributed file system and MapReduce to create previews of the stored
data. The speed sublayer processes data in real-time. It fulfills the functionality of
supplementing previews from the batch layer. The speed layer uses Apache Spark
which can process data fast due to memory clustering. Previews from both layers
are connected to the service layer. The data querying layer supports data extraction,
loading, and aggregation. According to it, this layer is made up of several tools.
The last layer dedicated to data analysis is carried out through various methods of
artificial intelligence.

Data lake for archeological data [19]: The core of the data lake is divided into six
layers. The whole data lake has 11 layers. Since the other layers are dedicated to
resource and workflow management, data governance, or security, the analysis is
focused on the core layers, which handle the whole data lifecycle within the data
lake. The first layer selects a metadata model that best suits the received data. After
collecting data properties and choosing the right metadata model, data ingestion
takes place. Two different tools are used for data ingestion. Apache Sqoop is used
to ingest structured data, and semi-structured and unstructured data are ingested by
Apache Flume. The data quality after the data ingestion process is not always
sufficient. The data often contains duplicate records along with other unwanted
values. That is why data are polished by the data distillation layer which cleans data
from duplicate records and missing or inappropriate values. The distillation layer
can clean data that come directly from the data ingestion layer or are stored in the
data lake. The data lake storage itself is located in the data storage layer. It is based
on Hadoop, which can be easily replaced with Amazon S3. The data storage layer
is directly connected to the data ingestion, distillation, and insights layers.
The functionality of the last-mentioned layer is related to exploratory data analysis
or data transformation. Data transformation provides data preparation for use in
other data applications, which are part of the data application layer. Through the
tools in this layer, the user can discover useful information from the data itself.

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 310 ‒

Serverless data lake [20]: The serverless paradigm [21] enables maximum use of
shared resources with the lowest possible costs. All this can be achieved by turning
off shared resources during idle time [22]. The data lake processes received data in
batches, within pre-planned deadlines to exploit the serverless benefits as much as
possible. Based on these assumptions, the proposed data processing consists of data
extraction, task scheduling, data distribution, and data deduplication. The first step
of the data lifecycle is to create tasks that are initialized by providing a configuration
file to the tasks creator. It loads the credentials and sends requests to add the tasks
to the tasks queue. In the next step, the tasks executor is emptying the tasks queue
by fulfilling task requests and storing the received data in the landing zone.
The tasks executor and tasks creator estimate the completion time of the tasks on
limited system resources, so they are regulated by throttlers. The last step is to
combine and deduplicate the data located in the landing zone. Tasks data partitioner
and deduplicationer perform them according to tasks metadata. Unique data are
stored in the persistent storage layer.

Encrypted data lake [23]: Since the classic methods of deduplication do not work,
a new deduplication approach suitable for encrypted data in large storages (e.g.,
data lake) is proposed. The first step is keyword extraction from the uploaded data
which are further analyzed by the multi-label unsupervised algorithm and used for
data management. Once the data are uploaded to the server, the deduplication
process is triggered. If the uniqueness check is negative, additional information is
added to the existing data in the storage. It fulfills the functionality of a pointer on
the data, and they are not uploaded to the data lake. In case of the opposite result,
the data are encrypted and together with the deduplication token are stored in the
data lake.

Data lake for the financial sector [24]: Part of the data lake platform is a data
warehouse. Before uploaded data are stored in the data warehouse, they are
processed through extraction, transformation, and loading, followed by a
deduplication process. The deduplication pipeline consists of several steps. In the
first step, the data received by the data channel are divided into smaller blocks that
may represent duplicate records. The goal of the division is to reduce the data.
The blocks are compared to each other and clustered according to their degree of
similarity. After clustering, groups of similar blocks are merged. The core
component is the Cloud Data Repository, which follows the data lake paradigm. Its
main task is to receive data from heterogeneous internal and external sources.
The extraction, transformation, and loading processes are applied later to the data
in the data lake, after which they are directed to the data warehouse storage, which
is an internal component of the data lake.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 311 ‒

3 Design of Deduplication Process for Data Lake

3.1 Data Lake Architecture

The proposed data lake architecture is depicted in Figure 1. The data lake consists
of data ingestion and data storage. The other parts of the data lake are not
considered, while they are not a part of our research.

Figure 1

Data Lake Architecture (the relevant parts)

The proposed data lake can receive both unstructured and structured data.
Unstructured data are not restricted. On the other hand, structured data are restricted
to the SQL format. However, it is not a significant limitation of the proposed
approach since receiving data in other formats can be supported through an
extension using the API within the data lake. The uploaded data are handled by a
dedicated data ingestion module, which is the main and only component of the data
ingestion phase. The module not only serves to receive diverse types of data and
ensures that the data lake receives complete data, but our approach also uses it to
deduplicate uploaded data before saving them to the data lake. The proposed data
ingestion module consists of the following parts:

• The first part of the deduplication process is data preparation. It depends
on the data format. In the case of unstructured data, it divides the input
data into smaller blocks (chunks). On the other hand, in the case of
structured data, individual insertion queries are identified.

