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Abstract: The search for alternative energy sources has become critical in a time of 
increasing energy demand and awareness of environmental practices. The increasing 
demand for energy worldwide may be met effectively and sustainably with the help of Off-
grid multisource power generating systems, or OMPGS. The primary objective of this 
article is to optimize the OMPGS's design and functionality for usage in rural communities. 
Taking into account local climatic conditions, demand data, and technical specifications, a 
size optimization model is created using the innovative Particle Swarm Optimization (PSO) 
approach, which minimizes the Levelized Cost of Electricity (LCOE). Furthermore, a Fuzzy 
Logic Controlled Energy Management System (EMS) is suggested to guarantee ideal power 
regulation and energy retention in the system. By taking this method, the system's overall 
resilience, efficiency, and responsiveness to fluctuating energy needs are improved. 
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1 Introduction 

The majority of countries' electricity, heat, and natural gas energy supply systems 
are independently planned, designed, and operated due to historic development; 
[1] [2] [3]. this lack of coordination and control amongst systems results in low 
overall energy utilization efficiency and makes it difficult to ensure energy 
reliability [4]. 

Supplying these places with energy is one of the biggest issues facing the world's 
off-grid and isolated communities. These regions are expensive to connect to the 
grid, and in certain situations, it is not physically feasible [5] [6] [7]. Thus, 
based on the installation area's parameters (such as radiation intensity, 



A. A. M. Quran et al. Fuzzy Decision-Making for the Optimization of  
 Off-Grid Multisource Power Generation Systems 

 – 198 – 

ambient temperature, wind speed, etc.), several hybrid system modes may 
be chosen for these regions [8] [9] [10]. 
In order to achieve total energy design planning and optimal operation, it breaks 
the current method of independent design and operation of each energy system 
and combines a range of energy systems. A multi-energy complementary energy 
system can be constructed through the coordinated optimization control of the 
integrated energy system in order to improve the consumption of renewable 
energy, support the reform of the energy structure, and accomplish the goals of 
energy conservation and emission reduction. This is possible because different 
resource conditions and energy needs necessitate different energy systems. But 
because different energy sources might interact, a single energy system's ability to 
function is limited by its coupling system. The energy flow of the energy systems 
can also be impacted by the connection apparatus in the interim. The development 
of microgrids has been spurred in recent years by energy systems' environmental 
concerns, and their quick deployment has sped up the integration of distributed 
energy, renewable energy, and distributed energy storage systems into 
contemporary power systems [4] [11]. 

The optimum regulation of the power networks in light of the connectivity with 
large-scale renewable sources has been adequately covered by the studies that are 
now available [1] [2] [3]. In contrast, to large-scale renewable energy operational 
scenarios, microgrids with a high proportion of distributed renewable power lower 
operating costs and carbon dioxide emissions, while simultaneously lowering 
dependency on fossil fuels. The recovery and use of waste heat from cogeneration 
units has increased fuel usage efficiency overall and has increased microgrids' 
viability economically [12] [13] [14]. 

Table 1 lists some recent study projects in the area of off-grid multisource power 
generation that combines renewable energy sources with fuel cell supplies [15]. 

The intermittent and unpredictable nature of renewable power generation presents 
significant obstacles to the power balance control and dependable operation of 
microgrids, despite the numerous advantages of distributed renewable generating 
[11] [16]. Figure 1 shows Sustainable Energy Sources that can be used for Off-
Grid Multisource Power Generation Systems. 
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Figure 1 

Sustainable Energy Sources  [17]. 

