
Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

‒ 219 ‒

SFIST-based Fast Data Classification

Balázs Tusor and Annamária R. Várkonyi-Kóczy
Software Engineering Institute, John von Neumann Faculty of Informatics
Obuda University
Bécsi út 96/B, 1034 Budapest, Hungary

Department of Informatics
J. Selye University
3322 Bratislavská cesta, 945 01 Komárno, Slovakia

E-mail: tusor.balazs@uni-obuda.hu; koczya@ujs.sk

Abstract: Fuzzy logic is a powerful tool in computer science, which has been used in
countless applications since its conception in the late 80s. Numerous classifiers have been
based on it, taking advantage of the flexibility and robustness against noise that is inherent
in fuzzy systems. One such classifier called the “Sequential Fuzzy Indexing Tables
Classifier” has been developed, to provide a fast and robust classification performance by
combining the speed of indexing tables with the flexibility of fuzzy inference systems. One
major disadvantage of it is its memory requirement that scales exponentially with the
dimension size of the problem. To solve this problem, the authors have proposed the so-called
Sequential Fuzzy Indexed Search Trees (SFIST) classifier that uses the same principle, but
with a much smaller structure. In previous works, the authors have proposed two variants
for the SFIST classifier, and both were shown to drastically reduce the required memory
space compared to that of its predecessor, without any loss in classification performance. In
this paper, a new, third variant is proposed that implements a hybrid approach between the
first two, aiming to further improve the classification accuracy, without sacrificing too much
operational speed.

Keywords: fuzzy inference; indexing tables; classification; search trees

1 Introduction

Fuzzy logic [1] is a powerful tool in computer science, which has been used in
countless applications since its conception in the late 80’s. To mention some recent
ones, fuzzy inference has been advantageously used in risk management in railway
infrastructure projects [2], and fuzzy classifiers have been advantageously applied
to implement alcohol classification [3] and medical applications [4].

B. Tusor et al. SFIST-based Fast Data Classification

‒ 220 ‒

In the simplest form of fuzzy inference-based classification, the knowledge
acquired from the training data is expressed as a set of fuzzy rules, and to each rule
a label is assigned (i.e., the class that most likely fits the samples adhering to the
rule). This simplifies the classification process to simply evaluating each rule:
calculating the fuzzy membership function (MF) values for each attribute, taking
the minimum of the gained values (which shows how well the input sample fits the
given rule), and of all the rules the one with the highest overall MF value provides
the output of the classification (alongside the certainty of the results).

One key disadvantage of this simple method is that the number of fuzzy rules can
be very large, making the evaluation process slow. In previous work, in order to
solve this issue, the authors have proposed the so-called Sequential Fuzzy Indexing
Tables (SFITs, [5]) classifier, which utilizes indexing tables to drastically reduce
the required computation to a series of array accesses, but in return it requires large
parts of the problem space to be stored in the memory (as a sequence of 2D arrays
with increasing sizes), so its usage is limited to low dimensional problems.

To address this problem, the authors have proposed a new classifier called
Sequential Fuzzy Indexed Search Trees (SFISTs, [6]). The base idea of the system
is the same as that of the SFITs, i.e., the dimensional decomposition of the problem,
as the search area in the problem space is being reduced attribute by attribute.
The fuzzy MFs are stored as series of intervals. Triangular and trapezoidal fuzzy
sets are utilized, so the intervals can either be plateaus (where the MF value is 1) or
transitions (the overlapping region between two neighboring sets). To quickly find
which interval a given input value falls into, self-balancing binary search trees
(BSTs, like [7]) are used, so although their operation is slower than that of the
SFITS, but only by a logarithmic order, while the amount of stored data is vastly
reduced.

In previous works, the authors have proposed two variants for the SFIST classifier:
the basic [6] and the simplified [8] variants. The former has been created to achieve
a classification similar to that of the SFIT classifier (focusing on reducing the
structure size), while the latter has been developed to enhance the speed of the basic
SFIST. The two share the same architectural idea, with slight differences.

In this paper, a new, third variant is proposed that implements a hybrid approach
between the first two, aiming to improve the classification accuracy, without
sacrificing much speed.

The rest of the paper is as follows. In Chapter 2, the basic and simplified variants
are described shortly, while in Chapter 3 the new variant is proposed: its
architecture, training and evaluation algorithms. In Chapter 4 the classification
performance of the proposed variant is showed and compared to that of the previous
two variants, alongside an analysis regarding their computational complexities.
Finally in Chapter 5, the paper is concluded and future work is described.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

‒ 221 ‒

2 Previous Work – Basic and Simplified SFIST

2.1 Basic Sequential Fuzzy Indexed Search Trees

Figure 1

An example for the architecture of the basic SFIST variant

Figure 1 shows an example for a trained structure using the basic SFIST variant for
a 2-dimensional problem. The data (with attributes x0 and x1, and class T) it has been
trained with can be seen in the top right corner. The architecture consists of 2 layers
(one for each attribute), where 𝜇𝜇𝑗𝑗𝑖𝑖 denotes the jth fuzzy MF in layer i. Each MF is
divided into intervals (identified by the green numbers above them in the figure).
For each interval k, the following descriptors are stored: 𝐼𝐼(𝐵𝐵𝑘𝑘𝐿𝐿,𝐵𝐵𝑘𝑘𝑈𝑈 , 𝜂𝜂𝑘𝑘𝐿𝐿 , 𝜂𝜂𝑘𝑘𝑅𝑅 ,𝐾𝐾)

• 𝐵𝐵𝑘𝑘𝐿𝐿: the lower boundary value of interval k
• 𝐵𝐵𝑘𝑘𝑈𝑈: the upper boundary value of interval k
• 𝜂𝜂𝑘𝑘𝐿𝐿: the left index value of interval k
• 𝜂𝜂𝑘𝑘𝑅𝑅: the right index value of interval k
• K: the class label of interval k

These are stored in separate 1D arrays for each MF. Each interval has two boundary
values, and can either depict an area belonging to a single fuzzy set, or two
(neighboring ones).

Remark: in this research, only such alignments are considered. Each fuzzy set has
an index value associated to it that shows which MF is needed to be evaluated in
the next layer. These index values are stored in 𝜂𝜂𝑘𝑘𝐿𝐿 and 𝜂𝜂𝑘𝑘𝑅𝑅, respectively. In case of
plateaus, only the left index is used, the right index is “-1”. E.g., for input value

B. Tusor et al. SFIST-based Fast Data Classification

‒ 222 ‒

𝑥𝑥0 = 2.7, the BST (not pictured in the figure) in 𝜇𝜇00 provides that the sought interval
is #1, so in the next layer, 𝜇𝜇𝜂𝜂1𝐿𝐿

1 = 𝜇𝜇01 and 𝜇𝜇𝜂𝜂1𝑅𝑅
1 = 𝜇𝜇11 are to be evaluated.

