
Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 7 –

Privacy-Preserving Noninteractive Compliance
Audits of Blockchain Ledgers with Zero-
Knowledge Proofs

Bertalan Zoltán Péter, Imre Kocsis
Department of Measurement and Information Systems,
Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics,
Műegyetem rkp. 3, H-1111 Budapest, Hungary
bpeter@edu.bme.hu, kocsis.imre@vik.bme.hu

Abstract: Privacy and auditability have been conflicting design requirements for blockchain-
based distributed ledgers since the inception of the field. As purpose-built blockchains with
permissioned consensus and client access are developing in a broad and diverse range of
industries, a specific form of this dichotomy is emerging: the need to audit the handling of
regulated on-ledger financial assets, such as central bank digital currencies, while
preserving the privacy and confidentiality of transactions as much as possible. This paper
proposes a novel, privacy-preserving, noninteractive-zero-knowledge-proof-based protocol
for a blockchain-based distributed ledger, to prove conformance with fundamental
compliance requirements to external auditing parties. We present an extendable
implementation and demonstrate the practicality of the approach.

Keywords: blockchain; distributed ledger technology; zero-knowledge proofs; ZoKrates;
central bank digital currency; audit; compliance

1 Introduction

Blockchain-based distributed ledger technology (DLT) [1] facilitates the creation
of shared, distributed, ledger-like databases, the integrity of which is secured by
some form of honest majority consensus across the parties operating the system.
DLTs, especially smart contracts handling on-ledger financial instruments, are
proving transformative in numerous industries [2-4].

Consortial – cross-organizational, and access-wise consortium-limited – blockchain
systems are likely to become the subject of audits to ensure compliance with
regulatory requirements. This is especially true now that digital forms of fiat
currencies and fiat-backed assets are expected to appear on the ledgers of such

mailto:bpeter@edu.bme.hu
mailto:kocsis.imre@vik.bme.hu

B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of
 Blockchain Ledgers with Zero-Knowledge Proofs

– 8 –

blockchains soon [5]. However, directly checking ledger contents often violates the
privacy (or confidentiality) of the blockchain’s users. Existing solutions supporting
privacy and confidentiality are often not universal enough (e.g., because they are
platform-specific or smart-contract-based), do not provide a straightforward method
to specify requirements, or require additional architectural elements.

In this paper, we propose a novel approach1 that allows the simple definition of
blockchain monetary transfer audit requirements as computations in the procedural
language of the ZoKrates [7] tool. Subsequently, any party with access to the
blockchain can incrementally create zero-knowledge proofs (ZKPs) [8] of ongoing
compliance against a periodically published series of block hash commitments that
do not reveal any ledger data. The auditor can verify the proofs noninteractively,
eliminating the need for the real-time participation of the blockchain ’ s node
operators. The auditee simply sends their proof of compliance to the auditor, who
may verify it whenever they wish.

Figure 1 provides an overview of the proposed approach. In the design phase, audit
requirements are algorithmized in ZoKrates. During the following synthesis step,
the source code is compiled into a low-level representation called a circuit
(see subsection 3.2 for more details), and the corresponding prover and verifier keys
are generated. At the operation phase, the auditee generates proofs using their
prover key, the circuit, and the necessary private and public inputs. The proofs are
subsequently sent to the auditor party for verification, which can be done with the
verifier key. Ledger contents are never revealed to the auditor. The auditee makes
public commitments about the developing state of the blockchain, which enables
the creation of measures against the consortium keeping “two sets of books.”

The source code for our prototype implementation has been published on GitHub2
and is freely available under the Apache 2.0 license.

The rest of this paper is organized as follows. The next section reviews some
fundamental concepts our research builds on and compares our work with similar
approaches. Then, in Protocol Design, we present our privacy-preserving audit
design and prototype implementation. Finally, we discuss the performance of the
prototype and the associated costs in section 4, followed by our conclusions in
section 5.

1 An initial version of the approach was presented at the faculty-level 2021 Scientific

Student Competition of BME VIK and summarized in a PhD Minisymposium paper [6].
However, in comparison to this paper, that work used an interactive ZKP scheme, and
the showcased implementation was only an early prototype.

2 GitHub repository: ftsrg/zkp_audit_zokrates

https://github.com/ftsrg/zkp-audit-zokrates
https://github.com/ftsrg/zkp-audit-zokrates

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 9 –

Figure 1

Overview of the process

2 Background

In this section, we introduce zero-knowledge proofs, the core technology that
supports our proposal, followed by an elaboration on the relevance of this approach
to central bank digital currency (CBDC) and bridging such systems with
blockchains. We also compare our solution to similar works found in the literature.

2.1 Zero-Knowledge Proofs

Zero-knowledge proofs [8], or ZKPs for short, form a relatively new area of
mathematics, which rely on cryptography to provide means to prove that a statement
is true or that the prover knows a certain value that fits a set of criteria without
revealing any information other than the proof (such as the fitting value) itself. For
example, in self-sovereign identity applications, ZKPs facilitate one to present a so-
called verifiable credential (like an ID card), proving that they are over the age of
majority without revealing exactly how old they are [10]. In our context, we use
ZKPs to prove compliance to requirements like “no transaction with a forbidden
recipient address exists on the ledger” – without disclosing any ledger data.

B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of
 Blockchain Ledgers with Zero-Knowledge Proofs

– 10 –

The core idea originates from Goldwasser et al., who introduced interactive zero-
knowledge proofs in 1989 [11]. Over time, several extensions have been developed,
such as noninteractive proofs, proofs of knowledge, and arguments of knowledge.
A zero-knowledge (ZK) proof of knowledge means that not only the existence of a
witness (i.e., fitting value) is proven, but the prover knows a witness to the proof
[12]. Arguments and proofs of knowledge are different (albeit sometimes used
interchangeably in the literature) because arguments permit “proofs” of false
statements that are computationally infeasible to find. In other words, ZK arguments
are like ZK proofs but with computational soundness rather than statistical (see
[13]).

