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Abstract: The primary objective of this study is to create an effective multi-target regression 
model able to predict friction coefficient and wear rate, which are critical parameters for the 
tribological performance of brake systems. Two models, namely Random Forest (RF) and 
eXtreme Gradient Boosting (XG), were evaluated using performance metrics such as mean 
squared error, mean absolute error, and R-squared.  In comparing to 1.2, 0.567, 0.59 for RF 
algorithm, the XG algorithm proves to be the more accurate model with MSE, MAE and R-
squared respectively equal to 0.857, 0.4138, 0.756. XG (Extreme Gradient Boosting) 
outperforms RF (Random Forest) in terms of predictive accuracy in the specified prediction 
scenario, and the predicted results show good concordance with real values. However, a 
notable challenge with this model is the lack of interpretability, often referred to as a "black-
box." In response to this issue, the study offers a comprehensive explanation, regarding as 
to how the XG model learns. Shapely Additive explanation model demonstrates that sliding 
speed is the most influential factor, positively affecting friction coefficient and wear rate of 
brake pad materials. In summary, the study contributes to the development of a machine 
learning model, that is accurate and explainable for the prediction of tribological 
performance in the field of brake pad materials. 
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1 Introduction 
Optimizing the performance and safety of braking systems is a major concern in the 
automotive industry and many other industries where braking systems are crucial 
to ensure safe operations. The brake pad plays a crucial role in the braking system 
and is responsible for causing vehicle deceleration and stopping. The brake 
performance of a vehicle is conditioned by the tribological behavior of brake lining 
materials [1]. Various complex physical phenomena occur during braking at the 
pad/disc interface, leading to the formation of a third body, which is mainly affected 
by braking conditions: normal load, sliding speed [2], frictional heat, and material 
composition [3]. Therefore, it has a great impact on braking performance, especially 
braking distance and frictional heat generated at the pad/disc interface. Wear rate 
and friction coefficient are both key indicators of the tribological behavior of brake 
pad materials [4]. The complexity of contact phenomena [5] is certainly the reason 
why friction and wear are still so difficult to quantify. As a result, we frequently 
encounter the necessity to estimate these two critical factors that play a vital role in 
designing brake systems. In fact, the friction coefficient determines braking force, 
and the wear rate influences the durability of the brake pad material. Therefore, 
predicting the tribological performance of brake lining materials is imperative to 
improve their durability, efficiency and safety. 

In general, simulating the material properties involves developing a model derived 
from experimental data. The challenge lies in the absence of effective prediction 
methods, stemming from difficulties in leveraging experimental data to accurately 
describe and comprehend the complex behavior of brake friction materials, as well 
as capturing the influence of material properties and test parameters on the wear 
rate. The traditional mathematical techniques used in previous studies to model the 
wear of brake friction materials have not been able to understand the complex 
synergy arising from friction material properties. 

Actually, machine learning algorithms address challenges with high accuracy and 
minimal computational costs, providing a distinct advantage over finite-element 
simulations. In contrast, finite-element simulations incur substantial computational 
expenses and time requirements [6]. The most effective method for forecasting is 
machine learning, in which the response is regulated by multiple parameters. Linear 
regression is a commonly employed machine learning technique for modeling and 
predicting linear correlations between explanatory factors (features) and target 
variable [7]. Multiple linear regression (MLR) analysis is a technique that allows 
the introduction of additional elements into the study to evaluate the influence of 
each one on the predicted target. This approach is valuable for assessing the impact 
of multiple concurrent factors on a single dependent variable [8] [9]. Multiple linear 
regression, according to Mata [10], is an approach used to represent the linear 
connection between dependent variables and one or more independent variables. 