Class value K for a given interval stores which class the training data that fall into
the given interval belong to, or “-1” if the set of samples in question belong to
multiple classes, serving as heuristics for the training algorithm to separate the areas
more efficiently. The training is done incrementally, focusing on one given training
sample X at a time. The input value is evaluated in the given MF, and depending on
the interval it falls into, either the that interval is left as it is (if the class of the
currently trained sample aligns with that of the interval), or changed (divided into
two intervals, if their class do not match), then the training proceeds to the next
layer. This is done until all training samples have been processed.

Let us consider a series of MFs in consecutive layers (one MF in each layer) a route.
The evaluation algorithm traverses through the structure from the first to the last
layer, evaluating the MFs on the routes indicated by the index values of the intervals
its values fall into along the way, calculating the overall MF value as well.
The output of the evaluation step is the class label of the route (acquired in the last
layer, i.e., at the end of each route) that has the highest overall MF value.

Remark: the intervals at both ends (i.e., the leftmost one that starts at ∞−, and the
rightmost one that ends in ∞+) of each MF are also restricted by an arbitrary 𝑟𝑟 range
value, which has been shown to improve the classification accuracy. For more
information on the basic variant, please see [6].

2.2 Simplified Sequential Fuzzy Indexed Search Trees

Figure 2

An example for the architecture of the simplified SFIST variant

The simplified variant has been developed for a faster evaluation step, which is
achieved with significant reductions in the structure size. As it can be seen in Figure
2, the class labels are no longer stored in a dedicated array, but incorporated into
the index values, where positive values denote an index value, while negative values

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

‒ 223 ‒

are for class labels. Furthermore, a route can end without needing to reach the last
layer, as the expected label for it is already available in an earlier layer. This leads
to fewer MFs, and an overall smaller structure. Due to this, the index value 0 here
indicates plateaus (and thus, index value 1 is associated with the 0th MF (𝜇𝜇01) in the
next layer, and index value -1 means class label 0). Lastly, while the basic variant
implicitly stored the values gained from the training data, the simplified variant only
stores the starting and ending points of each fuzzy set plateaus.

The training is done using all samples at once: for each MF in each layer, the
training data values of the corresponding attribute are sorted and grouped. First,
samples with the same attribute value are grouped together, then the groups that are
close enough to each other value-wise and similar enough in class composition are
united. The groups gained this way are appointed as plateau type intervals, and the
areas between them as the transition type intervals.

To measure and quantify class-wise similarity, the concepts of class distribution
and class composition are introduced. Let 𝜅𝜅 be the number of classes. The class
distribution of a given sample set Q is an array that stores how many samples of
each classes are represented in Q. For all j (∈ [0, 𝜅𝜅 − 1]):

𝛹𝛹𝑗𝑗
𝑄𝑄 = ∑ �1|𝑇𝑇𝑞𝑞 = 𝑗𝑗�∀𝑞𝑞∈𝑄𝑄 (1)

The class composition value (𝜓𝜓𝑄𝑄) of a sample set Q encodes the class label
combinations in the set in a single number, by calculating the sum of the powers of
two of the label number of each class that occurs in the set:

𝜓𝜓𝑄𝑄 = ∑ (2𝑇𝑇𝑞𝑞)∀𝑞𝑞∈𝑄𝑄 (2)

This is basically the decimal value of the binary number where each bit is 1 if the
class with the corresponding label is present in the set, and 0 otherwise.

For example, let set 𝑄𝑄 consist of 6 samples, of which 1 sample is labelled as
class #0, 3 samples as class #1, and 5 samples as class #3. The class composition of
the set is 𝜓𝜓𝑄𝑄 = 20 + 21 + 23 = 11, and the class distribution is 𝛹𝛹𝑄𝑄 = [1, 3, 0, 5].

A set 𝑄𝑄𝐴𝐴 is compositionally part of another set 𝑄𝑄𝐵𝐵, if the power of two values that
make up 𝜓𝜓𝑄𝑄𝐴𝐴 are also part of the values that make up 𝜓𝜓𝑄𝑄𝐵𝐵. E.g., 𝜓𝜓𝑄𝑄𝐴𝐴 = 9 (=1001B
in binary) is compositionally part of 𝜓𝜓𝑄𝑄𝐵𝐵 = 11 (=1011B), as 20 and 23 are both part
of the sum that constitutes 𝜓𝜓𝑄𝑄𝐵𝐵.

The distance between two class distributions of two sample sets 𝑄𝑄𝐴𝐴 and 𝑄𝑄𝐵𝐵 is gained
from the Euclidean distance of their normalized distribution values:

𝐷𝐷(𝑄𝑄𝐴𝐴,𝑄𝑄𝐵𝐵) = �∑ �
𝛹𝛹𝑘𝑘
𝑄𝑄𝐴𝐴

∑ �𝛹𝛹𝑗𝑗
𝑄𝑄𝐴𝐴�

2
𝜅𝜅−1
𝑗𝑗=0

−
𝛹𝛹𝑘𝑘
𝑄𝑄𝐵𝐵

∑ �𝛹𝛹𝑗𝑗
𝑄𝑄𝐵𝐵�

2
𝜅𝜅−1
𝑗𝑗=0

�
2

𝜅𝜅−1
𝑘𝑘=0 (3)

These metrics are also used in the training of the newly proposed variant.

B. Tusor et al. SFIST-based Fast Data Classification

‒ 224 ‒

Overall, the vastly reduced structural size of the simplified variant significantly
increases its evaluation speed, though at the cost of a bit of reduction in
classification accuracy (as less parts of the problem space are explored to find the
optimal solution). Furthermore, due to the same issue with the leftmost and
rightmost intervals, similarly to that of the basic variant, a range value 𝑟𝑟 is used to
limit the evaluation regarding values that fall out of the known domain area of the
trained MFs. For more information on the simplified variant, please see [8].