Today, state-of-the-art ZKPs commonly found in literature and used in software are
succinct arguments of knowledge, such as zk-STARKs (Zero-Knowledge Succinct
Transparent ARguments of Knowledge) [14] and zk-SNARKs (Zero-Knowledge
Succinct Noninteractive ARguments of Knowledge) [15]. Succinctness refers to the
small size and easy verifiability of the generated proofs. Transparency means no
trusted setup is necessary. ZKPs are used in numerous blockchain-related projects
[16], such as:

• Zerocoin [17] and Zerocash [18] (and Zcash [19], its implementation),
extending Bitcoin [20] with ZKP-based privacy

• fabZK [21], offering privacy-preserving and auditable smart contracts for
Hyperledger Fabric [22]

• StarkNet3 and zkSync4, “ZK-Rollups” for Ethereum [23]

• Mina [24], an extremely lightweight cryptocurrency platform with ZK-
powered smart contracts

2.2 Relevance to Central Bank Digital Currency Bridging

In recent years, central bank digital currency (CDBC), “an electronic, fiat liability
of a central bank that can be used to settle payments or as a store of value” [25],
has been a subject of active research worldwide [26]; in a survey done in 2020 by
the Bank for International Settlements, the majority of central banks (CBs) around
the world expressed that they are at least exploring CBDC [25]. At this point, there
are no widely used production implementations yet, but several proof-of-concept
and pilot deployments have been created5.

CDBCs promise significantly decreased transaction processing time compared to
many classic payment solutions (due to the potential elimination of intermediaries

3 www.starknet.io (accessed on 2024-02-13)
4 zksync.io (accessed on 2024-02-13)
5 See, e.g., the Central Bank Digital Currency Tracker of the Atlantic Council:

www.atlanticcouncil.org/cbdctracker (accessed on 2023-05-10)

http://www.starknet.io/
https://zksync.io/
https://www.atlanticcouncil.org/cbdctracker/

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 11 –

involved), low transaction costs, and the possibility of programmability and the use
of legal tender in smart contracts. Payment via cryptocurrencies has always been
hindering the utilization of the true potential of smart contracts in various industries,
and existing stablecoins [27] notwithstanding, the use of smart contracts in
established industries needs proper legal tender in cases when financial transactions
are also involved. The coming EU-regulated e-money [28] assets will be a part of
the solution, but equally, we expect CBDCs to play a major role.

While the possibility of issuing CBDC on a distributed ledger – instead of a classic,
centralized system – is being explored, recent developments indicate that most
likely, (a) the authoritative CBDC ledger will host, at most, a very limited and
controlled set of smart contracts, serving predominantly governmental purposes;
and (b) directly or indirectly issuing CBDC to open, permissionless blockchains
will not be pursued soon.

These hypotheses flow from recent developments in CBDC exploration. Project
Bakong6, e-Naira7, Project Rosalind8, and OpenCBDC [29] either do not or do not
intend to support more than a minimal and controlled set of pre-approved smart
contracts. E-krona9 and e-hryvnia10 plan smart contract support only in a later phase.
We do not know of any specific platform design that supports the direct installation
of arbitrary smart contracts.

Significant technical and policy arguments support detaching the authoritative
CBDC ledger function from the function of CBDC-handling smart contracts. On
the technical side, design for latency and throughput can be greatly complicated by
smart contracts and contract usage profiles, which are “unknown” at system design
time, especially for high-performance, cross-organizational blockchains [30] [31].

Additionally, with wide-scale smart-contract-based programmability, security
concerns arise, which carry a significant (and, arguably, unnecessary) level of risk
for the authoritative CBDC ledger [32-34]. Maintaining credible arguments of
privacy and confidentiality for the ledger also becomes a matter of concern.

On the policy side, research has already mapped out the approaches for supplying
smart contracts in DLTs with various forms of fiat-denominated (digital) money [5].
A critical insight is that “bringing money to” the smart contracts of a purpose-built
DLT through techniques like bridging (introduced in the next section) is not only
one of the viable options but is also far closer to actual rollout in practice than
production CBDC platforms themselves, as for these techniques, CBDC as the
source of money supply is only one of the options to enable DLT-internal settlement.
(Such DLTs are beginning to appear in a regulated manner; see, e.g., the Kate Coin

6 bakong.nbc.gov.kh (accessed on 2024-02-13)
7 enaira.gov.ng (accessed on 2024-02-13)
8 www.bis.org/about/bisih/topics/cbdc/rosalind.htm (accessed on 2024-02-13)
9 www.riksbank.se/en-gb/payments--cash/e-krona/ (accessed on 2024-02-13)
10 bank.gov.ua/en/payments/e-hryvnia (accessed on 2024-02-13)

https://bakong.nbc.gov.kh/
https://enaira.gov.ng/
https://www.bis.org/about/bisih/topics/cbdc/rosalind.htm
https://www.riksbank.se/en-gb/payments--cash/e-krona/
https://bank.gov.ua/en/payments/e-hryvnia

B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of
 Blockchain Ledgers with Zero-Knowledge Proofs

– 12 –

platform11.) Thus, there seems to be little incentive for CBs to take up the risk of
widely supporting direct CBDC-ledger programmability when the needs of the
private sector can be supported in these established ways. From a more general
policy perspective, detaching the authoritative CBDC ledger from the smart
contract layer is also more in line with the two-layer (i.e., financial institutions in
intermediary roles) CBDC approaches we see in the emerging platforms [35].