Table 1 
Recent studies on off-grid multisource power generation using renewable energies 

in conjunction with fuel cells 

Referen
ce, Year 

Renewab
le energy 

used 

 
Locati

on 

                        
Purpose 

Connecti
on mode 

Sensitiv
ity 

analysi
s 

                        
LCOE 

(S/kWh) 

Electric
ity 

deman
d 

(kWh/d
ay) 

[18],201
9 

PV Egyp
t 

Reverse 
osmosis 

desalination 

Off-gri  Yes 0.062 110 

[19],202
0 

Wind Chin
a 

Residential 
house 

Off-grid Yes 1.278 10 

[20],202
0 

PV, wind, 
biomass 

Iran Rural 
electrification 

Off-grid 
and on-

grid 

No 0.164-0.233 
(off-grid), 

0.096-
0.125(on-

grid) 

361 

[21],202
0 

Biomass Egyp
t 

Small tourist 
village 

Off-grid Yes 0.335 92.2 

[22],202
1 

PV, wind Turk
ey 

Electric 
vehicle 

Off-grid Yes 0.685 11.27 

[23],202
1 

PV, wind, 
tidal 

Iran Remote 
application 

Off-grid No O.4477— 1 
O.864 

20—40 

[24],202
1 

PV, wind Pakista
n 

Co-
generation of 

electricity, 
heat, 

and hydrogen 

Off-grid Yes 0.965 15 
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1.1 Fuzzy Logic in Decision Making 

A mathematical framework for handling ambiguity, imprecision, and uncertainty 
in decision making is offered by fuzzy logic. Fuzzy logic enables the depiction of 
degrees of truth, in contrast to classic binary logic, which functions in a clear 
true/false paradigm. Because of its versatility, it is especially well-suited for 
modeling and regulating systems that have inherent uncertainty and inaccurate 
information, such as off-grid multisource power generating systems. 

Fuzzy decision-making is used to optimize these kinds of systems and takes into 
account a number of factors, including as energy output from renewable sources, 
energy storage capacity, load demand forecasts, and system dependability. To deal 
with the linguistic variables and uncertainties related to these factors, fuzzy sets 
and fuzzy rules are used. Fuzzy logic makes it possible to integrate qualitative 
evaluations into quantitative decision-making processes by using language 
concepts like "high," "medium," and "low." 

For example, think about the choices made while choosing the best combination 
of renewable energy sources for an off-grid system. The integration of disparate 
and sometimes unclear data on the dependability, accessibility, and effectiveness 
of solar, wind, hydro, and other renewable energy sources is made possible using 
fuzzy logic. Decision-makers may better understand real-world circumstances and 
make decisions that are in line with the unique requirements and features of the 
off-grid site by describing these variables as fuzzy sets [25]. 

Moreover, fuzzy decision making works wonders when handling energy systems' 
dynamic nature. The stability and dependability of off-grid multisource power 
generating systems are constantly challenged by fluctuations in the output of 
renewable energy, fluctuating load demands, and the intermittent nature of 
renewable sources. Fuzzy logic allows rules to be created that take the system's 
changing conditions into account, which makes it excellent at managing real-time 
modifications and flexibility. 

Fuzzy logic and decision making together provide a potent toolkit for managing 
the intricacies of off-grid multisource power generation. In the parts that follow, 
we will delve deeper into the subtleties of fuzzy decision making and examine its 
applications in system optimization. Specifically, we will look at how fuzzy 
decision making might help achieve the delicate balance between energy 
generation, storage, and consumption in an off-grid setting. We want to shed light 
on the revolutionary potential of fuzzy decision making in influencing the 
development of resilient and sustainable energy solutions in the future through this 
investigation [11] [26]. 
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1.2 Research Contribution 

Two essential elements of off-grid multisource power generation systems 
(OMPGS) are optimal size and control. Even with the ideal system size, 
ineffective operation is inevitable in the absence of effective control. Optimal 
control guarantees lower operating costs and consistent energy supply, while 
optimal size lowers implementation costs and increases energy affordability.  
The majority of research, according to a survey of the literature, only consider 
system sizing or energy control. Nonetheless, an integrated strategy is necessary 
due to the interdependence of OMPGS's size, cost, control, and dependability. In 
order to improve energy scheduling during OMPGS operation in an off-grid 
community, this project intends to design an optimal sizing model that determines 
the OMPGS's most cost-effective configuration. The model will then be integrated 
into an Energy Management System (EMS). 

The study develops a complete model that guarantees energy dependability and 
cost efficiency by combining these two factors. The best equipment size is 
determined using the Particle Swarm Optimization (PSO) approach for 
dependability and cost-effectiveness. Meanwhile, an EMS that keeps supply and 
demand energy balanced throughout OMPGS operation is developed using a 
Fuzzy Logic Controller. 