3 Complete Sequential Fuzzy Indexed Search Trees

3.1 Architectural Changes

The Complete SFIST variant has been developed as a hybrid approach between the
previous two: creating an as detailed representation of the problem space as possible
given the training data (as in the case of the basic variant), but by analyzing the
whole data value set for each MF and creating groups (like the simplified variant)
based on sample set similarity. Moreover, the range issue on the leftmost and

Figure 3

An example for the architecture of the complete SFIST variant

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

‒ 225 ‒

rightmost intervals that caused problems for the previous two variants have been
addressed by appointing a so-called unknown class, which is indexed as “-2” and
depicts an area for which there is no information based on the training dataset.
The areas (fuzzy sets) for this class are also stored as intervals.

This can be seen in Figure 3, where the intervals belonging solely to the unknown
class are depicted with gray color. Similarly, to the basic architecture, plateaus are
indicated with the value “-1”. The last major change is the introduction of the class-
rate list array 𝐶𝐶 in the last layer, where each array element is a list that contains at
least one element that shows which classes (𝜃𝜃 ∈ [0, 𝜅𝜅 − 1]) the index has been
associated with in the last layer, according to the training data, and at which rate
(𝜏𝜏 ∈ [0, 1]). E.g., if the list contains label #1 with rate 0.75 and #2 with rate 0.25
(meaning that ¾ of the training samples that ended in this interval during the
training are of class #1, and ¼ are of class #2), then the route is calculated distinctly
for class #1 and class #2 (weighing the overall MF values further with the rate).
This results in a much more through classification, as it accounts for possible
inconsistencies (e.g., caused by noise) in the training data.

3.2 The Training Algorithm

The idea behind the training algorithm of the complete variant is similar to that of
the simplified one, but without the sorting step. This is achieved by dividing the
value domain of each attribute into regions, filling the regions using to the values
of the training data, then analyzing the regions in an ascending order to group them
together, based on how different the subsequent regions are both in terms of their
data values and class distributions. The groups made this way are appointed as the
intervals that make up the fuzzy sets.

3.2.1 The Architecture of the Auxiliary Structures

Since after the first layer only a given subset of samples are regarded for the creation
of each MF (e.g., to train 𝜇𝜇21, only the samples falling into the intervals of fuzzy set
#2 (between values 3.7 and 4) in 𝜇𝜇00 are needed (namely, #7,#8,#9 and #10)), the
indices of these samples are stored in index lists. Remark: An index list in this
research is a simple list of integer values. In the following, let 𝐿𝐿𝐼𝐼 denote an index
list, and 𝐿𝐿𝐺𝐺 be a list of index lists. In each layer, each list element of 𝐿𝐿𝐺𝐺 provides the
sample indices for the individual MFs (so the number of MFs in layer i is decided
by the number of list elements in 𝐿𝐿𝐺𝐺).

At the beginning of the training, 𝐿𝐿𝐺𝐺 contains a single index list that contains all
indices from 0 to P-1, where P is the number of training data samples. It is used to
create the single MF in the first layer. During the training a new list, 𝐿𝐿𝐺𝐺′ is created
and filled with index lists, making an index list for each group that is found when
analyzing the values of the training data. Figure 4 shows an illustration for this,

B. Tusor et al. SFIST-based Fast Data Classification

‒ 226 ‒

where the initial 𝐿𝐿𝐺𝐺 only contains a single index list 𝐿𝐿0𝐼𝐼 with 11 samples, and the 3
newly made fuzzy sets divide this list into 3 smaller lists, based on which fuzzy set
the given sample is used to create.

Figure 4

An illustration for the index list separation for MF #0 in layer 0, using the data from Figure 1.
The initial index list in LG is separated into 3 new index lists in LG’, which provides a quick way to find

which samples are needed for each MF in layer 1

In order to create the fuzzy sets in a given MF in layer i, the ith attribute values of
the samples in the corresponding index list are analyzed. The value domain is
divided into regions using an arbitrary granularity parameter 𝛾𝛾 (which is used to set
how different two values are needed to be to fall into different regions). For each
region, the following data is stored:

𝜐𝜐𝐿𝐿: The lowest value of the samples represented in the region
𝜐𝜐𝐻𝐻: The highest value of the samples represented in the region
𝜓𝜓: The class composition of the region (see: Chapter 2.2)
𝛹𝛹: The class distribution array of the region (see: Chapter 2.2)
𝑊𝑊: A rudimentary timestamp, i.e., the index of the MF for which the region

was last modified
𝐿𝐿𝐼𝐼: The list of indices of the data samples used to set up the region

To reduce the computational overhead from deleting old regions and creating new
ones for each MF, the regions are created once and reused in the same layer. When
a given region is analyzed, its W parameter shows if its values are up to date or not
(in the latter case, it is simply overwritten with new data).

An example for the regions can be seen in Fig. 5, which depicts the region array R
for the first attribute (layer #0) (of the same example presented in the previous
figures). The structure can be implemented through simple 1D (𝑊𝑊, 𝜓𝜓, 𝜐𝜐𝐿𝐿 and 𝜐𝜐𝐻𝐻)
and 2D (𝛹𝛹 and 𝐿𝐿𝐼𝐼) arrays (or lists), or as an array of individual structures (using the
Object-Oriented Paradigm). The former has the advantage of being simple to
implement, while the latter has a potentially lower memory requirement (the regions
that are not filled with data simply do not have to be created, which is indicated
with the gray “-1” boxes in the figure). In our implementation, we use the latter.
Remark: the granularity in the example: 𝛾𝛾 = 0.2.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

‒ 227 ‒

Figure 5

The regions created for the MF #0 of layer #0, using the data from Figure 1

3.2.2 Setting up the Structure

The training algorithm in each layer i (∈ [0,𝑁𝑁 − 1]) starts by analyzing the data in
the whole dataset to find the minimum and maximum values for attribute i. From
the two values and granularity parameter 𝛾𝛾, the size of R can be calculated:

𝑆𝑆𝑖𝑖 = �
max
𝑝𝑝∈𝑃𝑃

𝑋𝑋𝑝𝑝,𝑖𝑖−min𝑝𝑝∈𝑃𝑃
𝑋𝑋𝑝𝑝,𝑖𝑖

𝛾𝛾
� + 1 (4)

The indices (i.e., the addresses) of the region array R are calculated using a simple
linear mapping, for which the scaling factors (𝑎𝑎𝑖𝑖) and the biases (𝑏𝑏𝑖𝑖) are:

𝑎𝑎𝑖𝑖 = 𝑆𝑆𝑖𝑖
max
𝑝𝑝∈𝑃𝑃

𝑋𝑋𝑝𝑝,𝑖𝑖−min𝑝𝑝∈𝑃𝑃
𝑋𝑋𝑝𝑝,𝑖𝑖

 (5)

𝑏𝑏𝑖𝑖 = min
𝑝𝑝∈𝑃𝑃

𝑋𝑋𝑝𝑝,𝑖𝑖 (6)

where 𝑋𝑋𝑝𝑝,𝑖𝑖 is the ith attribute value of sample p.