2.2.1 CBDC Bridging

Due to the reasons detailed above, a reasonable scenario for CBs to support CBDC
programmability without uncontrolled smart contract installation on their CBDC
ledgers is by bridging CBDC to an attached, permissioned blockchain (whose
operators can be held accountable): a sidechain. In essence, this means allowing the
locking of a certain amount of CBDC on the CB’s ledger and minting (i.e., creating)
an equivalent value of funds on the sidechain ledger. Note that bridging as a concept
originates from the cryptocurrency world12 but is directly applicable to CBDC-to-
permissioned-distributed-ledger scenarios, too. For a recent survey and gap analysis
of distributed ledger integration and interoperability, see [37]. Bridging CBDC to a
consortial ledger enables smart-contract-encoded business rules to have irrevocable,
atomic, and legally sound monetary side effects upon execution.

The bridged-out funds can be called shadow CBDC because they can be used much
like the underlying CBDC on the bridged blockchain, in the knowledge that they
are backed by CBDC on the original ledger. Shadow CBDC can be converted back
to the original by burning (i.e., destroying) it on the sidechain and unlocking
equivalent CBDC units on the CBDC ledger. Figure 2 illustrates CBDC bridging.

However, bridging also causes the locked CBDC to leave the CB’s immediate
supervision as transactions happen on the sidechain rather than through the CB. One
way for the CB to ensure compliance is to audit the transactions on the sidechain.

Figure 2

CBDC bridging [6]

11 newsroom.kbc.com/kbc-creates-a-first-in-europe-with-the-kate-coin-its-own-digital-

coin-based-on-blockchain (accessed on 2024-02-13)
12 See, e.g., the 2-way peg protocol [36]: its core idea is to lock funds or assets on the

main ledger and create equivalent funds or assets on the bridged ledger. The reverse of
the process can be later performed to “convert” assets back to the main ledger.

https://newsroom.kbc.com/kbc-creates-a-first-in-europe-with-the-kate-coin-its-own-digital-coin-based-on-blockchain
https://newsroom.kbc.com/kbc-creates-a-first-in-europe-with-the-kate-coin-its-own-digital-coin-based-on-blockchain

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 13 –

2.2.2 Auditing Financial IT Systems

Auditing financial information technology (IT) systems is a well-established
practice and one of the most effective tools for fraud detection [38]. Key audit types
include those related to bookkeeping and accounting and compliance audits that
ensure specific laws and regulations are met. The former verifies that the financial
statements published by the auditee are sound, complete, and accurate by
performing various tests and reviewing financial documents such as invoices.
Compliance audits target one or more specific regulations and aim to establish
adherence to them [39].

Regulations often embody anti-money laundering (AML) and combating the
financing of terrorism (CFT) efforts. For instance, the 26/2020 (VIII 25) regulation
of MNB (the central bank of Hungary) [40], in effect since 2021, describes how a
financial screening system should be implemented to comply with the measures
accepted by the European Union and the United Nations Security Council regarding
AML/CFT.

As paper-based accounting is not common practice anymore and IT systems are
used instead, there is a strong potential to automate the audit process. Artificial
intelligence approaches have been recognized to be applicable [39], and
“continuous auditing” [41] has been proposed using blockchain-based
solutions [42].

Analyzing the records of the auditee to detect suspicious transactions, albeit a vital
step in AML/CFT efforts [43], poses data privacy and confidentiality challenges.
At the very least, in the EU, the auditing party may have to observe the General
Data Protection Regulation (GDPR) [44], which imposes strict rules on data
privacy13. Furthermore, any business ledger, distributed or not, may carry business-
confidential information.

The privacy-preserving audit outlined in this paper allows the consortium operating
the sidechain to prove to an auditing party that its ledger’s transactions conform to
regulatory requirements, without revealing any specific transaction data.

2.3 Related Work

Privacy-preserving, blockchain-based payment systems, such as Zcash [19] or
Monero [45], have existed for several years, many of which are prepared for
external transaction audits in platform-specific ways. Recent academic work has
focused on resolving the contradiction between auditability/accountability and
privacy. Several proposed approaches use smart contracts to implement a payment
system layer above the blockchain network. For example, [46] presents a prototype
implementation for efficient, privacy-preserving, and auditable token payments as

13 The auditor and the regulator can be different parties.

B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of
 Blockchain Ledgers with Zero-Knowledge Proofs

– 14 –

Go chaincode for Hyperledger Fabric [22]. FabZK [21] extends Fabric to make
smart contracts auditable without privacy infringement. However, the method
requires transaction senders to create ZKPs, tokens, and commitments continuously
– the proposal in this paper does not require any alterations to how the participating
organizations use the blockchain. Some contributions are not extensions of existing
systems but implementations on their own, such as MiniLedger [47] and
PPChain [48]. [47] offers a thorough overview and comparison of several protocols
and systems for auditable distributed payment systems.

Concerning CBDC-related applications, one conceptual approach to regulatory
requirement compliance is to avoid the need for explicit audits altogether by
platform guarantees. [49] uses ZKPs in a system similar to Zcash to provide cash-
like CBDC while enforcing encumbrances, such as personal holding limits and
thresholds on the “speed of money” by design. However, in such schemes, the
regulatory party must either have a node in the system or trust the majority of the
network operators to adhere to the requirement-enforcing rules of consensus.

Our approach differs from the known prior art in the following respects:

(1) Our approach is largely blockchain/DLT platform agnostic; the audit itself
happens off-chain, with ledger data converted to the required format
beforehand. Although targeted at consortial/private DLTs, it is also
potentially applicable in permissionless settings.