2 Fuzzy Decision-Making Applications in Off-Grid 
Multisource Power Generation Optimization 

2.1 Configuring the System and Choosing its Components 

The Off-grid multisource power generating systems (OMPGS) that is being 
considered is seen in Figure 2 in its standard form. The system combines a wind 
turbine and solar photovoltaic panels, two sustainable energy sources. A diesel 
generator supplies emergency power, while batteries are used as a backup power 
source. To convert direct current (DC) to alternating current (AC) and vice versa, 
an inverter is provided. The community's energy consumption is a good indicator 
of the consumer load. It is also presumed that the inverter has an energy 
management system that controls the flow of power between the different energy 
sources and the load. Below is a full description of each component's 
mathematical model. 
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Figure 2 

Structure of a OMPGS system 

2.1.1 Solar PV Model 

A number of variables, such as sun irradiation, seasonal fluctuations, ambient 
temperature, PV module type, and tilt angle, affect the output power of solar 
photovoltaic (PV) systems. A basic simulation model is used to determine the 
power output,  Ppv, as indicated by the following equations [28] [29]: 

 
In this case, the number of PV panels is denoted by Npv, the panel efficiency is 
represented by ɳpv, the total surface area of the panel is denoted by Am,. 
Additionally, the global solar irradiance (W/m2) is indicated by Gt. Furthermore, 
the nominal operating cell temperature (°C) is NOCT, while the ambient 
temperature is Ta. 

2.1.2 Wind Turbine Model 

Local wind speeds and the turbine's specifications affect a wind turbine's power 
production. The power output of the wind turbine was calculated using the 
following formulas [30]: 

 

 

(1) 

(2) 

(3) 
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The reference height in this model is denoted by Href, the wind speed at the 
reference height is represented by Vref, and the wind shear exponent is denoted by 
α. The turbine's height is represented by H. V its wind speed at height H, its rated 
wind speed by Vrat, its rated power by Pr, its cut-in speed by VCIN, and its cut-out 
speed by VCO. 

2.1.3 Battery Model 

When the production of renewable energy is inadequate, batteries store electrical 
energy in chemical form and provide electricity. The following formula [31] is 
used to determine the battery's capacity, CB. 

 
The operating voltage is represented by VB, the energy demand (Wh) is 
represented by EL The temperature correction factor is represented by Tcf, the 
number of autonomy days is represented by SD, the maximum depth of discharge 
is represented by DOD max. Also, the battery efficiency is represented by µB. 

The ratio of the battery's available capacity to its rated capacity, measured in 
ampere-hours (AHr), is known as the state of charge (SOC) and may be written as 
follows [31]: 

 
In cycles of charging and discharging, the SOC at time t is calculated as follows: 

 
where the energy generated is represented by EGen, the load demand is represented 
by ELoad, and the self-discharge rate per hour is represented by σ. Equation (8) is 
used to charge batteries, and Equation (9) is used to discharge them. The battery 
functions within the permitted discharge limitations, which are represented as 
SOCmax and SOClow, respectively. 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 
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2.1.4 Diesel Generetor Model 

When battery storage and renewable energy sources are not enough to fulfill 
demand, a diesel generator in a hybrid renewable energy system (HRES) steps in 
to provide electricity. The generator should run between 70% and 89% of its rated 
capacity for maximum efficiency [32]. The following equation [33] represents the 
diesel generator's fuel consumption: 

 
where the fuel consumption is expressed as Df(t) (liters/hour), the diesel 
generator's power is expressed as PDG(t) (kW), and the rated power output is 
expressed as PDr (kW). The fuel consumption curve factors are denoted by the 
coefficients 𝛼𝛼𝐷𝐷 and βD, respectively, and are set as 0.2461 l/kWh and 0.08415 
l/kWh [36]. Fuel costs can be stated as follows: 