A multi-target linear regression approach, used to predict coefficient values, 
employs two different algorithms, namely Random Forest and Gradient Boosting 
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Regression. The random forest (RF) method, functioning as an ensemble of learning 
approach, employs a decision tree classifier for integrated decision-making [11]. In 
comparison to other machine learning methods, this approach stands out for its low 
computational requirements and high precision. It also exhibits robustness in 
handling missing and unbalanced data [12]. Because of its excellent approximation 
capacity, machine learning has been frequently applied for the prediction of 
tribological performance [13]. Other research, [14] used artificial neural networks 
(ANN) to forecast the wear of three different brake pad materials employing 
variables including sliding speed, normal load and temperature. Gyurova et al. [15] 
demonstrated the possibility of using machine learning algorithm to learn the results 
of wear tests of twenty nine different brake pad materials and correctly reproduces 
the tribological performance of friction material. Recently, Ikpambese demonstrates 
that machine learning model surpasses the Artificial Neural Network (ANN) model 
by achieving lower error values by the prediction of the wear of six different brake 
pad materials [16]. In addition to the remarkable predictive capabilities exhibited 
by machine learning models, it has been a recent emergence of explanation methods 
(SHAP) designed to facilitate the interpretation of intricate learning models. 
Enhanced comprehension holds particular significance by offering insights into the 
influence of different inputs on predictive outcomes. A substantial body of literature 
has concentrated on features related to performance, seeking to ascertain the degree 
to which each property contributes to the prediction results [17]. This alignment 
with the objectives of materials science establishes the groundwork for structure-
properties relationships. This inclination towards elucidation implies an 
advantageous fusion of methods and applications. Notably, feature selection 
techniques have been employed to refine predictive models in materials science 
[18]. These comprehensive approaches, prove valuable, for a broad analysis of 
datasets, in identifying the physiochemical characteristics, correlated with 
functional properties [19]. 

Previous cited research introduced learning algorithms derived from experimental 
tests on specific brake linings with well-defined formulations. While these 
algorithms demonstrated good predictive performance within the scope of the tested 
formulations, they exhibit significant limitations when applied to other types of 
brake linings. The primary issue is that these models are heavily reliant on the 
specific formulations of the brake linings used during training. As a result, their 
applicability is restricted to those specific materials and does not generalize well to 
brake linings with different compositions or properties. This limitation severely 
impacts the versatility and practical utility of these algorithms in real-world 
applications, where a wide variety of brake lining materials are used. Additionally, 
there is a notable gap in research applying the SHAP (SHapley Additive 
exPlanations) method to enhance the interpretation of predicted friction and wear 
results in brake lining materials. Without such interpretability, understanding the 
underlying factors influencing the predictions remains challenging, further 
complicating the application and trust in these models across diverse material types. 
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In this article, a multi-target linear regression approach based on Random Forest 
and Gradient Boosting Regression algorithms was used to predict the friction 
coefficient and wear rate values of brake lining materials. We also investigate the 
application of explainable artificial intelligence (XAI) model through a systematic 
approach using Shapely Additive explanations (SHAP) to discuss materials 
properties and braking parameters that more influence brake pad tribological 
performance. 

2 Materials 
Brake lining materials play a crucial role in the braking system of vehicles.  
The formulations of brake friction materials are intricate, designed to meet multiple 
performance criteria, including maintaining a stable friction coefficient and 
minimizing wear. In fact, brake lining materials are composite materials whose 
formulation includes several ingredients. Through the combination of these 
elements, material acquires properties that allow it to better respond to brake 
solicitation [3]. In this sense, several researchers have focused on modifying the 
formulation in order to acquire the desired properties of the materials [20]. In 
addition, nowadays, given the harmful impact of particles emitted by brake systems 
and their negative impact on the environment and human health, several researchers 
have focused on the use of natural elements in the formulation of brake materials. 
As a result, today, we find in the literature several formulations of brake linings and 
each one has its own physical and mechanical properties [21], which subsequently 
affect its tribological performance. The experimental study of the tribological 
behavior proves that a third body manifests at the disc/ pad interface that makes the 
understanding of phenomena more difficult and delicate. Obviously, the third body 
characteristics are directly related to materials properties and brake action [22]. 