• After data preparation, hash values are calculated from the outputs of the
previous step. In the case of structured data, hash values are calculated
from data input queries, and in the case of unstructured data, hash values

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 312 ‒

are calculated from data chunks that were created from uploaded
unstructured files in the first part of the deduplication process.

• The last part is deduplication according to the hash values and
updating the necessary repositories. The data are handled iteratively,
while the last chunk does not have to process its hash value. Initially, data
chunks are marked as unique or duplicates based on their hash values. This
requires access to a pointer repository, which stores data as key pairs.
The key is the hash value of a data chunk already stored in the data lake,
and the value is a pointer to that chunk (see Sections 3.3 and 3.4).

Data storage is divided into three repositories that store data in the data lake. One
particularly important repository is the pointer repository. According to the state
of the art, there is no data lake similarly designed. Thus, its impact on the data lake
is evaluated in the experiment section. Other data storages are the unstructured
data repository and the structured data repository. As the names suggest, the
unstructured data repository contains data chunks together with its metadata, and
the structured data repository contains structured data in tabular form.

The proposed methodology for deduplication is based on hashing, which is a very
suitable approach for this purpose. However, several critical aspects have to be
considered when applying this technique. The most significant is collision handling.
While this paper concentrates on data deduplication in data lakes rather than the
hash functions as the concept, it operates under the assumption of an ideal hash
function that ensures no collisions occur.

3.2 Deduplication Workflow

The whole deduplication workflow is depicted in Figure 2. It starts with uploading
data to the data lake. They are received by a specialized data ingestion module (see
Section 3.1), which starts processing the uploaded data. The module distinguishes
whether the user has uploaded structured or unstructured data because it affects how
the data are treated in the next parts of the workflow.

For structured data, the ingestion module identifies all insertion queries of the
uploaded SQL file. Subsequently, it calculates hashes for each data from the
insertion queries. In the case of unstructured data, the ingestion module divides
them into smaller chunks, which hashes are calculated. After the end of this cycle
or, in the case of structured data, after the calculation of the hash value of the last
identified data insertion query, data deduplication begins with the processing of the
hash values, and the relevant repositories are updated according to the deduplication
results.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 313 ‒

Figure 2

General workflow for big data deduplication within data lake

After successfully storing the unique data, it is necessary to save its pointer in the
pointer repository. In the case of unstructured data, the pointer on a unique data
chunk is added to the list of pointers for the entire unstructured data (i.e., the file)

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 314 ‒

that the user initially uploaded. This list of the uploaded unstructured data is then
stored, together with its metadata, in the unstructured data repository.

If the ingestion module marked the uploaded data as duplicate, the necessary
repositories are updated. This update occurs only under the following conditions:

1) A duplicate data chunk of uploaded unstructured data has the same hash
as a data chunk of other unstructured data. In this case, the metadata of the
duplicate data chunk is updated, and the updated list of pointers for the
uploaded unstructured data is saved together with its metadata.

2) The unstructured data uploaded by the user is composed of several data
chunks which are used more than once in the uploaded unstructured data.
Firstly, the data ingestion module processed it as unique, but since it is in
the data lake, it becomes a duplicate. However, because it is used in a
different place in the unstructured data, it is necessary to add this
information to the metadata of the data chunk in the unstructured
repository. The list of pointers is also updated for the uploaded
unstructured data, as well as its metadata.

Regardless of whether the data have been identified as unique or duplicated and
subsequently processed adequately, the deduplication process and updating of the
repositories continue until all uploaded data (i.e., its insertion queries or data
chunks) have been processed.

3.3 Structured Data Processing

Structured data can be handled as tabular data. According to it, they can be stored
in databases with a predefined schema [25]. The advantage of this approach is quick
and simple analysis. Unfortunately, data lakes cannot define the data schema for
uploaded data in advance [26], which complicates the deduplication process in
general.

Structured data are uploaded to the data lake as an SQL file that is processed by the
ingestion module. The module divides individual queries into several categories
according to their functionality during query extraction. From a data lake
perspective, the most interesting are insertion queries. However, insertion queries
can also contain duplicate data. To identify duplicates, the ingestion module
calculates a hash for each insertion query.