 
The diesel generator's depreciation cost is computed as: 

 
where the total operating hours (MT) and ̸̸̸̸̸The initial cost of purchasing the diesel 
generator is shown by CinitialDG. The fuel and depreciation charges added together 
represent the total cost of running the diesel generator: 

 
Determining the ideal design for off-grid multisource power generating systems is 
made possible by fuzzy decision making. Through the use of fuzzy rules that take 
into account variables like system cost, resource availability, and geographic 
location, decision-makers may arrive at configurations that are both technically 
and financially sound. Fuzzy sets are an excellent way to handle the imprecision 
that comes with variables like wind speed and solar radiation. This allows for 
more nuanced judgments that accurately reflect the dynamic nature of renewable 
energy sources [28]. 

2.1.5 OMPGS system Strategy 

The power flow must be adjusted to maximize the use of renewable energy 
sources while guaranteeing that there is always energy available to power the load 
in order to determine the ideal size of the OMPGS system using the PSO. The PV, 
wind turbine, battery, DG, and load are the components of the OMPGS taken into 
account in this study. A balance between the energy supplied and the energy 

(10) 

(11) 

(12) 

(13) 
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demanded is maintained by the PSO's power management. The PSO program 
determines whether to charge the battery or discharge the battery. As an 
alternative start the diesel engine based on the conditions at each hourly timestep 
after comparing the load and renewable energy (solar and wind). 

The extra energy is used to charge the battery when the load can be powered 
entirely by renewable energy. Energy is drawn from the battery to power the load 
when the renewable energy is insufficient to power it and the battery's state of 
charge is higher than its lowest state. The diesel generator is turned on to power 
the load when the RE is not enough to do so and the battery's state of charge is 
lower than its lowest point. The extra energy from the diesel generator is then used 
to charge the battery. Figure 3 shows the power flow strategy's flow chart. 

 
Figure 3 

Diagram representing the Off-grid  Multuble power supply design optimization process 

2.2 Demand Management and Load fForecasting 

For off-grid systems to maintain a balance between energy output and 
consumption, accurate load forecasting is essential. Decision-makers may include 
expert knowledge and qualitative judgments into load forecasting models with the 
use of fuzzy logic, which makes it easier to incorporate linguistic factors. As a 
result, demand management is able to be more flexible and responsive, 
guaranteeing that the system can instantly react to shifting energy needs. 

Controlling the distribution of electricity from each energy source to fulfill load 
demand is the main function of the energy management system (EMS) in an Off-
grid multisource power generating systems (OMPGS). A properly tuned energy 
management system (EMS) maximizes the utilization of renewable energy sources 
while maintaining a balance between energy supply and demand. In order to keep 
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the system's components in equilibrium while the OMPGS is operating, the EMS 
continuously controls the energy flow, as shown by the following equation: 

 
The renewable energy input in this EMS configuration is represented by wind 
energy (Pw) and solar photovoltaic (Pv) power. The system prioritizes fulfilling 
the load demand via renewable sources, taking power from the battery only when 
renewable energy is inadequate. The diesel generator kicks in as a backup if 
renewable energy sources are not available and the battery's charge is either below 
the minimum state of charge (SOC) or not enough to fulfill demand. The power 
differential (ΔP) is the difference between the renewable energy supply and the 
load demand (P L). 

 

2.3 Optimization of Energy Storage 

The important field of energy storage optimization is impacted by fuzzy decision 
making. The choice of suitable storage technologies, like pumped hydro storage or 
batteries, depends on a number of important factors, such as cycle life, cost, and 
round-trip efficiency. Decision-makers may more easily identify storage solutions 
that meet the unique requirements and limitations of off-grid locations by using 
fuzzy logic to navigate the trade-offs included in these factors. 