In fact, mechanical and physical properties especially, compression modulus and 
density, have a significant impact on these aspects [23]. Compression modulus of 
the brake lining material is essential as it determines its ability to adapt to pressure 
variations during braking, thereby affecting the stability of the friction coefficient. 
Adequate compression modulus helps maintain effective interaction with the brake 
disc, ensuring consistent response during braking cycles. On the other hand, 
material density is also a critical parameter, influencing wear resistance. 
Appropriate density promotes the uniform stress distribution and optimal heat 
dissipation, minimizing excessive wear. In fact, achieving a balance between 
compression and density in brake lining materials is essential to ensure effective 
braking performance, with a stable friction coefficient and controlled wear. 

Recently, numerical simulation of the braking system has attracted researchers, 
given the independence of laboratory tests and associated problems. In this field, 
we have started several simulations using finite element calculation software 
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MATLAB Software [24] and ANSYS Software [25] [26]. Nevertheless, given the 
significant calculation time as well as the unknown phenomena that occurred at the 
interface and their evolving characteristics over time, attention is focused on this 
research study, on the prediction of tribological performances of brake lining 
materials through machine learning method. 

3 Proposed Explainable Multi-Target Regression 
Algorithm 

3.1 Data Description 
The standard machine learning process encompasses several phases: 

(1) Data collection 

(2) Data preprocessing 

(3) Model  description 

(4) Explanation method (Figure 1) 

Then, the explanation provided by the model were examined by comparing them 
with the results of the actual functioning of the brake system. The aim was to 
assess the accuracy and alignment between the model’s predictions to the real 
values referred to  previous scientific results. In the following section, we will 
provide a detailed account of the steps that we implemented in our work. It will 
offer a comprehensive understanding of procedures and methodologies applied in 
our research. 
 

 

 

 

 

 

 

 

 

Figure 1 
Proposed framework 
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3.2 Data Collection 
The collected data encompasses information related to the characteristics of friction 
materials, as well as the specific conditions and variables manipulated during 
experimental procedures. The inclusion of both material properties and 
experimental parameters suggests a comprehensive approach to gathering 
information, aiming to capture a broad spectrum of factors that influence friction 
phenomena. Material properties, such as density and compression modulus of brake 
linings, alongside key experimental parameters like sliding velocity and pressure, 
serve as crucial input data for artificial intelligence models aiming to predict 
frictional performance. Table 1 presents different features and target values used in 
our model and their attributes. The density of brake material influences wear 
resistance, and the compression modulus indicates the material’s ability to 
withstand braking pressures. In the other hand, sliding velocity helps to capture the 
impact of dynamic interactions on heat generation, wear rates, friction stability and 
pressure influences deformation and thermal response. Since their high impact on 
tribological performance, we have chosen to integrate compressive modulus, 
density, load and sliding speed into a machine learning model for the improvement 
of brake system performance. 

Table 1 
Dataset attributes detailed information 

Attribute Description Type 
comp compression modulus Input 

density density Input 
speed sliding speed Input 
Load Normal Load Input 

Friction Friction coefficient output 
Wear wear rate output 

Data collection is based on several researcher works. The advantage of gathering 
data from results of multiple researchers lies in the ability to cover a broad range of 
brake lining materials. By aggregating data from multiple scientific works, the 
representative of the entire spectrum of brake lining materials is enhanced, 
providing a more complete understanding of the relationships between material 
properties and frictional performance. This approach also takes account for 
significant variations in experimental conditions and material characteristics, 
thereby reinforcing the robustness and generality of predictive models developed 
from these combined datasets. Our research utilizes systematic mapping as a 
method for processing extracting materials properties and performance from 
previous research works, a technique developed and applied by professionals [27]. 
Given the extensive volume of research articles in the field of friction and wear 
performances of brake pad materials, the selection of a reliable database becomes 
crucial. In this regard, scholars in the broader domain of utilizing Machine Learning 
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(ML) for concrete characterization commonly advocate for using Scopus 
bibliometrics records [28].  