In the case of unique data, its insertion query is executed, which stores the new data
in the structured data repository. Subsequently, a new pointer is stored in the pointer
repository (in this case, the table name changed by the query) together with the hash
of the query. This type of data is stored in the key:value pair, where key is the hash
value of the query, and the value is the table name over which the insertion query
is executed. In the case of a duplicate request, none of these operations are
performed.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 315 ‒

3.4 Unstructured Data Processing

To solve the deduplication problem of unstructured data, it is useful to detect
duplicate data at the level of smaller regions because the approach is more effective.
The first step is to divide the uploaded data (i.e., files) into data chunks and calculate
their hashes, based on which the data ingestion module determines whether it is a
unique or duplicate data chunk.

In the case of a unique data chunk, the ingestion module stores it in the unstructured
data repository. Subsequently, the key:value pair is stored in the pointer repository.
Key is the hash value of the data chunk, and value is a pointer to this chunk in the
unstructured data repository. The last step is to update the information about its
usage, which plays an important role in the reuse of data chunks in multiple
unstructured data. In the case of a duplicate data chunk, the metadata in the
unstructured data repository is updated, because it has to add another reference to a
different data on its pointer.

4 Platform for Data Lake Deduplication

Since the paper deals with big data in data lakes, it is very important to choose a
suitable tool for the deduplication process. The deduplication is performed during
the data ingestion phase, which reduces a set of all existing tools to a set of tools
that are designed for data ingestion. Majority of existing data lakes [19] [15] [18]
use Apache Flume which was originally designed to ingest heterogeneous data in
Hadoop Distributed File System (HDFS) [27] [28] [29], according to which it is
necessary to find a different tool since not all data lake repositories use HDFS.
Apache Flume alternatives are Apache NiFi and Apache Kafka [18], according to
which the module is built on Apache Kafka [28] because Apache NiFi was designed
to stream data from one system to another [30]. Given that the data ingestion module
receives files via API, the choice of Apache Kafka over Apache NiFi is clear.
Apache Kafka is a distributed and scalable tool that allows sending messages with
low latency and high throughput. It was created to process log messages [28], but
is currently also used in systems that require real-time data processing [31].
The module uses this tool for data ingestion, in which data deduplication is
implemented.

However, Apache Kafka does not support data deduplication, and thus the module
had to use external libraries through which it becomes a part of data ingestion. As
part of the deduplication process, it is necessary to solve the division of unstructured
data into data chunks and the calculation of hash values which are computed as
SHA256 hashes.

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 316 ‒

Dividing unstructured data into data chunks is implemented by the FastCDC library,
which uses the method of dividing data into smaller blocks of different lengths
(content-defined-chunking). The advantage of its algorithm is that it divides the data
several times faster than the tools that use the Asymmetric Extremumu algorithm
or the Rabin algorithm [32].

Apache Kafka manages messages by publishing and subscribing. The component
that publishes messages is called a producer, and the component that subscribes
these messages is called a consumer. The consumer does not need to immediately
subscribe to the messages that the producer has published, so these messages are
stored in a component named topic. Individual topics are filled with messages of a
certain type. The module uses two different topics. One of them is filled with
messages containing structured data and the other with messages containing
unstructured data. These topics are part of the broker component, which behaves as
a server and is coordinated by Zookeeper.

Messages in the topics are stored in a byte array in the Avro format. Operations over
Avro schemes are handled by the schema registry component. The producer and the
consumer communicate with the schema register.

4.1 Data Repositories

The data ingestion module has three different data repositories which use the
following technologies. The structured data repository is based on PostgreSQL
because the structured data are deduplicated at the query level. Thus, it is necessary
to select a technology supporting query-driven data management, i.e. storing
structured data in tabular form, allowing the creation of relationships between stored
data and inserted data via insertion queries.

The unstructured data repository is based on an open-source technology MinIO,
which is an object storage designed for cloud usage. It is chosen as an alternative to
HDFS because other technologies are outdated, have limited performance, and scale
poorly [33].

− In MinIO, unstructured data is stored in buckets. The data ingestion
module uses a files-bytes bucket and a files-pointers bucket. The files-bytes
bucket contains records in JSON format. Their content consists of
attributes used_in_files and data. The data attribute contains a data chunk
(as a string) to which this record in the files-bytes bucket belongs.
The names of the records in the files-bytes bucket are the hash values of
the data chunks stored in the data attribute.

− The used_in_files attribute is more complex than the data attribute. It
contains information about the occurrence of the data chunks in different
files that have been uploaded to the data lake.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 317 ‒

− The information consists of the pair key:value. Key in this case is the name
of the file that contains the data chunk. Value consists of two attributes.
The attribute named occurrences contains a number that represents
information about the number of data chunk occurrences in the file with
the name stored in the key. The attribute at_indexes is an array of numbers
through which it is possible to correctly reconstruct a file whose content
consists of multiple data chunks. The array contains the order of the data
chunk within the content of the file. Since a data chunk can be used more
than once in a file, the at_indexes attribute is implemented as an array of
digits.