Using the calculated values, the Si-long region arrays are set up at the beginning of
the processing of each layer i.

Aside from creating the intervals for the MFs in the current layer, the secondary
goal is creating the group list for the next layer (let us denote it with 𝐿𝐿𝐺𝐺′).

B. Tusor et al. SFIST-based Fast Data Classification

‒ 228 ‒

3.2.3 Region Construction

The training algorithm goes through each index list 𝐿𝐿𝐼𝐼∗ in 𝐿𝐿𝐺𝐺. Let q denote the
sequence number of the currently processed list, which can be used to see if a region
is up to date or not.

For each index value p in 𝐿𝐿𝐼𝐼∗, first the index of the region into which each sample
belongs to is calculated:

𝑧𝑧𝑝𝑝 = �(𝑋𝑋𝑝𝑝,𝑖𝑖 − 𝑏𝑏𝑖𝑖) ∙ 𝑎𝑎𝑖𝑖� (7)

The group distribution is set to the class of sample p if the region is not up to date,
otherwise it is updated:

𝛹𝛹𝑧𝑧𝑝𝑝,𝑡𝑡𝑝𝑝 = �
1, 𝑖𝑖𝑖𝑖 𝑊𝑊𝑧𝑧𝑝𝑝 < 𝑞𝑞
𝛹𝛹𝑧𝑧𝑝𝑝,𝑡𝑡𝑝𝑝 , 𝑖𝑖𝑖𝑖 𝑊𝑊𝑧𝑧𝑝𝑝 = 𝑞𝑞 (8)

where 𝑡𝑡𝑝𝑝 is the class of sample p. In the former case, the distribution value of the
other classes are set to 0. The class composition is updated similarly:

𝜓𝜓𝑧𝑧𝑝𝑝 = �
2𝑡𝑡𝑝𝑝 , 𝑖𝑖𝑖𝑖 𝑊𝑊𝑧𝑧𝑝𝑝 < 𝑞𝑞
𝜓𝜓𝑧𝑧𝑝𝑝 + 2𝑡𝑡𝑝𝑝 , 𝑖𝑖𝑖𝑖 𝑊𝑊𝑧𝑧𝑝𝑝 = 𝑞𝑞

 (9)

The lowest and highest values for region z is also set:

𝜐𝜐𝑧𝑧𝐿𝐿 = min(𝜐𝜐𝑧𝑧𝐿𝐿,𝑋𝑋𝑝𝑝,𝑖𝑖) (10)

𝜐𝜐𝑧𝑧𝐻𝐻 = max(𝜐𝜐𝑧𝑧𝐿𝐿,𝑋𝑋𝑝𝑝,𝑖𝑖) (11)

If the region is up to date, then p is added to 𝐿𝐿𝑧𝑧𝐼𝐼 , otherwise a new list is started with
p as its only item.

Finally, 𝑊𝑊𝑧𝑧 is set to signal that the region is up to date:

𝑊𝑊𝑧𝑧 = 𝑞𝑞 (12)

Furthermore, the smallest (𝑧̂𝑧𝐿𝐿) and highest (𝑧̂𝑧𝐻𝐻) index values are stored, so in the
region analysis step the algorithm only needs to regard the regions in this range:

𝑧̂𝑧𝐿𝐿 = min(𝑧̂𝑧𝐿𝐿, 𝑧𝑧𝑝𝑝) (13)

𝑧̂𝑧𝐻𝐻 = max(𝑧̂𝑧𝐻𝐻, 𝑧𝑧𝑝𝑝) (14)

3.2.3 Region Analysis and Grouping

With the regions built, the next step is analyzing their data and put them into groups,
based on the distance between their values and their class distributions. Let m be
the current number of MFs in the current layer, which is initially 0. In each MF, the
intervals are added consecutively (starting from 0), so in the following the addition
of a new interval is simply denoted by 𝐼𝐼(𝐵𝐵𝐿𝐿 , 𝐵𝐵𝑈𝑈 , 𝜂𝜂𝐿𝐿 , 𝜂𝜂𝑅𝑅), where 𝐵𝐵𝐿𝐿 and 𝐵𝐵𝑈𝑈 are

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

‒ 229 ‒

the lower and upper boundaries, while 𝜂𝜂𝐿𝐿 and 𝜂𝜂𝑅𝑅 are the left and right indices,
respectively.

During the analysis of the regions, first the new MF is created. The first interval is
already known: it is a plateau from ∞− to the 𝛿𝛿 range of lowest value of the leftmost
non-empty region (𝜐𝜐𝑧̂𝑧𝐿𝐿

𝐿𝐿), for which the index is provided by 𝑧̂𝑧𝐿𝐿. This interval is of
the unknown class, so its class ID is “-2”):

𝐼𝐼(∞−, 𝜐𝜐𝑧̂𝑧𝐿𝐿
𝐿𝐿 − 𝛿𝛿, −2,−1) (15)

Then, the next interval is always a transition between the right boundary of the
previous interval to the lowest value of the leftmost non-empty region. Let 𝑔𝑔 be
the ID number of the group that is currently being built in the current MF, which is
initially 0 (and its value is reset at the beginning of the creation of each MF):

𝐼𝐼(𝜐𝜐𝑧̂𝑧𝐿𝐿
𝐿𝐿 − 𝛿𝛿, 𝜐𝜐𝑧̂𝑧𝐿𝐿

𝐿𝐿 , −2, 𝑔𝑔 = 0) (16)

Let the overall distribution of the currently built group be 𝛹𝛹� (which is initially set
to the distribition of the leftmost region 𝑧̂𝑧𝐿𝐿, and the overall composition is 𝜓𝜓�
(similarly, set to the composition of 𝑧̂𝑧𝐿𝐿):

𝛹𝛹� = 𝛹𝛹𝑧̂𝑧𝐿𝐿 (17)

𝜓𝜓� = 𝜓𝜓𝑧̂𝑧𝐿𝐿 (18)

Furthermore, let 𝐿𝐿𝐼𝐼� denote the index list of the currently built group, initially set to
the index list of 𝑧̂𝑧𝐿𝐿:

𝐿𝐿𝐼𝐼� = 𝐿𝐿𝑧̂𝑧𝐿𝐿
𝐼𝐼 (19)

Finally, the lowest and highest values (i.e., the real-valued boundaries of the group)
are stored, which is also initially set to the corresponding values of 𝑧̂𝑧𝐿𝐿:

𝜐𝜐𝐿𝐿��� = 𝜐𝜐𝑧̂𝑧𝐿𝐿
𝐿𝐿 (20)

𝜐𝜐𝐻𝐻���� = 𝜐𝜐𝑧̂𝑧𝐿𝐿
𝐻𝐻 (21)

The region analyzer algorithm starts from region 𝑧̂𝑧𝐿𝐿 + 1, and ends after region 𝑧̂𝑧𝐻𝐻
has been processed. In each iteration 𝑧𝑧 (∈ [𝑧̂𝑧𝐿𝐿 + 1, 𝑧̂𝑧𝐻𝐻]):

• If region 𝑧𝑧 is not up to date (𝑊𝑊𝑧𝑧 < 𝑞𝑞), then move on to the next region.

• Otherwise, the region is relevant, so the next step is checking if the lowest
value of region 𝑧𝑧 is close enough to the highest value of the current group,
i.e., if it is within a range of 𝛿𝛿: (𝜐𝜐𝑧𝑧𝐿𝐿 ≤ 𝜐𝜐𝐻𝐻���� + 𝛿𝛿)

o If it is close enough, then it is checked if either of them
compositionally part of the other, in which case their distribution
distance is checked against the allowed similarity measure 𝜌𝜌:
𝐷𝐷(𝜓𝜓�,𝜓𝜓𝑧𝑧) < 𝜌𝜌?

B. Tusor et al. SFIST-based Fast Data Classification

‒ 230 ‒

 If one of them is compositionally part of the other, and their
similarity measure is smaller than 𝜌𝜌, then region 𝑧𝑧 is added to
the group. The highest value (𝜐𝜐𝐻𝐻����) of the group is set to the
highest value of the region, the new class composition is set to
the larger value between the two, and the class distribution
values are simply added to that of the group:

 𝜐𝜐𝐻𝐻���� = 𝜐𝜐𝑧𝑧𝐻𝐻 (22)

 𝜓𝜓� = max(𝜓𝜓�,𝜓𝜓𝑧𝑧) (23)

 𝛹𝛹�𝑡𝑡 = 𝛹𝛹�𝑡𝑡 + 𝛹𝛹𝑧𝑧,𝑡𝑡 ,∀𝑡𝑡 ∈ [0, 𝜅𝜅] (24)

Finally, the index list of the region 𝑧𝑧 (𝐿𝐿𝑧𝑧𝐼𝐼) is added to the end
of index list of the group (𝐿𝐿𝐼𝐼�).

 If neither of them is compositionally part of the other, or their
similarity value is not low enough, then the currently built
group is finished, the intervals of fuzzy set 𝑔𝑔 is ready to be set
up. If the lowest and highest values of the group are not the
same value (𝜐𝜐𝐿𝐿��� < 𝜐𝜐𝐻𝐻����), then a plateau interval is inserted:

 𝐼𝐼(𝜐𝜐𝐿𝐿���, 𝜐𝜐𝐻𝐻����,𝑔𝑔,−1) (25)

 Otherwise, the set is a triangular fuzzy set, so no plateau is
necessary.

 After that, a transition interval is inserted:

 𝐼𝐼(𝜐𝜐𝐻𝐻,���� 𝜐𝜐𝑧𝑧𝐿𝐿,𝑔𝑔,𝑔𝑔 + 1) (26)

 The index list of the group (𝐿𝐿𝐼𝐼�) is added to the group list of the
next layer (𝐿𝐿𝐺𝐺′), and group index is incremented (𝑔𝑔 = 𝑔𝑔 + 1).

 The parameters of the new group are set to the parameters to
the region:

 𝜐𝜐𝐿𝐿��� = 𝜐𝜐𝑧𝑧𝐿𝐿 (27)

 𝜐𝜐𝐻𝐻���� = 𝜐𝜐𝑧𝑧𝐻𝐻 (28)

 𝜓𝜓� = 𝜓𝜓𝑧𝑧 (29)

 𝛹𝛹�𝑡𝑡 = 𝛹𝛹𝑧𝑧,𝑡𝑡 ,∀𝑡𝑡 ∈ [0, 𝜅𝜅] (30)

 𝐿𝐿𝐼𝐼� = 𝐿𝐿𝑧𝑧𝐼𝐼 (31)

o If the lowest value of region 𝑧𝑧 is too far away, then the current group
is finished. If the lowest and highest values of the group are not the
same (𝜐𝜐𝐿𝐿��� < 𝜐𝜐𝐻𝐻����), then a plateau is inserted using (25).

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

‒ 231 ‒

 After that, distance between 𝜐𝜐𝐻𝐻���� and 𝜐𝜐𝑧𝑧𝐿𝐿 determines if an additional
fuzzy set is needed to be added (representing the unknown class):

 If the highest value of the group is within range of the lowest
value of region 𝑧𝑧 (i.e., their ranges overlap with each other,
𝜐𝜐𝐻𝐻���� + 𝛿𝛿 ≥ 𝜐𝜐𝑧𝑧𝐿𝐿 − 𝛿𝛿), then simply a transition interval is inserted
between them using (26), then a new group is started (applying
(27)-(31)).

 Otherwise, an additional fuzzy set is added, a transition
between 𝜐𝜐𝐻𝐻���� and 𝜐𝜐𝐻𝐻���� + 𝛿𝛿:

 𝐼𝐼(𝜐𝜐𝐻𝐻����, 𝜐𝜐𝐻𝐻���� + 𝛿𝛿,𝑔𝑔,−2) (32)

 Then a plateau is added between 𝜐𝜐𝐻𝐻���� + 𝛿𝛿 and 𝜐𝜐𝑧𝑧𝐿𝐿 − 𝛿𝛿 if these
two values are not the same (otherwise the fuzzy set is
triangular, so no plateau is added):

 𝐼𝐼(𝜐𝜐𝐻𝐻���� + 𝛿𝛿, 𝜐𝜐𝑧𝑧𝐿𝐿 − 𝛿𝛿,−2,−1) (33)
 After that, a transition is inserted between 𝜐𝜐𝑧𝑧𝐿𝐿 − 𝛿𝛿 and 𝜐𝜐𝑧𝑧𝐿𝐿:
 𝐼𝐼(𝜐𝜐𝑧𝑧𝐿𝐿 − 𝛿𝛿, 𝜐𝜐𝑧𝑧𝐿𝐿,−2,𝑔𝑔 + 1) (34)
 Finally, the index list of the group is added to the group list of

the next layer, the group index is incremented, and a new
group is started (using (27)-(31)).