To construct the annotated database for training, we first conducted a 
comprehensive literature review to identify relevant scientific papers detailing 
friction and wear measurements. We systematically extracted data points, ensuring 
key experimental details such as material properties (compression modulus and 
density), testing conditions (load, speed), and measurement outcomes (friction 
coefficient and wear volume). The extracted data underwent preprocessing, 
including error removal, consistency checks, and normalization to ensure 
comparability across different scales of measurement (for some cases, we calculated 
load from pressure or converted units of sliding speed from rev/min to m/s). Then, 
the dataset was organized into structured file formats (CSV). The dataset comprises 
a total 171 instances. All instances used in the model comprise material properties 
and experimental parameters as input and tribological performance as output. In 
Table 2, we present the number of instances used for each research work. It provides 
an illustrative representation of tribological test parameters and properties of brake 
lining materials serving as features, with the corresponding tribological 
performance of brake pad material serving as the target value for each scientific 
work. Approximately 80% of the total data was used for training purposes, while 
the remaining 20% was reserved for assessing the quality of algorithms predictions 
[29]. 

Table 2 
An excerpt of the collected dataset 

Number of 
instances 

Comp 
(MPa) 

Density 
(g/cm3) Load (N) 

Speed 
(m/s) Friction 

Wear (10-6 
g/m) Ref 

12 87 0.9 20 5.02 0.29 6.1 [30] 
-9 

 
110 1.89 100 6 0.35 3.8 [31] 

8 110 1.89 30 4 0.32 3 [32] 
3 55 2.22 30 1.8 0.51 10.55 [33] 
6 65.11 3.704 41 22 0.2924 3.875 [34] 
8 110 NaN NaN NaN 0.35 3.8 [35] 
5 110 1.89 NaN NaN 0.35 3.8 [36] 
7 112 1.429 20 21 0.43 3.48 [37] 
7 110 2.06 NaN NaN 0.35 3.8 [38] 
4 NaN 2.247 100 1.33 0.36 1.0749 [39] 

22 211 2.4 300 6.7 0.57 2.808 [40] 
5 105 1.43 20 5.02 NaN 4.2 [41] 
8 189 NaN NaN NaN 0.35 3.8 [42] 

27 NaN 1.566 9.81 1.41 0.901 3 [43] 
4 NaN 2.17 101 6 0.3 4.2 [44] 

27 101 2.592 8 0.1 0.88 1.08 [45] 
6 110 1.89 NaN NaN NaN 3.8 [46] 
6 87.9 1 20 5.02 NaN 6.2 [47] 
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3.2 Data Preprocessing 
Data preprocessing is crucial to ensure the success of machine learning models, and 
addressing missing data is a pivotal component of this process. Missing data poses 
significant challenges to the performance and robustness of predictive models. It 
introduces the risk of bias, as models may learn from incomplete and 
unrepresentative samples, leading to skewed inferences. The reduction in the 
effective sample size can diminish the model’s statistical power and the ability to 
generalize accurately to new data. Unbalanced representations, instability, and 
biased inferences are among the potential consequences. Additionally, the impact 
on feature importance and the overall effectiveness of generalization can be 
compromised if missing data is not appropriately addressed. Handling missing data 
is a critical aspect of preprocessing to ensure the reliability and fairness of machine 
learning models. Missing data are presented in Table 2, as NaN associated to 
specific material properties, commonly linked to the compression modulus, as 
researchers might emphasize hardness in their work and may not encompass 
physical properties like density. In certain cases, scientists may concentrate solely 
on friction coefficient or wear rate, resulting in the absence of some data related to 
material characteristics and performances. When dealing with missing data, which 
are independent of the observed and unobserved data, we estimate the missing 
values using means or average values. This approach is known as missing 
completely at random (MCAR) and it involves replacing the missing data points 
with the mean (average) of the observed values [48]. 