The pointer repository consists of records that contain lists of pointers to files that
were previously uploaded to the data lake. The records are in JSON format, and
their name contains the original file name. The record has two attributes: pointers
and original_file_name. The pointer attribute contains a list of pointers to the data
chunks of the original file. Each pointer has a bucket attribute and a chunk_hash
attribute. The bucket attribute carries information about the bucket in which the
record of the data chunk is stored. The chunk_hash attribute contains the hash value
of the data chunk so that the data lake can find the record of that data chunk in the
bucket where it is stored.

− To identify whether a user uploads unique or duplicate data, it is necessary
to find out if the hash of the data already exists in the pointer repository.
This means that for every deduplication check, the module has to query
this repository. According to it, the repository needs to respond as fast as
possible to queries providing information about the occurrence of the
searched data. Thus, the pointer repository is based on Redis. Searching
for data in this technology is faster than in classic databases operating over
the disk because it works as an in-memory database.

− Redis database stores data in the format key:value. Key contains the hash
value of the unique data, and the content of the value is a pointer to it.
The hash value has the same form whether it belongs to structured or
unstructured data. On the other hand, the pointer that is stored in a value
always has a JSON format, but its content and structure depend on the data
type. In the case of structured data, it is very simple but sufficient. It only
contains the table_name attribute with the name of the table in which the
structured data is stored. A pointer to unstructured data contains the bucket
and chunk_hash. The bucket attribute carries information about the bucket
in which the unstructured data is stored within the MinIO repository. To
be able to access the given unstructured data, it is necessary to know the
name of the record in which it is stored within the bucket, which is the
content of the chunk_hash attribute.

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 318 ‒

4.2 Data Ingestion

Figure 3 shows the architecture of the data ingestion module for data lake
deduplication. The whole solution is dockerized, which enables scaling individual
components as needed, and at the same time, dockerization simplifies module
launch in different environments.

Figure 3

The architecture of the data ingestion module

The whole data ingestion process is based on Apache Kafka, which prevents data
loss in the data lake. The data are uploaded to the data lake through application
programming interfaces which are available to the structured data producer and the
unstructured data producer. The uploaded data are subsequently processed and
published by the relevant producer. The published data are further consumed by an
adequate consumer, which performs the appropriate operations, according to the
results of the deduplication process. If the uploaded data are unique, then they are
forwarded to the PostgreSQL storage repository (structured data) or the MINIO
storage repository (unstructured data). Together with these data, their pointers are
also stored in the Redis database as a key:value pair, where the key is the hash of
the stored data.

5 Experiments and Evaluation

This section presents the experiments through which the proposed solution is
evaluated. The following experiment aspects are considered:

• Ideal size of a flexible window - the experiment deals with the hypothesis
of whether there is a bottleneck when a small flexible window is used.

• Scalability of uploaded files - the experiment investigates if the total time
of data ingestion grows linearly with the increasing size of uploaded files.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 319 ‒

• Hash functions – the experiment is focused on trade-off simple hash
functions.

• Advantages of in-memory pointer repository - the experiment examines
if the total time of published messages processing is faster when the pointer
repository is based on an in-memory database instead of a disk database.

5.1 Experiment Environment

The experiments are evaluated on a virtual machine with the Linux operating system
(Ubuntu 20.04.5 LTS). This virtual machine had 8 CPU cores Intel(R) Xeon(R)
model X5570 @ 2.93GHz with x86_64 architecture. The size of the SSD disk of
the virtual machine was 40GB, and its RAM has 16 GB.

The virtual machine had installed Docker and docker-compose along with all
required dependencies. The docker version is 23.0.1 and the docker-compose
version is 1.25.0. The experiments are dockerized and run within the IISAS
scientific cloud. Figure 4 shows a deployment diagram of the experiment
environment. The only externally accessible point is MinIO GUI, through which
the individual experiments are monitored. This interface is available on port 80
using NGINX.

Figure 4

Deployment diagram

5.2 Ideal Size of Flexible Window

The experiment aims to find out whether there exists a bottleneck related to the size
of a flexible window determining the size of data chunks.

The dataset of this experiment consists of 100 000 files with a size of 4000 bytes.
The file content is generated randomly by our proprietary generator. The experiment
evaluates several flexible windows, and its results are shown in Figure 5.

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 320 ‒

The experiment also shows that Apache Kafka is the main bottleneck in terms of
message processing and consumption. This bottleneck grows in direct proportion to
the size of the flexible window.