Using the formula from [34], the battery's State of Charge (SOC) for the Fuzzy 
Logic Controller (FLC) is expressed as follows: 

 
where Pbatt (t-1) is the amount of battery energy left over from the previous hour. 
The expression 𝐶𝐶batt [𝑃𝑃R𝐸𝐸(𝑡𝑡) −𝑃𝑃𝐿𝐿 (𝑡𝑡)] represented the current charging or 
discharging power of renewable energy. The generator's charging power is 
represented by {𝑃𝑃𝐷𝐷𝐷𝐷 (𝑡𝑡 )−(1−𝐶𝐶𝑏𝑏a𝑡𝑡𝑡𝑡) [𝑃𝑃𝐿𝐿 (𝑡𝑡 )−𝑃𝑃RE (𝑡𝑡)]}. The rated battery capacity is 
represented by Pbatt in this instance. 

The battery stops charging if the supply of renewable energy (RE) is sufficient to 
satisfy the load demand (ΔP≤0) and the battery is fully charged (SOC > SOCmax). 
When the load (ΔP≤0) can be met by renewable energy and the battery is not fully 
charged (SOC < SOCmax), the extra renewable energy charges the battery until it 
reaches its maximum capacity (SOCmax). 

The battery drains to meet the load until it hits the lower limit (SOC ≤ SOClow) 
when renewable energy is inadequate for the load (ΔP>0) and the battery is 
sufficiently charged (SOC > SOClow). Discharging ceases if there is enough 

(14) 

(15) 

(16) 
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energy in the battery to match the requirement. The diesel generator kicks in to 
cover any leftover demand (ΔP′) if the battery is too low (SOC ≤SOClow) or 
cannot provide the load. It modifies its output appropriately. When the battery 
reaches full charge (SOC ≥ SOCmax), the generator powers, the load, and 
continues to charge it. 

2.4 Fault Tolerance and Resilience 

Off-grid systems are frequently installed in isolated or hostile areas, where system 
performance may be impacted by things like severe weather or equipment failure. 
By taking into consideration fuzzy rules that take uncertainties in system 
resilience and reliability into account, fuzzy decision making aids in the design of 
fault-tolerant systems. By doing this, off-grid power generating systems are 
guaranteed to be flexible enough to adjust to unanticipated events, reducing 
downtime and increasing overall resilience. 

2.5 Assessment of Environmental Impact 

Fuzzy decision making takes environmental aspects into account in addition to 
technical concerns. Fuzzy logic is a tool that decision-makers may use to evaluate 
the environmental effects of various system configurations and energy sources 
while taking ecological sensitivity, land usage, and carbon footprint into account. 
By taking a comprehensive approach, off-grid systems are guaranteed to fulfill 
energy demands and make a positive contribution to environmental conservation, 
which is in line with the larger objective of sustainable energy solutions. 

3 Formulating Fuzzy Decision Making 
Mathematically 

The optimization of off-grid multisource power production systems involves the 
mathematical formulation of fuzzy decision making, which combines components 
of fuzzy logic and decision theory to describe the inherent uncertainty and 
imprecision of the system. In this context, the following mathematical ideas and 
symbols are frequently used. 

The connection between the FLC-based energy management system and the Off-
grid multisource power generating systems (OMPGS) is shown in Figure 4.  
The OMPGS provides signals to the FLC system that indicate solar, wind, load 
demand, and battery condition. Two fuzzy logic controllers (FLCs), FLC1 and 
FLC2, are used in this investigation. 
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Figure 4 

The Fuzzy Logic Controllers' signal flow 

3.1 Membership Functions and Fuzzy Sets 

Consider the universe of discourse X, which stands for a certain parameter (wind 
speed, sun radiation, etc.). The membership function  of a fuzzy set A in X 
gives each element x in X a degree of membership between 0 and 1.  
The membership functions for high, medium, and low solar radiation levels, 
respectively, might be represented by the functions , , and 

, if X represents the amounts of solar radiation. Figure 5 shows membership 
functions. 

 

 

Figure 5 
Membership functions 

3.2 Fuzzy Rules 

The connections between the input and output variables in a fuzzy system are 
defined by fuzzy rules. They are represented using linguistic variables and take the 
form of "IF-THEN" sentences. 

(17) 
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The knowledge and expertise of operators or experts is the foundation upon which 
the fuzzy logic rules are built. The acronyms in the membership functions stand 
for different terms: " VI" denotes "very," " LI" denotes "low," " HI" denotes 
"high," " SI" denotes "standard," " MI" denotes "much," " PI" denotes "positive," 
and " NI" denotes "negative." 