After the last index list is processed in the given layer i, then if it is not the last layer
(𝑖𝑖 < 𝑁𝑁 − 1), then the algorithm continues on to the next layer, with the newly
created group list:

𝐿𝐿𝐺𝐺 = 𝐿𝐿𝐺𝐺′ (35)

In the last layer, class-rate array 𝐶𝐶 is created, its length is provided by the number
of index lists in 𝐿𝐿𝐺𝐺. The samples indexed by each index list 𝐿𝐿𝑖𝑖 are regarded, and for
each class that is represented by them a new item is added to 𝐶𝐶𝑖𝑖, noting the ID of
the class and at what rate is the given class represented among the samples of 𝐿𝐿𝑖𝑖.

3.3 The Evaluation Algorithm

The evaluation algorithm is more or less the same as that of the basic and simplified
SFIST variations, adapted to the architecture of the proposed variation. The goal of
the (recursive) algorithm is to go through the structure from the first to the last layer,
exploring all routes (i.e., MF combinations in subsequent layers connected by index
values), calculating the fuzzy MF values for each, and returning the class ID
belonging to the route with the highest overall MF value. Let 𝑌𝑌 be a 𝜅𝜅-long array
that stores the largest overall MF value for each class, and 𝜇̅𝜇 the overall MF value
on a given route. At the beginning of each route, the former is all zeros, while the
value of the latter is 1.

B. Tusor et al. SFIST-based Fast Data Classification

‒ 232 ‒

In each MF on the route (based on the type of the interval the corresponding attribute
value of the input data falls into) a given route taken can split into two, following
the left and right indices of the interval:

• If the interval is a plateau (𝜂𝜂𝑅𝑅 = −1) and it belongs to the unknown class
(𝜂𝜂𝐿𝐿 = −2), then the route is finished, since the MF value is 0.

• If the interval is a plateau with class ID #0 or more (so it does not belong
to the unknown class), then the MF value for that attribute is 1, the
evaluation continues in the next layer with the MF ID given by the left
index value (𝜂𝜂𝐿𝐿).

• If the interval is a transition, then the MF value is calculated. In our
implementation, we applied a simple linear transition:

𝜇𝜇(𝑥𝑥) = 1 − 𝑥𝑥−𝐵𝐵𝐿𝐿

𝐵𝐵𝐻𝐻−𝐵𝐵𝐿𝐿
 (36)

If 𝜂𝜂𝐿𝐿 > 0, then the examination continues in the next layer with MF ID 𝜂𝜂𝐿𝐿
and overall value 𝜇̅𝜇 = min�𝜇̅𝜇, 𝜇𝜇(𝑥𝑥)�, and after all new routes from it
(given that further branching may occur) are finished, the same is done
considering its other side (taking MF ID 𝜂𝜂𝑅𝑅 and overall value
𝜇̅𝜇 = min�𝜇̅𝜇, 1 − 𝜇𝜇(𝑥𝑥)�).

In the last layer, the MF value is calculated and the acquired index value (or values,
in case of a transition interval) is used to find which label list in C is to be regarded.

For plateau type intervals, the class array Y is updated for each k list element in list
𝐶𝐶𝜂𝜂𝐿𝐿 (if 𝜂𝜂𝐿𝐿 > 0):

𝑌𝑌𝜃𝜃𝑘𝑘 = max�𝑌𝑌𝜃𝜃𝑘𝑘 , min(𝜏𝜏𝑘𝑘, 𝜇̅𝜇)� ,∀𝑘𝑘 ∈ 𝐶𝐶𝜂𝜂𝐿𝐿 (37)

For transition type intervals, Y is similarly updated for both indices, for each k list
element in list 𝐶𝐶𝜂𝜂𝐿𝐿 if 𝜂𝜂𝐿𝐿 > 0, and in 𝐶𝐶𝜂𝜂𝑅𝑅 if 𝜂𝜂𝑅𝑅 > 0:

𝑌𝑌𝜃𝜃𝑘𝑘 = max�𝑌𝑌𝜃𝜃𝑘𝑘 , min(𝜏𝜏𝑘𝑘 ∙ 𝜇𝜇(𝑥𝑥), 𝜇̅𝜇)� ,∀𝑘𝑘 ∈ 𝐶𝐶𝜂𝜂𝐿𝐿 (38)

𝑌𝑌𝜃𝜃𝑘𝑘 = max�𝑌𝑌𝜃𝜃𝑘𝑘 , min(𝜏𝜏𝑘𝑘 ∙ �1 − 𝜇𝜇(𝑥𝑥)�, 𝜇̅𝜇)� ,∀𝑘𝑘 ∈ 𝐶𝐶𝜂𝜂𝑅𝑅 (39)

After all routes have finished, the output of the system is the index belonging to the
highest value of Y, i.e., the label of the class that is the most similar to the inputs:

𝑦𝑦 = argmax
𝑘𝑘

(𝑌𝑌𝑘𝑘) ,∀𝑘𝑘 ∈ [0,𝜅𝜅 − 1] (40)

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

‒ 233 ‒

4 Experimental Results

The classification accuracy of the proposed SFIST variant, as well as that of the
previous two variants have been investigated and compared on various benchmark
data sets, using an average laptop PC (Lenovo Legion 7 16ACHg6, AMD
Ryzen™ 9 5900HX CPU, 32GB RAM, Nvidia GeForce RTX 3080 16GB),
implemented in MS Visual Studio Community 2022, C# .NET framework 4.7.2.

4.1 Experimental Results on the Iris Dataset

In the first set of experiments, the variants have been tested on the Iris dataset [10],
which is a 3-class problem with N=4 attributes and P=150 overall samples.
The setting of the parameters of each variant is done, by separating the dataset to a
training and a testing sets at 90:10 ratio, then training and evaluating each variant
100 times for each value in a given range. The 𝑟𝑟 range value is investigated for the
basic and similar methods, while the class distribution distance threshold (𝛿𝛿) and
the group distance threshold (𝜌𝜌) are regarded for the simplified and complete
variants. For the complete variant the granularity parameter (𝛾𝛾) is checked first
(evaluated for different values, and the one with the highest average classification
accuracy is chosen), then 𝛿𝛿 are 𝜌𝜌 evaluated for different values based on the chosen
𝛾𝛾 value.