Figure 5

Consumption time per individual size of the flexible window

Part of the experiment was the evaluation of deduplication process sensitivity,
chunking time, production time, and repository sizes. It is focused on the size of
data chunks. The whole chunking process works with a flexible window, which is
defined by its minimum, average, and maximum size. The ratio between these
values is 4. The exception are configurations reaching value 4000, which is the size
of the whole file. The paper presents them for demonstration purposes.
The configuration 512, 2048, and 4000 has the best time, but it is affected by the
experiment configuration (the file size is 4000 bytes). Within these aspects, the
configuration 128, 1024, and 20481 is dominating, according to that it is considered
the ideal size of the flexible window.

5.3 Scalability of Uploaded Files

This experiment scenario explores how uploading an increasing number of unique
files affects the deduplication process. The experiment starts with 100 000 unique
files and ends with 300 000 unique files. The size of a file is 4000 bytes. Figure 6
shows that the consumption time increases linearly with the number of uploaded
files.

1 These values determine the minimum, average, and maximum size of the data chunks.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 321 ‒

Figure 6

Consumption time per different number of unique files

The part of the experiment was also how the deduplication process depends on the
size of the uploaded file. There were three datasets composed of 4000 bytes, 8000
bytes, and 12000 bytes. The results are similar. According to it, the achieved results
can be generalized to that the deduplication process has linear space complexity.

5.4 Hash Functions

The proposed deduplication approach for the data lake is based on the SHA256 hash
function. The design considered SHA-family hash functions, which is the most
popular hashing algorithm nowadays [34]. There are also several other reasons for
this decision, however, the most important aspect is its tradeoff between
breakability and time complexity. Since SHA256 is not a simple hash function [35],
this experiment tries to find out how much the use of computationally simpler
hashing functions can speed up the overall data ingestion process in our data lake.

During this experiment, 100 000 unique randomly generated files of size 4000 bytes
were uploaded to the data lake. These files were uploaded in three different runs,
each run using a different hash function in the deduplication process.

As Figure 7 shows, there is a speed-up when a simpler hash function is used.
However, the improvement is not significant enough to outweigh the risk of a
hashing collision. The stronger hash functions make the deduplication process more
time-consuming. On the other hand, MD5 weaker hash function does not represent
a significant improvement in the context of the deduplication process. According to
it, weaker hash functions are not considered in the experiment.

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 322 ‒

Figure 7

Total chunking time for the individual hash functions

5.5 Advantages of In-Memory Pointer Repository

The proposed approach uses the in-memory pointer repository. Thus, this
experiment compares an in-memory database (Redis) with a disk database (HBase).
The experiment examines whether the in-memory approach is more suitable
because disk databases have to read each data chunk from the disk, which is a time-
consuming operation.

Figure 8

Total time consumed by different pointer repository implementations

The experiment uses a dataset consisting of 100 000 files with a size of 4000 bytes.
Figure 8 shows that the total consumption time is shorter in the case of the in-
memory database.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 323 ‒

5.6 Comparison with State of the Art Solutions

The last part of the evaluation is a comparison of the proposed approach with
existing solutions (see Section 2.2). The typical characteristic is to divide the data
lake into several layers or zones which also adapts the proposed solution working
with data ingestion zone and storage zone.

The deduplication approach of the proposed solution can handle structured and
unstructured data regardless of their origin, size, or schema. Deduplication is part
of the data ingestion phase, which is one of the studied innovations of the proposed
solution. The evaluation primarily compares the solution parameters with related
works due to the lack of qualitative assessments (see Table 1).

Table 1
Comparison overview

D
at

a
st

or
ag

e

B
as

ed
 o

n
H

ad
oo

p.

B
as

ed
 o

n
H

ad
oo

p.

B
as

ed
 o

n
H

ad
oo

p.

Lo
ca

te
d

at
 th

e
la

nd
in

g
zo

ne

an
d

pe
rs

is
te

nt
 st

or
ag

e
zo

ne
.

C
lo

ud
 st

or
ag

e
w

ith
ou

t f
ur

th
er

sp

ec
ifi

ca
tio

n

D
at

a
w

ar
eh

ou
se

 a
nd

 c
lo

ud

st
or

ag
e

w
ith

ou
t f

ur
th

er

sp
ec

ifi
ca

tio
n

M
IN

IO
 -

un
st

ru
ct

ur
ed

 d
at

a
Po

st
gr

eS
Q

L
- s

tru
ct

ur
ed

 d
at

a
R

ed
is

 -
po

in
te

r s
to

ra
ge

.

D
ed

up
lic

at
io

n
po

si
tio

n

U
nk

no
w

n.

N
on

e.