(2) The compliance properties subject to audit are extendable as we utilize the
ZoKrates language, which resembles generic procedural languages like
JavaScript. The requirements simply need to be algorithmized and the
program (circuit) compiled. Over time, audit programs can be created and
retired freely. Future work will investigate the possibility of creating a
domain-specific language (DSL) on top of ZoKrates to express properties to
be audited.

(3) The organizations using the blockchain need not actively participate in the
audit process, and creating proofs of compliance needs cooperation only
from one blockchain node operator (who can change over time).

zkrpChain [50] and zkLedger [51] are the constructions that align the most with our
work regarding goals and share core design ideas. However, neither offers the same
flexibility as our approach. zkrpChain is built on smart contracts and is specific to
Hyperledger Fabric. zkLedger focuses on auditing banks, which are blockchain
nodes (not end users), and imposes additional requirements, such as the participants
maintaining a so-called commitment cache and actively engaging in the audits.

In CBDC bridging, this would mean members of the sidechain consortium using
the blockchain would have to contribute to the audits individually. Our protocol is
universal: any criteria that can be expressed as a computation in ZoKrates can be
verified. No complex interaction is needed from the participants; particularly in
bridging scenarios, from the operators of the bridged chain.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 15 –

This work is a direct continuation of [6], in which we presented an early version of
our approach. A significant difference is that while we relied on an interactive zk-
STARK protocol (with a prototype using Zilch [52]) in the previous work, here we
present a zk-SNARK-based, noninteractive, asynchronous protocol.
A corresponding prototype implementation has been created in ZoKrates [7].
Noninteractive proving suits the audit settings we predominantly target much better
(see the subsection on relevance to CBDCs). ZoKrates enables a modular and
extendable proving scheme (as presented in the next section).

3 Protocol Design

In this section, we define the audit protocol, which allows the auditee to prove that
the current or a historical blockchain state adheres to the requirements imposed by
the auditor.

The blockchain model in the following specification matches the one in our
previous work [6]: in essence, transactions are (source, destination, amount)
triples 14, and blocks consist of the previous block’s header’s hash value and a
Merkle tree [57] constructed from the transactions in the block. The only extension
to this model is the inclusion of an additional index value for each transaction in a
block, which is to ensure that the Merkle tree’s leaves are unique.

There are two basic aspects to consider: (1) how the conformance of a given state
is proven and (2) how this proof is committed to the real blockchain state. The latter
is crucial to ensure that the blockchain node operator is not secretly generating their
proofs based on a different ledger, by “keeping two sets of books”; instead, they
generate a proof from private and public inputs, where the data on-chain is private
(this is a peculiarity of our use case, and is in contrast to the usual blockchain-related
applications of ZKPs, where the on-chain data is usually the public input). Therefore,
without precautions, the auditee could feed fabricated but otherwise valid data into
the audit program and thus present a fake proof. We use cryptographic hashes to
prevent this.

3.1 Audit Program Specification

Audit programs are computations that take some private and public inputs and
optionally return an output. Such programs are used to express audit requirements.
Refer to Figure 3 for a simple overview of audit programs.

14 Where source and destination are Ethereum-style addresses (the last 20 bytes of the

participant’s public key in hexadecimal format; i.e., 40 hexadecimal characters)

B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of
 Blockchain Ledgers with Zero-Knowledge Proofs

– 16 –

The application of zk-SNARKs to specify computations increasingly relies on a
series of transformations: e.g., from program logic through arithmetic
circuits (ACs) [9] or rank-1 constraint systems (R1CSs) 15 [8] to Quadratic
Arithmetic Programs (QAPs), which in turn form satisfaction problems. Some
software frameworks offer a higher-level language that is automatically compiled
into circuits under the hood. Our previous (interactive-proving) experiments were
conducted using Zilch [52], which comes with an object-oriented, Java-like
language for this purpose called ZeroJava. ZoKrates, the framework used in the
prototype implementation for this paper, has a very generic procedural language as
well, also named ZoKrates. Both languages can be used to define requirements with
elementary programming knowledge easily.

These programs are considered public information: both the auditor and the auditee
know how the computation is defined and any public inputs it takes. Private inputs
are known only by the auditee. For example, an audit program that asserts that the
recipients of all transactions are whitelisted parties could take a list of transactions
as a private input, a whitelist (list of addresses) as a public input and return a
Boolean value signifying whether every recipient was on the whitelist. In this trivial
case, the audit program might consist of a linear search in the whitelist repeated for
every transaction and a Boolean flag value returned at the end of the program.

Figure 3

Audit programs and commitments

3.2 Proof Generation

Proofs are generated for a specific blockchain state (i.e., a range of blocks) and some
specific criteria expressed in a ZoKrates program. Since it is rather impractical

15 Simply referred to as circuits from now on; transformation between the formats is

possible in both directions [7].

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 17 –

(partially due to the resource requirements of generating proofs) to verify every
criterion in a single run, it is advisable to develop audit programs in a modular
manner and execute them independently, possibly in parallel.

Zero-Knowledge Proof Generation in ZoKrates

ZoKrates [7] is a zk-SNARK [15] toolkit and, therefore, generates ZKPs based on
zk-SNARK constructions, first introduced in subsection 2.1. The concrete schemes
supported are Groth16 [53], GM17 [54], and Marlin [55]. Although a technical
description of the underlying cryptographic primitives is out of scope for this paper,
we summarize the proof generation process – see Figure 4 for an overview.

First, the desired computation is encoded in the simple, high-level DSL of ZoKrates.
Typically, assertion statements are used to secure the validity of the resulting proofs.
For example, a computation ensuring that a given address is eligible to receive funds
might involve iterating over a list of allowed addresses and verifying that the given
address matches one of the allowed ones in an assert statement. Valid proofs can
only be generated by successful computations with no failing assertions.