3.4 Model Description 
After completing the data preprocessing phase’s, two frequently used machine 
learning algorithms, namely, Gradient Boosting (XG) and random forest (RF) were 
used to predict target values (friction coefficient and wear rate). RF is an ensemble 
of learning method that operates by constructing a multitude of decision trees during 
training. In classification tasks, the class selected by the majority of trees determines 
the final output. For regression tasks, the output is the average of the output values 
from different trees [49]. This method is computationally efficient and exhibits high 
speed and accuracy [50]. Gradient Boosting, another machine learning algorithm 
employed for both classification and regression tasks, constructs a robust predictive 
model by amalgamating the predictions from multiple weak learners that focus on 
the mistakes made by the existing ensemble, often in the form of decision trees. 
Gradient Boosting Regression can be extended to predict multiple variables 
simultaneously, often referred to as a multivariate regression task. Most popular 
implementations of Gradient Boosting, such as Xgboost, naturally support 
multivariate regression. The approach’s strength lies in its capability to concurrently 
capture intricate relationships between input variables and multiple target variables. 
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3.5 Explanation Method 
Numerous methods have been proposed to elucidate predictions made by machine 
learning models. SHAP is considered as the most dominant approaches. The SHAP 
method is a game theory-based explainable artificial intelligence approach designed 
to calculate shapely values, assessing the impact of each feature on the prediction. 
[51]. In computing shapely values, SHAP selectively includes some feature values 
while excluding others, with the primary aim of discerning each feature’s 
contribution to the prediction. 

Some researchers [51] developed a python package capable of computing SHAP 
values for various technologies, such as Xgboost, and tree models. This 
implementation has gained widespread adoption among researchers who rely on 
SHAP for interpreting various models [52]. Additionally, Lundberg et al. [53] 
proposed an extension of SHAP known as the SHAP tree explainer. This extension 
suggests that the precise evaluation of SHAP values can be achieved in polynomial 
time exclusively for tree-based models, including Random Forest (RF). It is 
valuable for explaining both regression and classification models, as well as 
complex algorithms like Random Forest (RF) and Gradient Boosting (XG). 

Our investigation deals with the explanation of a black-box model in friction and 
wear prediction. We focused on the understanding of rules learned by the machine 
learning model, particularly the importance and influence of predictor variables 
(compression modulus, density, sliding speed and load) on target values, namely 
wear rate and friction coefficient. 

3.6 Regression Metrics 
The performance of the model is assessed using the following  regression metrics: 

MSE, which stands for Mean Squared Error, assesses the average squared disparity 
between predicted and actual values. It provides a quantitative measure of how well 
a regres sion model performs in terms of accuracy. The formula for 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗  is for the 
jth target   as follows Eq 1  

𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗  = ∑ (𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ) − 𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟))2𝑛𝑛
𝑖𝑖=1                                                                 (1) 

MAE, Mean Absolute Error, evaluates the average absolute discrepancy between 
predicted and actual values. It provides a straight forward and easy to interpret 
measure of the model’s performance in terms of accuracy. The formula for 𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗    for 
the jth target is as follows Eq 2 

𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗  = ∑ |𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ) − 𝑦𝑦𝑦𝑦𝑦𝑦(𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟)| 𝑛𝑛
𝑖𝑖=1                                                                  (2) 

R-squared (R²) represents the coefficient of determination. It assesses the proportion 
of variance in the dependent variable that can be explained by the independent 
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variables in a regression model. The formula for 𝑅𝑅𝑗𝑗² for the jth target is as follows 
Eq 4: 

𝑅𝑅𝑗𝑗2  = ∑ (𝑦𝑦𝑖𝑖𝑗𝑗(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 )−𝑦𝑦𝑖𝑖𝑗𝑗(𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟))2

|𝑦𝑦𝑖𝑖𝑗𝑗(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 )−𝑦𝑦𝑖𝑖𝑗𝑗(𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟)|
𝑛𝑛
𝑖𝑖=1                                                                           (4) 

With: 

n is the Number of Instances 

yij(pred) is the predicted value of jth target variable for the i th instance 

yij(real)  is the real value of the jth target variable for the  i th instance 

After calculating regression metrics values for friction coefficient and wear, we 
employed an approach that combines these measurements into a single 
performance metric by averaging them. 

4 Results 
Figure 2 displays a comparison of regression metric results for two algorithms, 
specifically focusing on MSE (Figure 2a), MAE (Figure 2b), and R-squared values 
(Figure 2c). In Figure 2a, MSE for XGBoost (XG) is reported as 0.857, while for 
Random Forest (RF), MSE is approximately 1.2. This indicates a substantial 
difference, with XG achieving a significantly lower MSE compared to RF. A lower 
MSE suggests that XGBoost has a better capability to minimize the squared 
differences between predicted and actual values, thus providing more accurate 
predictions. 