D
is

til
la

tio
n

la
ye

r.

A
fte

r t
he

 la
nd

in
g

zo
ne

.

A
fte

r u
pl

oa
di

ng
 th

e
da

ta
 to

 th
e

se
rv

er
 (n

ot

ex
ac

tly
 d

ef
in

ed
).

In
 th

e
da

ta
 c

ha
nn

el
,

w
hi

ch
 is

 p
ar

t o
f t

he
 d

at
a

w
ar

eh
ou

se
.

Pa
rt

of
 d

at
a

in
ge

st
io

n.

D
ed

up
lic

at
io

n
ap

pr
oa

ch

D
ed

up
lic

at
io

n
is

a
pa

rt
of

 d
at

a
cl

ea
ni

ng

th
at

 is
 c

ar
rie

d
ou

t b
y

cu
st

om
-m

ad
e

pr
og

ra
m

s.
N

on
e.

D
ed

up
lic

at
io

n
is

a
pa

rt
of

 th
e

da
ta

cl

ea
ni

ng
 p

er
fo

rm
ed

by

 c
us

to
m

-m
ad

e
pr

og
ra

m
s

B
as

ed
 o

n
th

e
m

et
ad

at
a

of
 re

ce
iv

ed

da
ta

.

U
ns

pe
ci

fie
d.

C
hu

nk
in

g-
dr

iv
en

ap

pr
oa

ch
.

B
as

ed
 o

n
ha

sh
 v

al
ue

s
of

 d
at

a
ch

un
ks

.

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 324 ‒

D
at

a
in

ge
st

io
n

B
as

ed
 o

n
A

pa
ch

e
Fl

um
e,

 w
hi

ch
 re

ce
iv

es

da
ta

 fr
om

 a
 d

at
a

so
ur

ce
 o

r a
 c

us
to

m

da
ta

 c
ol

le
ct

io
n

la
ye

r.
B

as
ed

 o
n

A
pa

ch
e

Fl
um

e.

U
ns

tru
ct

ur
ed

 d
at

a
-

A
pa

ch
e

Fl
um

e.

St
ru

ct
ur

ed
 d

at
a

–

A
pa

ch
e

Sq
oo

p.

D
riv

en
 b

y
ch

un
ki

ng

ap
pr

oa
ch

 w
ith

un

kn
ow

n
te

ch
no

lo
gy

.

U
nk

no
w

n.

U
nk

no
w

n.

B
as

ed
 o

n
A

pa
ch

e
K

af
ka

 u
si

ng
 c

us
to

m

da
ta

 c
hu

nk
 w

or
kf

lo
w

s.

 D
at

a
la

ke
 d

riv
en

 b
y

da
ta

 p
ip

el
in

es
 [1

5]
:

D
at

a
la

ke
 la

m
bd

a
ar

ch
ite

ct
ur

e
[1

8]
:

D
at

a
la

ke
 fo

r
ar

ch
ae

ol
og

ic
al

 d
at

a
[1

9]
:

Se
rv

er
le

ss
 d

at
a

la
ke

[2

0]
:

En
cr

yp
te

d
da

ta
 la

ke

[2
3]

:

D
at

a
la

ke
 fo

r t
he

fin

an
ci

al
 se

ct
or

 [2
4]

:

Pr
op

os
ed

 a
pp

ro
ac

h

Conclusions

The paper focuses on the deduplication of big data in the data ingestion phase,
during which a data lake receives uploaded data. The analysis of related work
confirmed that duplicate records in the data lake are one of the current open
problems.

According to it, data lake architecture is specified. Subsequently, a deduplication
workflow is designed. Through it, the proposed data lake ingests, deduplicates, and
stores uploaded data. Given that one of the requirements of a data lake is the ability
to process all data, regardless of its form, the design deals with the processing of
structured and unstructured data.

The proposed solution is evaluated within several experiments that focus on various
aspects of big data deduplication in the data lake. The first experiment shows how
window size affects the deduplication process. The next experiment evaluates the
scalability of the proposed solution. The third experiment examines whether a
simple hash function is worth the collision risk. The last experiment focuses on the
advantages of an in-memory pointer repository.

Acknowledgment

This publication is the result of the project implementation: Research on the
application of artificial intelligence tools in the analysis and classification of
hyperspectral sensing data (ITMS: NFP313011BWC9) supported by the
Operational Programme Integrated Infrastructure (OPII) funded by the ERDF. This
work was supported by the project AI4EOSC “Artificial Intelligence for the
European Open Science Cloud” that has received funding from the European
Union’s Horizon Europe Research and Innovation Programme under Grant
agreement no. 101058593, by the project iMagine “Imaging data and services for

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 325 ‒

aquatic science” that has received funding from the European Union’s Horizon
Europe Research and Innovation Programme under Grant agreement no.
101058625, and by the project SILVANUS “Integrated Technological and
Information Platform for wildfire Management” that has received funding from the
European Union’s Horizon 2020 research and innovation programme under grant
agreement no. 101037247. It was also supported by APVV grant no. APVV-21-
0448 and VEGA grant no. 2/0131/23.