Figure 4

ZoKrates proof generation

Then, ZoKrates compiles the high-level code into a so-called flattened code: in
simplified terms, an R1CS-compatible circuit16. For more complex programs, this

16 The zk-SNARK scheme requires quadratic arithmetic programs (QAPs) [57] under the

hood, but there are mappings from both ACs and R1CSs to QAPs [7]. QAPs implement
the same logic but using polynomials.

B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of
 Blockchain Ledgers with Zero-Knowledge Proofs

– 18 –

can take a significant amount of time and consume substantial storage (in the
magnitude of gigabytes). Based on the generated circuit, prover and verifier keys
are generated (in a phase called setup). These constitute cryptographic material
required to generate and verify proofs, respectively.

Based on the flattened code and the inputs to the computation (public and private),
a witness can be created – computing a witness by executing the computation is
equivalent to finding an assignment of variables that satisfies the constraints in the
circuit [7]. Together with the proving key, a proof can be generated for the witness.
To verify the proof later, the circuit and all public inputs are necessary.

3.3 Commitment to Real Blockchain State

There are fundamentally two ways to ensure that the prover has fed private input
originating from the actual ledger into the program(s). We have chosen the second
approach because it does not require architectural changes on the blockchain side.

3.3.1 Blockchain Node Managed by the Auditor

Some blockchain systems may allow the creation of lightweight nodes, which
behave mostly the same as regular nodes, but instead of synchronizing entire blocks,
they only consider block headers. This way, they cannot access concrete transaction
details but only hashes and metadata such as the block height.

If, as part of the proof, the auditee shows that the root of the Merkle tree [57] built
from the transactions in their private input (i.e., the supposed factual transaction
data) is indeed the same as the one found in the actual block headers, the auditor
can be confident that the probability of the proof being fake is insignificant.

A clear downside of this method is that the auditor must have its own node in the
blockchain, and not every major blockchain implementation even offers such light
nodes. For example, Hyperledger Fabric [22] did not have such a feature at the time
of writing. Ethereum [23] does have light nodes, but practical applications of the
process presented in this paper likely call for private, permissioned systems.

3.3.2 Commitment via Hash Traces and Checkpoints

If the auditor knows the contents of the genesis (the very first) block of the bridged
chain, it is possible for them to trace back consecutive audit results to that block.
For example, to audit the first block immediately following the genesis block, the
audit program could take the hash of the genesis block’s header as a public
parameter and prove during the computation that the header of the audited block
contains this hash value.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 19 –

Of course, this does not guarantee that the transactions within this first block are, in
fact, the transactions that are on the blockchain. It is technically possible for the
auditee to maintain a separate phony blockchain with valid transactions that can be
traced back to the commonly known genesis block through hash values. Therefore,
the auditee must create a checkpoint at certain time or block-height-based intervals.
This means verifying that a given block has a certain hash value in its header.
The transactions were not faked if this hash matches the value reported in audits.

3.4 Complete Audit Process

Prior to the audit, the auditee converts the data on the blockchain to a format
accepted by the audit protocol. This can happen continuously or in an ad-hoc
manner when an audit is due. At this point, the compiled audit programs should be
available to the auditee. They generate a ZKP for every audit program and thus
prove the satisfaction of all requirements. The result is a set of files, which are then
transferred to the auditor, who can use the original source code of the programs and
the public inputs to verify these proofs.

3.5 Auditing a Representative Set of Requirements

As a prototype implementation, we have created three audit programs that together
verify the following five simple requirements:

(1) For every transaction, the sender account has a sufficient balance to
perform the transaction.

(2) The recipient of every transaction is whitelisted.
(3) After each transaction, the balance of the sender’s account equals their

balance immediately before the transaction minus the amount of funds
transferred.

(4) After each transaction, the balance of the recipient’s account equals their
balance immediately before the transaction plus the amount of funds
transferred.

(5) The hash value found in every block’s header equals the root of the Merkle
tree formed by the transactions in the previous block (except, of course,
for the genesis block).

These form a representative, basic set of essential ledger data requirements, but it is
trivial to include additional requirements. For example, requiring that no
transaction’s value exceeds a certain threshold could enforce cash-like
encumbrances on the blockchain.

We have implemented the verification of these five requirements in three named
audit programs:

• balances checks requirements (1), (3), and (4)

B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of
 Blockchain Ledgers with Zero-Knowledge Proofs

– 20 –

• whitelist checks requirement (2)
• merkle checks requirement (5)

The programs could take different input parameters (derived from the same ledger
contents) since not all blockchain data is required for each computation. For
example, to prove that transaction recipients are on the whitelist, merely a set of
transactions is required. On the other hand, balances, the program that proves the
valid change of account balances throughout several transactions, needs a
consecutive list of those transactions and the initial account balances.

Figure 5 shows a simplified overview of how the above five requirements can be
audited using the three programs. Note that the three proofs can be generated
simultaneously from the same input data.

Figure 5

The three prototype audit programs

3.5.1 balances: verify the correct change of balances over time

The balances program takes as its input parameters a list of initial account balances,
a list of blocks (both are private), and a commitment in the form of a list of
transaction hashes (public). It then iterates over all transactions in all blocks,
validating that the source account’s balance is enough to cover the transaction and
subsequently updating the accounts’ last known balances. At each iteration, it also
verifies that the transaction’s hash equals the corresponding commitment hash.

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 21 –

3.5.2 whitelist: verify that every transaction’s recipient is whitelisted

This program receives a list of blocks only known by the auditee and a public list
of whitelisted accounts, plus the same commitment hash list as balances. It then
asserts that for every transaction in every block, the recipient address can be found
within the whitelist via a linear search. Like balances, it compares each
transaction’s hash to the commitment values. It is theoretically possible to audit the
contents of an entire blockchain ledger using this and the previous program
simultaneously, but they are intended to be used for smaller segments with
checkpoint states in between.