Furthermore, when examining the MAE, the XG algorithm demonstrates a value of 
0.4138, which is notably lower than the MAE of 0.567 for RF (Figure 2b). A lower 
MAE indicates that XGBoost produces predictions that are closer to the actual 
values on average, suggesting that it makes smaller errors in prediction compared 
to RF. This is crucial in the friction and wear prediction task, where precise 
predictions can significantly impact the outcomes. 

In terms of R-squared values, XG exhibits a higher value of 0.756, whereas RF 
shows a value of 0.59 (Figure 2c). A higher R-squared value indicates that a greater 
percentage of the variance in the dependent variable is accounted for by the 
independent variables in the model, highlighting XGBoost's superior explanatory 
power. This suggests that XGBoost provides a better fit to the underlying data 
structure, capturing the relationships between features more effectively than RF. 

Additionally, the interpretability of these models was examined using SHAP 
(SHapley Additive exPlanations) values. SHAP values provide a breakdown of each 
feature's contribution to the model's predictions, offering insights into the decision-
making process of the model. The SHAP analysis revealed that certain features, 



Acta Polytechnica Hungarica Vol. 21, No. 11, 2024 

‒ 165 ‒ 

such as the hardness of materials and sliding speed, had a more significant influence 
on the predictions in the XGBoost model than in the RF model. This detailed 
understanding of feature importance is essential for interpreting the model's 
behavior and for making informed decisions based on its predictions. 

Furthermore, XGBoost's ability to handle missing data and model intricate 
interactions between variables, as evidenced by the SHAP analysis, underscores its 
robustness and flexibility in dealing with complex datasets. This aligns with the 
findings of another researcher referenced as [54], which supports the idea that 
Extreme Gradient Boosting can be highly effective in predicting time-series tabular 
data. The consistency between our model results and those of the referenced study 
adds credibility to the claim that XGBoost demonstrates superior performance in 
predictive tasks. 

Overall, the results presented in Figure 2 consistently indicate that, across multiple 
metrics—MSE, MAE, and R-squared—XGBoost outperforms Random Forest in 
the specified prediction scenario. The detailed analysis provided by SHAP values 
further reinforces this conclusion, showcasing XGBoost's superior feature 
interpretation capabilities and robustness in handling complex interactions. This 
comprehensive evaluation emphasizes the potential of XGBoost as a robust 
predictive model, particularly in tasks involving intricate data patterns. 
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 c)   

Figure 2 
Comparison results for XG (blue) and RF (green) a) MSE b) MAE c) R² 

The information from Figures 3 and 4 indicates that the comparison between the 
predicted values of wear rate and friction coefficient generated by the XG model 
and real values reveals a noteworthy agreement. In fact, both the test set error and 
the validation set error share similar characteristics. Notably, there is no substantial 
evidence of over fitting observed across iterations. The observed closeness between 
predicted, and experimental values proves the ability of the XG model in delivering 
precise predictions for friction coefficient and wear rate in the field of brake pad 
materials. Overall, these findings underscore the model’s stability, generalization 
capacity, and accuracy in predicting target variables, thereby strengthening 
confidence in its overall performance and reliability. 

 

 

 

 

 

 

 

 

 

 

Figure 3 
Comparison between predicted friction coefficient and real values 
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Figure 4 

Comparison between predicted wear rate and values 

The SHAP summary plot is shown in Figure 5. On the y-axis, feature names are 
presented in descending order of significance, while the SHAP values for each input 
predictor are depicted on the x-axis. Results shows that sliding speed is the most 
influential parameters. The emphasis on sliding speed underscores its pivotal role 
in tribological performance prediction, signaling its dominance among the factors 
considered in the model. This recognition is essential for tailoring strategies to 
optimize tribological outcomes in various applications. This finding is also reported 
by other research work, proving that, sliding speed has the most significant 
influence on tribological performance prediction [55]. 

 

 

 

 

 

 

 

 

 
 

Figure 5 
Mean SHAP: average impact on friction and wear magnitude 
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In Figure 6, red points indicate higher feature values, whereas blue points signify 
lower values. The SHAP summary plots showed the distribution of SHAP values 
for each feature, highlighting the features with the highest average impact on the 
models. This visualization offers a comprehensive overview of the XG model by 
emphasizing the importance of each feature and illustrating its impact on the 
model’s outputs. 