Battery State of Charge (SOC), the initial input to FLC1, consists of seven 
membership variables with a range (universe of discourse) from 0 to 1.  
The second input is composed of  six membership variables and varies between 
180 kW and 601 kW in differential power (ΔP). These inputs provide 42 fuzzy 
logic rules when combined. The output has seven membership variables and also 
varies from 0 to 1, as shown by the battery multiplier constant (CBatt). 

3.2.1 Fuzzy Logic Controller 1 (FLC1) Rules 

Table 2 lists the fuzzy logic rules for FLC1. The power differential (ΔP) between 
the available renewable energy and the current energy demand is the first input to 
FLC1, and the battery's state of charge (SOC) is the second. Whether to charge or 
discharge the battery is determined by the controller based on the values of ΔP and 
SOC at any given moment. The amount of energy allotted for charging or draining 
the battery is determined by the correction power factor (Cbatt), which is the output 
of FLC1. 

Table 2 
lists the fuzzy logic rules for FLC1 

 

3.2.2 Fuzzy Logic Controller 2 (FLC2) Rules 

In Table 3, the fuzzy logic principles for FLC2 are explained. When to turn on the 
diesel generator (DG) to generate electricity for the extra load is decided by FLC2. 
FLC2 receives two inputs: the prior battery state of charge (SOC(t-1)) and the 
power differential (ΔP), which indicates the remaining load after taking into 
account battery draining power. The FLC2 determines whether to initiate the DG 
based on these inputs. The controller starts the DG if there is an excess load and a 
low SOC. Nonetheless, the DG stays off if the SOC is low and there is an 
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abundance of renewable energy. In a similar vein, the DG is not initiated when 
SOC is high and there is extra load. When there is more renewable energy and 
SOC, the DG will turn on. 

Table 3 
lists the fuzzy logic rules for FLC2 

 

3.3 Fuzzy Inference System 

Fuzzy rules are combined in a fuzzy inference system as shown in Figure 6, to 
produce clear decisions. Fuzzy rules are applied to input variables in the Mamdani 
model, a popular fuzzy inference method, and the results are combined to provide 
a fuzzy output. To generate a crisp number and defuzzify the fuzzy output, the 
centroid approach is frequently employed. 

 
Figure 6 

Generic fuzzy inference system 

The output produced by the FLC1 and FLC2 controller is shown in three 
dimensions in Figure 7, respectively. 
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Figure 7 

Plot of the FLC1 and FLC2 Rules in three dimensions, respectively 

3.4 Constraints and Decision Variables 

Let the decision variables for the off-grid multisource power generating system be 
represented by the variables X1, X2, …, and Xn. These variables' constraints, 
which include those related to resource availability, system cost, and 
environmental effect, are quantitatively represented. 

 

3.5 Objective Function 

The aim of the optimization problem is represented by the objective function.  
A mathematical expression is usually what has to be maximized or reduced. When 
it comes to off-grid power generation, the target function might stand for total 
cost, environmental effect, or both. 

 

3.6 Optimization Algorithms 

Optimization algorithms are frequently used in fuzzy decision making to 
determine the ideal values for decision variables. To find answers inside the fuzzy 
decision space, heuristic techniques such as simulated annealing, genetic 
algorithms, and particle swarm optimization can be used. 

 
The Off-grid multisource power generating systems (OMPGS) was optimized 
using the Particle Swarm Optimization (PSO) method using data from sun 
irradiation, temperature, wind speed, energy consumption, and equipment 
specifications. The output power of diesel generators, wind turbines, solar panels, 
and batteries were all calculated with the aid of these inputs. 

(18) 

(19) 

(20) 
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Technical Analysis: To estimate the energy production from the solar panels, wind 
turbines, battery storage, diesel generator, and the algorithm considered technical 
data. Additionally, the analysis considers  weather patterns and the features of the 
OMPGS equipment. For the purpose of forecasting system performance, this data 
was essential. 