After the proper parameters have been set, the data has been separated into a training
and a test set in 70:30, 80:20 and 90:10 ratios randomly, then each variant have been
trained and evaluated for each. This has been repeated for 1000 times and the results
have been averaged, which can be seen in Table 1.

Table 1
Classification accuracy on the Iris dataset (and the chosen parameter values)

 Basic Simplified Complete
70:30 85.67% 81.13% 96.27%
80:20 86.47% 82.8% 96.84%
90:10 89.93% 86.33% 97.69%

Parameters 𝑟𝑟 = 0.9 𝑟𝑟 = 0.2
𝜌𝜌 = 0.01
𝛿𝛿 = 0.2

𝛾𝛾 = 1
𝜌𝜌 = 1.0
𝛿𝛿 = 1.3

Interestingly, although the parameters with the same name serve more or less the
same function in each variant, the values that produce the highest classification
accuracy can be very different, as it can be seen in the table (which is the result of
the difference in operation). Nevertheless, the tests have shown that the basic variant
returns decent results (85.67-89.93%), while the simplified variant underperforms
that by ~4%, and the complete variant overperforms both (96.24 - 97.69%).

B. Tusor et al. SFIST-based Fast Data Classification

‒ 234 ‒

One of the big reasons behind the lackluster performance of the first two has been
found to be that they are very much dependent on the order of the attributes.
By changing the training (and evaluation) order of the attributes of this particular
problem slightly (evaluating attr. #3 first, then #0, #1 and #2) leads to the results
seen in Table 2, where performance of the other two variants have improved quite
a lot, while that of the complete variant stayed roughly the same.

Table 2
Classification accuracy on a slightly modified Iris dataset (with changed attribute order)

 Basic Simplified Complete
70:30 92.15% 92.21% 96.61%
80:20 92.49% 92.97% 96.79%
90:10 92.93% 93.4% 97.69%

Regarding the average structure sizes, a comparison can be seen in Table 3, as well
as the required average times for the training and testing. The basic variant have
created much more intervals on average than the other two, resulting in a much
larger sized structure, and thus, longer evaluation time. On the other hand, the
sorting step in the simplified variant have made its training much longer than that
of the other two.

Table 3
Structure size and required time comparison on the Iris dataset

 Basic Simplified Complete
Avg. total numbers of MFs 23.48 6.07 6

Avg. total number of intervals 211.08 26.08 29.92
Estimated memory requirement ~9.08 KB ~1.03 KB ~1.2 KB
Avg. training time per sample 1.78 μs 3.11 μs 0.81 μs

Avg. evaluation time per sample 2.67 μs 2 μs 1.33 μs

4.2 Experimental Results on the WBC Dataset

The Wisconsin Breast Cancer (WBC, [11]) dataset presents a 2-class problem with

Table 4
Classification accuracy on the WBC dataset (and the chosen parameter values)

 SFIT Basic Simplified Complete
70:30 94.04% 94.21% 94.63% 95.6%
80:20 93.72% 94.8% 95.04% 95.76%
90:10 94.7% 95.6% 95.28% 95.98%

Parameters - 𝑟𝑟 = 0.1 𝑟𝑟 = 0.1
𝜌𝜌 = 0.4
𝛿𝛿 = 0.2

𝛾𝛾 = 1
𝜌𝜌 = 1.0
𝛿𝛿 = 6.5

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

‒ 235 ‒

N=9 attributes and P=699 samples. Similarly, to the previous tests, first the
parameter values have been investigated, then a more thorough testing was done
using the chosen values. The results can be seen in Table 4, where the complete
variant outperformed the other two again. For reference, a comparison to the
predecessor SFIT classifier is also included, all 3 variants have provided a better
accuracy.

Table 5 shows the structure and required time comparisons between the variants.
Interestingly, in this dataset the simplified variant could provide roughly the same
classification accuracy as the other two with only a fraction of the structure size.

Table 5
Structure size and required time comparison on the WBC dataset

 Basic Simplified Complete
Avg. total numbers of MFs 198.45 34.25 85.8

Avg. total number of intervals 770.04 127.87 375.03
Estimated memory requirement ~33.1 KB ~5.01 KB ~14.75 KB
Avg. training time per sample 1.5 μs 2.73 μs 1.41 μs

Avg. evaluation time per sample 5 μs 2.35 μs 1.91 μs

4.3 Experimental Results on the Seismic Bumps Dataset

The Seismic Bumps [12] dataset presents a 2-class problem with N=15 attributes
(originally 19, but the ones containing only zeros have been removed as they do not
contribute to the classification) and P=2584 samples. Aside from being larger than
the previously examined ones, this dataset also features attributes that differ
drastically in domain range (some are binary categories, others are in the 5–6-digit
range).

The results can be seen in Table 6, where the complete variant outperformed the
other two again (by about 4%).

Table 6
Classification accuracy on the Seismic bumps’ dataset (and the chosen parameter values)

 Basic Simplified Complete
70:30 90.26% 88.62% 94.12%
80:20 90.22% 88.63% 94.08%
90:10 90.29% 89.01% 94.25%

Parameters 𝑟𝑟 = 6.5 𝑟𝑟 = 1.4
𝜌𝜌 = 0.5
𝛿𝛿 = 6.5

𝛾𝛾 = 1
𝜌𝜌 = 0.4
𝛿𝛿 = 7.5

However, the effect of the varied attribute value domain ranges have caused the size
of the structure of the complete variant to increase to a much larger extent than that
of the other two, as Table 7 shows. This can be mitigated to some extent if the order

B. Tusor et al. SFIST-based Fast Data Classification

‒ 236 ‒

of the attributes is changed, taking the ones with the largest average values to the
front of the attribute order have reduced the structure size by 1/5 (marked with *),
showing that the proposed variant is still sensitive to the order of attributes, though
in a different way than the other two.

Table 7
Structure size and required time comparison on the Seismic bumps’ dataset

 Basic Simplified Complete Complete*
Average total numbers of

MFs 1722.64 26.83 25210.65 5237.95

Total Number of intervals 8312.86 491.5 106846.7 26747.68
Estimated memory

requirement ~357.2 KB ~19.21 KB ~4.08 MB ~1.28 MB

Training time 59.65 μs 22.49 μs 494.36 μs 280.34 μs
Evaluation time 7.62 μs 2.79 μs 3.45 μs 3.28 μs

This also highlights the main issue with the complete variant in its presented form:
it applies its parameters uniformly to all attributes, which works fine if all attributes
in a problem are in the similar value range, but less so in ones that are very different.