References

[1] T. Hukkeri, V. Kanoria and J. Shetty, "A study of enterprise data lake
solutions," International Research Journal of Engineering and Technology
(IRJET), vol. 7, no. 5, pp. 1924-1929, 2020.

[2] R. Hai, C. Koutras, C. Quix and M. Jarke, "Data Lakes: A Survey of
Functions and Systems," IEEE Transactions on Knowledge and Data
Engineering, pp. 1-20, 2023.

[3] C. Giebler, C. Gröger, E. Hoos, H. Schwarz and B. Mitschang, "Leveraging
the Data Lake: Current State and Challenges," Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 11708 LNCS, pp. 179-188, 2019.

[4] A. Cuzzocrea, "Big data lakes: models, frameworks, and techniques," IEEE
International Conference on Big Data and Smart Computing, pp. 1-4, 2021.

[5] M. El Ghazouani, M. El Kiram, L. Er-Rajy and Y. El Khanboubi, "Efficient
method based on blockchain ensuring data integrity auditing with
deduplication in cloud," International Journal of Interactive Multimedia and
Artificial Intelligence, vol. 6, pp. 3-32, 2020.

[6] E. Zagan and M. Danubianu, "Data lake approaches: A survey," 2020
International Conference on Development and Application Systems (DAS),
pp. 189-193.

[7] J. Meizner, P. Nowakowski, J. Kapala, P. Wojtowicz, M. Bubak, V. Tran, M.
Bobák and M. Höb, "Towards exascale computing architecture and its
prototype: Services and infrastructure," Computing and Informatics, vol. 39,
no. 4, pp. 860-880, 2020.

[8] P. Sawadogo and J. Darmont, "On data lake architectures and metadata
management," Journal of Intelligent Information Systems, vol. 56, no. 1, pp.
97-120, 2 2021.

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 326 ‒

[9] M. Bobak, L. Hluchy and V. Tran, "Abstract model of k-cloud computing,"
2014 11th International Conference on Fuzzy Systems and Knowledge
Discovery, FSKD 2014, pp. 710-714, 2014.

[10] M. Bobak, L. Hluchy and V. Tran, "Methodology for intercloud multicriteria
optimization," 2015 12th International Conference on Fuzzy Systems and
Knowledge Discovery, FSKD 2015, pp. 1786-1791, 2016.

[11] M. Bobák, L. Hluchý, O. Habala, V. Tran, R. Cushing, O. Valkering, A.
Belloum, M. Graziani, H. Müller, S. Madougou and J. Maassen, "Reference
exascale architecture (extended version)," Computing and Informatics, vol.
39, no. 4, pp. 644-677, 2020.

[12] C. Giebler, C. Groger, E. Hoos, H. Schwarz and B. Mitschang, "A zone
reference model for enterprise-grade data lake management," IEEE24th
International Enterprise Distributed Object Computing Conference (EDOC),
pp. 57-66, 2020.

[13] Y. Zhao, I. Megdiche, F. Ravat and V.-n. Dang, "A Zone-Based Data Lake
Architecture for IoT, Small and Big Data," Proceedings of the 25th
International Database Engineering \& Applications Symposium, pp. 94-102,
7 2021.

[14] F. Cerezo, C. E. Cuesta, J. C. Moreno-Herranz and B. Vela, "Deconstructing
the Lambda architecture: an experience report," IEEE International
Conference on Software Architecture Companion (ICSA-C), pp. 196-201,
2019.

[15] H. Mehmood, E. Gilman, M. Cortes, P. Kostakos, A. Byrne, K. Valta, S.
Tekes and J. Riekki, "Implementing big data lake for heterogeneous data
sources," Proceedings - 2019 IEEE 35th International Conference on Data
Engineering Workshops, ICDEW 2019, p. 37–44, 2019.

[16] A. R. Munappy, J. Bosch and H. H. Olsson, "Data Pipeline Management in
Practice: Challenges and Opportunities," Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), pp. 168-184, 2020.

[17] Y. Zhao, I. Megdiche and F. Ravat, "Data Lake Ingestion Management,"
arXiv preprint arXiv:2107.02885, 7 2021.

[18] A. A. Munshi and Y. A. R. I. Mohamed, "Data Lake Lambda Architecture for
Smart Grids Big Data Analytics," IEEE Access, vol. 6, p. 40463–40471, 2018.