 
Figure 6 

SHAP Summary Plot of XG Model 

According to Figure 6, features linked to properties of materials such, compression 
modulus and density have a positive overall impact on the model’s output, unlike 
those of test parameters such as speed and load that have a negative impact. In other 
words, high values of the first two features (compression and density) are associated 
with low wear rate, whereas high values of the last two (sliding speed and load) are 
associated with reduced friction coefficient and high wear rate. This explanation is 
critical because it demonstrates that the model is correctly learning the dynamics of 
friction coefficient. For example, it learned that brake materials with high 
compression modulus, impact a reduced wear rate. In fact, since its stiffness, on a 
few quantities of third body formed by the friction of brake pad materials. A stable 
friction film was generated on the surface of the brake pad, which provides excellent 
friction stability with reduced wear rate [44]. 

Furthermore, the high value of test parameters; sliding speed and load, knowing as 
parameters linked to severe brake   solicitation studied by Sellami et al, induces low 
level of friction coefficient. She proves that at this level of solicitation, friction 
coefficient is reduced and, the phenomena is called "fade" associated with 
pronounced wear rate [56]. Recently, Kenneth M. Jensen et al. [57] proved that 
brake pad wear is proportional to sliding speed and load, and inversely proportional 
to the hardness of the brake pad. These findings confirm the SHAP results. 

Conclusions 

Developing models, related to the tribological performance of brake friction 
materials is crucial, due to the increasing complexity of requirements imposed on 
these materials. Brake pads, in particular, undergo intricate tribological interactions, 
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given the diverse mechanical properties of their ingredients and the varying 
conditions during the brake operation. An approach has been proposed to model the 
influence of pertinent factors linked to the friction material properties: compression 
modulus and density and to brake solicitation: sliding speed and applied load.  
The utilization of a computer-based model through multi target regression 
employing Random Forest and extreme Gradient Boosting has been suggested to 
address the challenge of predicting friction coefficient and wear rate for brake 
friction materials. A total of 171 instances were investigated, referring to research 
done by scientific specializing in brake lining materials. The XG algorithm 
demonstrated the best results in predicting tribological behavior. The developed XG 
model successfully predicted wear and friction across various types of friction 
materials. The multi-target regression model was trained to understand how the 
wear and friction performance of friction materials are influenced by material’s 
properties and braking solicitations. 

The analysis indicated that the sliding speed was the parameter exerting the most 
significant influence and concurrently, the compression modulus that emerges as 
the most pivotal of the material’s properties. The SHAP models provided insights 
into the dynamics, illustrating that material properties exert a positive impact on 
tribological performance. In contrast, parameters related to brake solicitation were 
revealed to have a detrimental effect on material performance. 

The correlation between predicted and real friction and wear rate results, along with 
the SHAP findings, align well with the analytical and experimental results from 
other researchers. This underscores the potential of the proposed XG algorithm for 
forecasting tribological performance of brake lining materials in the future. 

By combining the predictive power of XGBoost with the interpretative insights 
from SHAP, we achieved a comprehensive understanding of the factors influencing 
friction and wear. This approach not only improved prediction accuracy but also 
provided valuable insights into the underlying mechanisms, facilitating better 
decision-making and optimization in tribological applications. 

To improve the precision of the multi-target regression model for predicting the 
tribological performance of brake pad materials, one recommended approach is to 
increase the quantity of output data, associated with wear and friction coefficient 
measurements in diverse wear tests. 

Expanding the dataset in this manner allows the model to capture a more 
comprehensive range of scenarios and variations in material behavior under 
different conditions. This not only enhances the model’s ability to generalize, but 
also provides a more robust foundation for understanding the nuanced relationships 
between material properties and tribological outcomes. Additionally, the increased 
data diversity aids in refining the model’s predictive capabilities, ultimately 
contributing to a more accurate representation of the complex dynamics involved 
in brake pad performance. 
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