4.5 Computational Complexity

The computational complexity of evaluating one input sample is the same for all
the three variants: 𝑂𝑂(𝑁𝑁 ∙ log2 𝑀𝑀), where M is the average number of intervals in the
MFs (given that in each of the N layers the interval is found in log2 𝑀𝑀 steps, using
the corresponding BST). In comparison, the predecessor SFIT classifier has a
complexity of 𝑂𝑂(𝑁𝑁), so while the SFIST classifier is slower by a logarithmic order,
but its speed still only linearly scales with the dimension number of the problem
space.

There is a bigger difference considering the complexity of the training phase.
The basic variant evaluates each of the P training samples in each layer and changes
the MF if necessary, thus has a complexity of 𝑂𝑂(𝑃𝑃 ∙ 𝑁𝑁 ∙ log2 𝑀𝑀) (where M=1 in the
beginning, but is increasing as more intervals are added). The simplified variant
sorts the P-long arrays of each of the N attribute values, which results in a
complexity of 𝑂𝑂(𝑁𝑁 ∙ 𝑃𝑃 ∙ log2 𝑃𝑃). Given that P is typically larger than M, this usually
means a slower training. The proposed complete variant substitutes the sorting step
with the filling and analysis of a potentially large value array: 𝑂𝑂�𝑁𝑁 ∙ (𝑃𝑃 + 𝐷𝐷�)�, where
𝐷𝐷� is the average size of the value domains of the attributes of the given data. This
shows why problems with attributes that take values from large ranges (such as the
Seismic Bumps dataset) result in a much slower training.

Acta Polytechnica Hungarica Vol. 22, No. 1, 2025

‒ 237 ‒

Conclusions

In this paper, a new variant is proposed to the Sequential Fuzzy Indexed Search
Trees (SFIST) classifier. It is a hybrid approach between the two previously
developed ones, focusing on increasing its classification accuracy. Its performance
have been evaluated using benchmark datasets and compared to that of the previous
variants, showing that it surpassed both of them. On the other hand, the new variant
tends to generate a more bloated structure for problems that have attributes with
large value domains.

In future work we will investigate the possibility of improving the proposed variant,
by tailoring the parameters (namely, the granularity parameter which directly
influences the size of the structure) for each attribute, thus potentially reducing the
size of the resulting classifier. Furthermore, we will explore the effects of using
different fuzzy set shapes (e.g., Gaussian) on overall performance.

Acknowledgement

Supported by the ÚNKP-23-4-II-OE-59 New National Excellence Program of the
Ministry for Culture and Innovation, from the source of the National Research,
Development and Innovation Fund.

References

[1] L. A. Zadeh, “Fuzzy logic,” Computer, Vol. 21, No. 4, pp. 83-93, 1988

[2] D. Macura, M. Laketić, D. Pamučar, D. Marinković, "Risk Analysis Model
with Interval Type-2 Fuzzy FMEA – Case Study of Railway Infrastructure
Projects in the Republic of Serbia," Acta Polytechnica Hungarica, Vol. 19,
No. 3, 2022

[3] S. N. Shahbazova and D. Ekmekci, "An Input-weighted, Multi-Objective
Evolutionary Fuzzy Classifier, for Alcohol Classification," Acta
Polytechnica Hungarica, Vol. 19, No. 10, 2022

[4] A. Czmil, “Comparative study of fuzzy rule-based classifiers for medical
applications,” Sensors, Vol. 23, No. 2, p. 992, 2023

[5] A. R. Várkonyi-Kóczy, B. Tusor and J. T. Tóth, “A multi-attribute
classification method to solve the problem of dimensionality,” In: R.
Jabłonski, R. Szewczyk, (eds.) Recent Global Research and Ed.: Techn.
Challenges, AISC, Vol. 519, Springer, Cham, pp. 403-409, 2017

[6] B. Tusor, O. Takáč, Š. Gubo, and A. R. Várkonyi-Kóczy, “Fuzzy Inference
with Sequential Fuzzy Indexed Search Trees," In International Conference
on Global Research and Education, pp. 294-309, Cham: Springer Nature
Switzerland, 2023

[7] S. A. Senbel, “Interesting exercise to demonstrate self-balancing trees,”
Journal of Comp. Sci. in Colleges, Vol. 38, No. 3, pp. 185-185, 2022

B. Tusor et al. SFIST-based Fast Data Classification

‒ 238 ‒

[8] B. Tusor, A. R. Várkonyi-Kóczy, and Š. Gubo, “Improved Sequential Fuzzy
Indexed Search Trees for Fast Classification," In 2024 IEEE Int. Symposium
on Medical Measurements and Applications (MeMeA), pp. 1-6, 2024

[9] D. Dua, C. Graff, “UCI Machine Learning Repository,”
http://archive.ics.uci.edu/ml (accessed Mar. 1, 2024)

[10] A. Unwin and K. Kleinman, “The iris data set: In search of the source of
virginica,” Significance, Vol. 18, No. 6, pp. 26-29, 2021

[11] O. L. Mangasarian, W. H. Wolberg, “Cancer diagnosis via linear
programming,” SIAM News, Vol. 23, No. 5, pp. 1-18, 1990

[12] M. Sikora, and L. Wrobel, “Seismic-bumps,” UCI Machine Learning
Repository, 2013, https://doi.org/10.24432/C5W902

	1 Introduction
	2 Previous Work – Basic and Simplified SFIST
	2.1 Basic Sequential Fuzzy Indexed Search Trees
	2.2 Simplified Sequential Fuzzy Indexed Search Trees

	3 Complete Sequential Fuzzy Indexed Search Trees
	3.1 Architectural Changes
	3.2 The Training Algorithm
	3.2.1 The Architecture of the Auxiliary Structures
	3.2.2 Setting up the Structure
	3.2.3 Region Construction
	3.2.3 Region Analysis and Grouping

	3.3 The Evaluation Algorithm

	4 Experimental Results
	4.1 Experimental Results on the Iris Dataset
	4.2 Experimental Results on the WBC Dataset
	4.3 Experimental Results on the Seismic Bumps Dataset
	4.5 Computational Complexity