3.5.3 merkle: verify that the block hashes are valid

As the SHA2 [58] hash functions are not optimized for ZKPs, performing as few
SHA256 computations within a single audit program as possible is desirable. In our
implementation, the program can verify the correct hash value of the list of
transactions of a single block. Upon receiving a (constant size) transaction array and
a hash, it builds a Merkle tree from the transactions and compares its root to the
input hash value, asserting that they are equal. With this program, a separate proof
must be generated for each consecutive pair of blocks, but the process can be
parallelized.

4 Performance & Cost Considerations

One of the problems with zk-SNARK [15] proofs today is that proof generation is
very resource-intensive and may take a long time. In our experience, compiling
ZoKrates source code is by no means an easy task for the computer either. For more
complex programs (such as the one that computes unoptimized cryptographic
hashes), exceedingly large memory and storage space was necessary. For eight
transactions, building a Merkle tree [57] demanded somewhat more than 64
gigabytes of memory and 32 gigabytes of storage space for compilation. Hopefully,
with the development of hashing algorithms more suitable for ZKPs, such hash
computations will become more performant.

Nonetheless, the per-transaction costs are quite promising. The minimal Amazon
EC2 virtual private server instance that we found was necessary to compile the
source code and compute all three proofs was r6a.4xlarge, which – at the time
the measurements were taken – cost around $1.09 per hour. In total, it took around
1.5 hours to generate the proofs, meaning that the per-transaction proving cost was
approximately $0.016 (USD). The synthesis step, which includes compiling the
code and generating the proving and verification keys, takes considerable time, but
does not contribute to the operation cost, since it only has to be done once.

B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of
 Blockchain Ledgers with Zero-Knowledge Proofs

– 22 –

For our initial prototype, this cost result is encouraging; although not yet apt for
microtransactions, it is well in the realm of practical feasibility for systems handling
typically higher-value transactions (the cost is at the order of magnitude of normal
bank transactions in many jurisdictions). Also, as we work with ZoKrates, a front-
end to three different zk-SNARK schemes even today, we expect that with the rapid
development of the ZKP field, our programs can become more resource-efficient
without significant modifications. Finally, we chose SHA256 [58] as it is a very
strong “default” hashing algorithm in the blockchain space; future research will
evaluate the applicability of ZKP-friendly hashing algorithms, such as Pedersen
hashes [19].

Figures 6 and 7 show the time and storage space required for the different phases of
the three audit programs. The data was obtained on the aforementioned
r6a.4xlarge AWS instance with an input of ten blocks, each containing ten
transactions. The balances program took the longest to generate a proof at over four
minutes, followed closely by the merkle program. The program that asserts whitelist
membership was slightly faster. Due to the complexity of SHA256 computation,
the merkle program took the longest to compile and consumed the most storage
space by far. Since the zk-SNARKs generated by ZoKrates are succinct, the proof
size is negligible, but the witness generated for the proof has a significant size (in
the magnitude of hundreds of megabytes). It should be noted that the measured
operation times for merkle apply to a single block of the input data, so the total time
this program requires to prove conformance of the 10-block input is ten times the
value seen on the bar chart.

Figure 6

Time and space requirements of the prototype audit programs’ synthesis

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 23 –

Figure 7

Time and space requirements of the prototype audit programs’ operation

Conclusions

In the world of private blockchain systems and especially within the context of
bridged CBDC, we expect the need for ledgers to undergo audits, in order to ensure
compliance with regulations. However, this would often unnecessarily expose
potentially sensitive on-ledger data to the auditors. With our proposed approach,
harnessing the power of zero-knowledge proofs, it is possible for an auditee to prove
compliance with predefined requirements without revealing sensitive information.

In the paper, we have presented a design for a privacy-preserving noninteractive
audit protocol and a prototype implementation using ZoKrates. The prototype’s
performance is promising, but we also see several applicable optimizations.
The proposed design has applications in cross-organizational distributed ledger
systems and can also be extended to public blockchains.

Acknowledgements

This work was partially created under, and financed through, the Cooperation
Agreement between the Hungarian National Bank (MNB) and the Budapest
University of Technology and Economics (BME) in the Digitisation, artificial
intelligence and data age workgroup.

The project supported by the Doctoral Excellence Fellowship Programme (DCEP)
is funded by the National Research Development and Innovation Fund of the
Ministry of Culture and Innovation and the Budapest University of Technology and
Economics under a grant agreement with the National Research, Development and
Innovation Office.

References

[1] M. Rauchs et al., “Distributed Ledger Technology Systems: A Conceptual
Framework.” 2018

[2] J. Al-Jaroodi and N. Mohamed, “Blockchain in Industries: A Survey,” IEEE
Access, Vol. 7, pp. 36500-36515, 2019

[3] Q. Zhu, S. W. Loke, R. Trujillo-Rasua, F. Jiang, and Y. Xiang, “Applications
of Distributed Ledger Technologies to the Internet of Things: A Survey,”
ACM Comput. Surv., Vol. 52, No. 6, pp. 1-34, 2019

B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of
 Blockchain Ledgers with Zero-Knowledge Proofs

– 24 –

[4] T. Alladi, V. Chamola, R. M. Parizi, and K.-K. R. Choo, “Blockchain
Applications for Industry 4.0 and Industrial IoT: A Review,” IEEE Access,
Vol. 7, pp. 176935-176951, 2019