Economic Analysis: To calculate the total capital expenditure of the OMPGS, the 
algorithm took into account not only the technical data but also the economic 
factors, such as the cost per kilowatt-hour for each component. To cover recurring 
expenses 

PSO Algorithmin in Figure 8, calculated important performance metrics such as 
the Levelized Cost of Energy (LCOE) and Loss of Power Supply Probability 
(LPSP) by analyzing the meteorological, technical, and economic data. In 
addition, it ensured that the system maintained a sufficient State of Charge (SOC) 
by optimizing the sizes of the diesel engine, wind turbines, batteries, and solar PV. 
Finding the most effective OMPGS arrangement to satisfy energy demands at the 
lowest cost and with the maximum dependability was the aim. 

To summarize, fuzzy decision making in off-grid multisource power production 
systems is mathematically based and combines classic optimization methods with 
fuzzy logic notions. Decision-makers may understand and manage the complexity 
and uncertainties inherent in renewable energy systems, resulting in more resilient 
and adaptable solutions, by leveraging fuzzy sets, rules, and inference algorithms. 
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Figure 8 

Particle Swarm Optimization (PSO) Algorithm flow chart [27] 

4 Case Studies and Practical Implementations 

In order to provide a strong theoretical foundation for fuzzy decision making in 
off-grid multisource power production system optimization, case studies and real-
world applications must be looked at. 

4.1 Island Microgrid Optimization 

Consider residing on an isolated island where the only energy sources are hydro, 
wind, and sun. In response to shifting weather patterns and energy demand, fuzzy 
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decisionmaking may dynamically distribute resources. The island community will 
always have a steady and dependable supply of electricity thanks to the use of 
fuzzy logic controllers. This control allows the system to adjust to fluctuations in 
the output of renewable energy. 

4.2 Projects for Rural Electrification 

Including fuzzy decision making into the design of electrification initiatives might 
be crucial in off-grid environments, especially in rural regions. When choosing the 
best possible mix of energy sources, storage options, and demand management 
techniques, fuzzy logic can help. This guarantees that the electrification system 
satisfies the community's unique requirements while accounting for resource 
availability risks. 

4.3 OMPGS System Size Optimization 

The best size for each component in hybrid power generating systems that include 
solar, wind, and other sources can be difficult to determine. The use of fuzzy 
decision making enables the evaluation of imprecise criteria like equipment 
efficiency and load fluctuation. The system may optimize overall efficiency by 
dynamically adjusting the size of energy storage devices, wind turbines, and solar 
arrays through the formulation of fuzzy rules. 

4.4 Fuzzy Decision Making in Smart Grids 

In the creation of smart grids, where prompt and flexible decision making is 
required, fuzzy logic plays a key role. Fuzzy controllers are effective in managing 
dispersed energy supplies, anticipating demand patterns, and optimizing energy 
flow. This flexibility is especially important in off-grid situations, where the 
topology of the grid may dynamically alter in response to local patterns of 
generation and consumption [35]. 

Conclusion 

Although fuzzy decision making has demonstrated its effectiveness in improving 
off-grid multisource power production systems' optimization, difficulties still 
exist. The creation of precise fuzzy models, the requirement for reliable data 
collecting, and the incorporation of real-time feedback into decision making 
processes are some of these problems. 

In order to increase the precision of decision making models, future research paths 
may examine OMPGS systems that blend fuzzy logic with machine learning 
methods. 
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Furthermore, improvements in data analytics and sensor technologies can help 
provide fuzzy systems with more accurate inputs, which will improve their 
performance even more in dynamic contexts. In conclusion, one of the most 
important steps toward developing resilient and sustainable energy solutions is the 
inclusion of fuzzy decision making in the optimization of off-grid multisource 
power generating systems. 

Decision makers are empowered to navigate complicated decision spaces by fuzzy 
logic, which embraces the inherent uncertainties of renewable energy sources and 
dynamic system circumstances. The future of decentralized, ecologically 
conscientious, and adaptable off-grid power systems will probably be greatly 
influenced by fuzzy decision making, especially as technology advances and our 
knowledge of renewable energy grows. 
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