[19] P. Liu, S. Loudcher, J. Darmont and C. Noûs, "ArchaeoDAL: A Data Lake
for Archaeological Data Management and Analytics," ACM Proceedings of

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

‒ 327 ‒

the 25th International Database Engineering Applications Symposium, p.
252–262, 2021.

[20] A. Bryzgalov and S. Stupnikov, "A Cloud-Native Serverless Approach for
Implementation of Batch Extract-Load Processes in Data Lakes,"
Communications in Computer and Information Science, vol. 1427, pp. 27-42,
2021.

[21] G. McGrath and P. R. Brenner, "Serverless Computing: Design,
Implementation, and Performance," Proceedings - IEEE 37th International
Conference on Distributed Computing Systems Workshops, ICDCSW 2017,
pp. 405-410, 2017.

[22] M. I. Malik, S. H. Wani and A. Rashid, "Cloud computing technologies,"
International Journal of Advanced Research in Computer Science, vol. 9, no.
2, pp. 379-384, 2018.

[23] A. Ashmita and R. Anitha, "Data De-Duplication on Encrypted Data Lake in
Cloud Environment," International Journal of Engineering Research &
Technology (IJERT), vol. 7, no. 3, pp. 2278-0181, 2018.

[24] M. Sienkiewicz, R. W. -. E. Workshops and u. 2021, "Managing Data in a
Big Financial Institution: Conclusions from a R&D Project.," EDBT/ICDT
Workshops, vol. 2841, 2021.

[25] X. . Yang, C. M. Procopiuc and D. . Srivastava, "Summarizing relational
databases," Proceedings of The Vldb Endowment, vol. 2, no. 1, pp. 634-645,
2009.

[26] A. Tunjic, "The automation of the data lake ingestion process from various
sources," 42nd International Convention on Information and Communication
Technology, Electronics and Microelectronics, MIPRO 2019 - Proceedings,
pp. 1276-1281, 2019.

[27] D. Borthakur, "HDFS architecture guide," Hadoop Apache Project, vol. 53,
no. 2, pp. 1-13, 2008.

[28] J. Kreps, N. Narkhede and J. Rao, "Kafka: a Distributed Messaging System
for Log Processing," ACM SIGMOD Workshop on Networking Meets
Databases, p. 1–7, 2011.

[29] D. Vohra, "Apache Flume," in Practical Hadoop ecosystem, Springer, 2016,
pp. 287--300.

[30] K. Racka, "Apache Nifi As A Tool For Stream Processing Of Measurement
Data.," Nauki Ekonomiczne, pp. 115-135, 2022.

J. Hlavačka et al. Big Data Deduplication in Data Lake

‒ 328 ‒

[31] R. Shree, T. Choudhury, S. C. Gupta and P. Kumar, "KAFKA: The modern
platform for data management and analysis in big data domain," 2nd
International Conference on Telecommunication and Networks, IEEE TEL-
NET 2017, pp. 1-5, 2017.

[32] W. Xia, Y. Zhou, H. Jiang, D. Feng, Y. Hua, Y. Hu, Y. Zhang and Q. Liu,
"FastCDC: A fast and efficient content-defined chunking approach for data
deduplication," Proceedings of the 2016 USENIX Annual Technical
Conference, USENIX ATC 2016, pp. 101-114, 2016.

[33] MinIO, "High Performance Multi-Cloud Object Storage," [Online].
Available: https://min.io/resources/docs/MinIO-High-Performance-Multi-
Cloud-Object-Storage.pdf. [Accessed 1 March 2023].

[34] P. Rathod, R. Sakhiya, R. Shah and S. Mehta, "Meta-Analysis of Popular
Encryption and Hashing Algorithms," in International Conference on ICT for
Sustainable Development, 2023.

[35] S. Aggarwal and N. Kumar, "Hashes," Advances in Computers, vol. 121, pp.
83-93, 1 2021.

	1 Introduction
	2 Background and Related Work
	2.1 Data Lakes
	2.2 State of the Art

	3 Design of Deduplication Process for Data Lake
	3.1 Data Lake Architecture
	3.2 Deduplication Workflow
	3.3 Structured Data Processing
	3.4 Unstructured Data Processing

	4 Platform for Data Lake Deduplication
	4.1 Data Repositories
	4.2 Data Ingestion

	5 Experiments and Evaluation
	5.1 Experiment Environment
	5.2 Ideal Size of Flexible Window
	5.3 Scalability of Uploaded Files
	5.4 Hash Functions
	1.1
	5.5 Advantages of In-Memory Pointer Repository
	5.6 Comparison with State of the Art Solutions