[5] A. Bechtel, A. Ferreira, J. Gross, and P. Sandner, “The Future of Payments
in a DLT-Based European Economy: A Roadmap,” in The Future of
Financial Systems in the Digital Age: Perspectives from Europe and Japan,
in Perspectives in Law, Business and Innovation., Singapore: Springer, 2022

[6] B. Z. Péter and I. Kocsis, “ZKP-Based Audit for Blockchain Systems
Managing Central Bank Digital Currency,” presented at the 29th
Minisymposium of the Department of Measurement and Information
Systems, 2022, pp. 70-73

[7] J. Eberhardt and S. Tai, “ZoKrates - Scalable Privacy-Preserving Off-Chain
Computations,” in 2018 IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData), 2018, pp. 1084-1091

[8] ZKProof, “ZKProof Community Reference,” Version 0.3, 2022

[9] H. Vollmer, “Arithmetic Circuits,” in Introduction to Circuit Complexity: A
Uniform Approach, Berlin, Heidelberg: Springer, 1999

[10] R. Greene, “Self-Sovereign Identity and the Decentralized, Consent-Based
Model,” Blockchain Law, No. 8, 2022

[11] S. Goldwasser, S. Micali, and C. Rackoff, “The Knowledge Complexity of
Interactive Proof-Systems,” in Proceedings of the seventeenth annual ACM
symposium on Theory of computing, 1985, pp. 291-304

[12] U. Fiege, A. Fiat, and A. Shamir, “Zero Knowledge Proofs of Identity,” in
Proceedings of the nineteenth annual ACM symposium on Theory of
computing, 1987, pp. 210-217

[13] J. Thaler, “Proofs, Arguments, and Zero-Knowledge,” SEC, Vol. 4, Nos. 2-
4, pp. 117-660, 2022

[14] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev, “Scalable,
Transparent, and Post-Quantum Secure Computational Integrity.” 2018

[15] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, “Succinct Non-
Interactive Zero Knowledge for a von Neumann Architecture,” presented at
the 23rd USENIX Security Symposium (USENIX Security 14) 2014, pp. 781-
796

[16] X. Sun, F. R. Yu, P. Zhang, Z. Sun, W. Xie, and X. Peng, “A Survey on Zero-
Knowledge Proof in Blockchain,” IEEE Network, Vol. 35, No. 4, pp. 198-
205, 2021

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 25 –

[17] I. Miers, C. Garman, M. Green, and A. D. Rubin, “Zerocoin: Anonymous
Distributed E-Cash from Bitcoin,” in 2013 IEEE Symposium on Security and
Privacy, 2013, pp. 397-411

[18] E. Ben Sasson et al., “Zerocash: Decentralized Anonymous Payments from
Bitcoin,” in 2014 IEEE Symposium on Security and Privacy, 2014, pp. 459-
474

[19] D. E. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash Protocol
Specification,” Version 2023.4.0 [NU5] 2023

[20] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008

[21] H. Kang, T. Dai, N. Jean-Louis, S. Tao, and X. Gu, “FabZK: Supporting
Privacy-Preserving, Auditable Smart Contracts in Hyperledger Fabric,” in
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) 2019, pp. 543-555

[22] E. Androulaki et al., “Hyperledger Fabric: A Distributed Operating System
for Permissioned Blockchains,” in Proceedings of the Thirteenth EuroSys
Conference, 2018, pp. 1-15

[23] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction
Ledger,” 2019

[24] J. Bonneau, I. Meckler, and V. Rao, “Mina: Decentralized Cryptocurrency at
Scale,” 2020

[25] C. Boar and A. Wehrli, “Ready, Steady, Go? - Results of the Third BIS
Survey on Central Bank Digital Currency,” Bank for International
Settlements, BIS Paper 114, 2021

[26] P. Fáykiss, B. I. Horváth, G. Horváth, N. Kiss-Mihály, Á. Nyikes, and A.
Szom­bati, “Transformation of Money in the Digital Age,” Polgári Szemle,
Vol. 17, No. Spec., pp. 124-140, 2021

[27] I. Fiedler and L. Ante, “Stablecoins,” in The Emerald Handbook on
Cryptoassets: Investment Opportunities and Challenges, Emerald Publishing
Limited, 2023

[28] I. Hallak, “Markets in crypto-assets (MiCA)” 2023

[29] J. Lovejoy et al., “A High Performance Payment Processing System
Designed for Central Bank Digital Currencies” 2022

[30] J. A. Chacko, R. Mayer, and H.-A. Jacobsen, “How To Optimize My
Blockchain? A Multi-Level Recommendation Approach,” Proceedings of
the ACM on Management of Data, Vol. 1, No. 1, pp. 1-27, 2023

[31] A. Klenik and A. Pataricza, “Adding Semantics to Measurements: Ontology-
Guided, Systematic Performance Analysis,” Acta Cybernetica, Vol. 26, No.
2, pp. 175-293, 2023

B. Z. Péter et al. Privacy-Preserving, Noninteractive Compliance Audits of
 Blockchain Ledgers with Zero-Knowledge Proofs

– 26 –

[32] K. Yamashita, Y. Nomura, E. Zhou, B. Pi, and S. Jun, “Potential Risks of
Hyperledger Fabric Smart Contracts,” in 2019 IEEE International Workshop
on Blockchain Oriented Software Engineering (IWBOSE) 2019, pp. 1-10

[33] W. Zou et al., “Smart Contract Development: Challenges and Opportunities,”
IEEE Transactions on Software Engineering, Vol. 47, No. 10, pp. 2084-2106,
2021

[34] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart Contract Security:
A Software Lifecycle Perspective,” IEEE Access, Vol. 7, pp. 150184-150202,
2019

[35] Bank for International Settlements (BIS) “Lessons learnt on CBDCs,” 2023

[36] S. A. Back et al., “Enabling Blockchain Innovations with Pegged Sidechains,”
2014

[37] R. Belchior, A. Vasconcelos, S. Guerreiro, and M. Correia, “A Survey on
Blockchain Interoperability: Past, Present, and Future Trends,” ACM
Comput. Surv., Vol. 54, No. 8, pp. 1-41, 2021

[38] A. Seetharaman, M. Senthilvelmurugan, and R. Periyanayagam, “Anatomy
of Computer Accounting Frauds,” Managerial Auditing Journal, vol. 19, no.
8, pp. 1055–1072, 2004

[39] G. Barta, “Mesterséges intelligencia módszerek alkalmazása az informatikai
rendszerek biztonsági auditjában,” PhD dissertation, Hungarian University
of Agriculture and Life Sciences, 2021

[40] Magyar Nemzeti Bank (the central bank of Hungary), 26/2020 (VIII. 25.)
MNB rendelet. 2021

[41] Z. Rezaee, R. Elam, and A. Sharbatoghlie, “Continuous Auditing: The Audit
of the Future,” Managerial Auditing Journal, Vol. 16, No. 3, pp. 150-158,
2001

[42] H. Han, R. K. Shiwakoti, R. Jarvis, C. Mordi, and D. Botchie, “Accounting
and Auditing with Blockchain Technology and Artificial Intelligence: A
Literature Review,” International Journal of Accounting Information
Systems, Vol. 48, p. 100598, 2023

[43] X. Luo, “Suspicious Transaction Detection for Anti-Money Laundering,”
IJSIA, Vol. 8, No. 2, pp. 157-166, 2014

[44] European Parliament and Council of the European Union, Regulation (EU)
2016/679 of the European Parliament and of the Council of 27 April 2016,
Vol. 119. 2016

[45] K. M. Alonso and J. H. Joancomartí, “Monero - Privacy in the blockchain.”
2018

[46] E. Androulaki, J. Camenisch, A. D. Caro, M. Dubovitskaya, K. Elkhiyaoui,
and B. Tackmann, “Privacy-Preserving Auditable Token Payments in a

Acta Polytechnica Hungarica Vol. 21, No. 11, 2024

– 27 –

Permissioned Blockchain System,” in Proceedings of the 2nd ACM
Conference on Advances in Financial Technologies, 2020, pp. 255-267

[47] P. Chatzigiannis and F. Baldimtsi, “MiniLedger: Compact-Sized
Anonymous and Auditable Distributed Payments,” in Computer Security –
ESORICS 2021, 2021, pp. 407-429

[48] C. Lin, D. He, X. Huang, X. Xie, and K.-K. R. Choo, “PPChain: A Privacy-
Preserving Permissioned Blockchain Architecture for Cryptocurrency and
Other Regulated Applications,” IEEE Systems Journal, Vol. 15, No. 3, pp.
4367-4378, 2021

[49] J. Gross, J. Sedlmeir, M. Babel, A. Bechtel, and B. Schellinger, “Designing
a Central Bank Digital Currency with Support for Cash-Like Privacy” 2021

[50] S. Xu et al., “zkrpChain: Towards Multi-Party Privacy-Preserving Data
Auditing for Consortium Blockchains based on Zero-Knowledge Range
Proofs,” Future Generation Computer Systems, Vol. 128, pp. 490-504, 2022

[51] N. Narula, W. Vasquez, and M. Virza, “zkLedger: Privacy-Preserving
Auditing for Distributed Ledgers,” presented at the 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18),
2018, pp. 65-80

[52] D. Mouris and N. G. Tsoutsos, “Zilch: A Framework for Deploying
Transparent Zero-Knowledge Proofs,” IEEE Transactions on Information
Forensics and Security, Vol. 16, pp. 3269-3284, 2021

[53] J. Groth, “On the Size of Pairing-Based Non-interactive Arguments,” in
Advances in Cryptology – EUROCRYPT 2016, 2016, pp. 305-326

[54] J. Groth and M. Maller, “Snarky Signatures: Minimal Signatures of
Knowledge from Simulation-Extractable SNARKs,” in Advances in
Cryptology – CRYPTO 2017, 2017, pp. 581-612

[55] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward, “Marlin:
Preprocessing zkSNARKs with Universal and Updatable SRS,” in Advances
in Cryptology – EUROCRYPT 2020: 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, 2020, pp. 738-
768

[56] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic Span
Programs and Succinct NIZKs without PCPs,” in Advances in Cryptology –
EUROCRYPT 2013, 2013, pp. 626-645

[57] R. C. Merkle, “A Digital Signature Based on a Conventional Encryption
Function,” in Advances in Cryptology — CRYPTO ’87, 1988, pp. 369-378

[58] National Institute of Standards and Technology, “Secure Hash Standard
(SHS)” U.S. Department of Commerce, 2015

	1 Introduction
	2 Background
	2.1 Zero-Knowledge Proofs
	2.2 Relevance to Central Bank Digital Currency Bridging
	2.2.1 CBDC Bridging
	2.2.2 Auditing Financial IT Systems

	2.3 Related Work

	3 Protocol Design
	3.1 Audit Program Specification
	3.2 Proof Generation
	Zero-Knowledge Proof Generation in ZoKrates

	3.3 Commitment to Real Blockchain State
	3.3.1 Blockchain Node Managed by the Auditor
	3.3.2 Commitment via Hash Traces and Checkpoints

	3.4 Complete Audit Process
	3.5 Auditing a Representative Set of Requirements
	3.5.1 balances: verify the correct change of balances over time
	3.5.2 whitelist: verify that every transaction’s recipient is whitelisted
	3.5.3 merkle: verify that the block hashes are valid

	4 Performance & Cost Considerations

