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Abstract: Network intrusion detection systems are critical for identifying anomalous 
activities and cyberthreats. The anomaly detection method for network intrusion detection 
systems has become substantial in detecting novel attacks in intrusion detection systems. 
Achieving high accuracy with the lowest false alarm rate is a significant challenge in 
designing an intrusion detection system. Network intrusion detection systems based on 
machine learning methods are effective and accurate in detecting network attacks. It also 
highlights the importance of using various feature selection techniques to identify the optimal 
subset of features. This paper investigates enhancing network intrusion detection systems 
performance through correlation analysis and feature selection on the part of the NF-UQ-
NIDS-v2 NetFlow dataset that will be used for training and testing our models. In our 
experiments, binary classification configurations were considered. Two approaches are 
explored: applying feature selection methods directly to the initial 39 features set, and 
performing correlation analysis to eliminate redundant features then applying feature 
selection methods. Recursive feature elimination, mutual information, and One-way ANOVA 
methods select optimized feature subsets. An ExtraTrees ensemble classifier performs binary 
classification of benign and traffic under attack. Results indicate that employing Recursive 
feature elimination on 8 features after performing correlation analysis yields the most 
promising outcomes. It achieves a high detection accuracy of 98.13%, recall of 98.23%, and 
Area Under Curve of 99.73%. Notably, it substantially reduces the false alarm rate by 
53.73% compared to using all 39 features bringing it to 0.3589%, and decreases the scoring 
time by 34.21%, resulting in an efficient scoring time. 
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1 Introduction 

As communication networks rapidly evolve, there has been a significant increase in 
the frequency of network attacks. The attack causes a threat to the confidentiality, 
integrity, or availability of an information system [1]. Anomaly detection methods 
are crucial in enhancing network security by identifying deviations from traffic 
patterns, especially in cases where signature-based detection is ineffective against 
new attacks. This capability makes anomaly detection invaluable for 
communication networks, as it serves as the foundation for uncovering various 
types of attacks, identifying misconfigurations, and detecting network failures [2]. 
To protect networks against advanced cyberattacks, a combination of anomaly-
based Network Intrusion Detection Systems (NIDS) and NetFlow analysis is 
crucial. Anomaly-based NIDS detects known and unknown attacks by analyzing 
network traffic patterns, while NetFlow, an industry-standard network protocol, 
offers features that enable accurate prediction of malicious cyberattacks by 
analyzing network traffic patterns and behaviors [3, 4]. As NetFlow data collection 
capabilities are widely available on common network infrastructure devices like 
routers and switches. It becomes crucial to assess the effectiveness of utilizing 
NetFlow features to detect potential attacks by analyzing the extracted flow records. 
Incorporating Machine Learning (ML) can significantly enhance the capabilities of 
NIDS in adapting to evolving attack patterns. Intrusion Detection Systems (IDS) 
use signature-based techniques to identify threats by matching known attack 
patterns. However, this method requires constantly updating the database of known 
attack signatures since intruders consistently find new ways to exploit network 
activities [5]. 

The ML applications have enabled new approaches to anomaly detection, allowing 
systems to identify previously unknown attacks by comparing normal user behavior 
patterns against events that diverge from those norms. In recent years, researchers 
have explored various ML techniques to enhance the performance of IDS, aiming 
to improve detection rates, reduce false positives, and increase overall predictive 
accuracy. By leveraging ML, IDS can automatically learn models of benign activity 
and use those models to detect suspicious anomalies that may represent malicious 
actions. The application of ML to anomaly detection remains an active area of 
research as new algorithms and methodologies emerge further to improve the 
capabilities of these critical security systems. Due to resource constraints for data 
storage, transmission, and processing, limiting input data to features highly relevant 
to the detection task is advantageous and easily derivable from network 
observations without costly operations. Enhancing detection quality for various 
learning-based algorithms is achieved by eliminating strongly correlated, 
redundant, and irrelevant features [2]. This will involve a Feature Selection (FS) 
method as a good technique to lead these aspects by selecting the most informative 
features from the network traffic data. These methods improve detection accuracy, 
reduce false positives, and optimize computational resources, resulting in more 
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efficient threat detection. Eliminating uninformative features enables IDS to focus 
modeling efforts on the most salient aspects of network traffic. The insights from 
removing extraneous features allow for more robust and focused modeling of 
normal vs anomalous traffic patterns. When it comes to anomaly detection, the goal 
should be to optimize model performance not just for accuracy but also for the 
computational resources required to respond to threats. 

The research aims to identify the most informative features from the 43 commonly 
used features in the NF-UQ-NIDS-v2 dataset for anomaly detection. Building upon 
previous work by [6] that used 39 features and after eliminating IP addresses and 
their ports, the goal is to remove redundant and irrelevant features to focus modeling 
efforts on the most pertinent anomalies. The objective is to systematically assess 
feature importance and select an optimal subset of features that enhance the 
efficiency and effectiveness of NIDS. 

The remaining sections of this paper are structured as follows. Section 2 reviews 
related work on anomaly detection for NIDS, including research on FS techniques. 
Section 3 then provides a detailed description of the proposed methodology, 
including the NF-UQ-NIDS-v2 dataset, data preprocessing steps, Correlation 
Analysis (CA) and the FS methods evaluated. The experimental setup, results, and 
comparative analysis are presented in Section 4. Finally, Section 5 summarizes the 
key conclusions and contributions of this research. 

2 Related Works 

Several studies have explored FS techniques to improve anomaly detection in 
NIDS. Kumar et al. in [7] proposed using gain ratio FS with an updated Naive Bayes 
classifier on the NSL-KDD dataset. They compared this approach against 
correlation-based FS and information gain techniques using Naive Bayes, J48, and 
REPTree classifiers. A two-step feature selection process is applied to the NSL-
KDD dataset in [8]. In the first step, correlation-based feature selection is used to 
identify relevant features, while, for uncorrelated features removal, symmetrical 
uncertainty is used in the second step. This dependency-based approach aimed to 
select useful features while reducing redundancy. In [9] the authors proposed an 
effective NIDS based on ML and FS techniques. They compared the performance 
of four ML techniques: Random Forest, K-Nearest Neighbors, SVM and Decision 
Tree for intrusion detection on the NSL-KDD dataset. The study employed feature 
selection using the Decision Tree technique to identify important features that 
impact classification results. Among the techniques evaluated, the Random Forest 
technique achieved the highest accuracy of 99.72%, outperforming the other 
techniques. Authors in [10] conducted a comprehensive analysis of the 
effectiveness of high-frequency features in detecting cyberattacks using machine 
learning algorithms. They employed various feature selection methods to identify 
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the most relevant high-frequency features from the NSL-KDD dataset. 
Subsequently, they evaluated various ML algorithms to detect attacks using the 
selected high-frequency features. Their results demonstrated that high-frequency 
features significantly improved the attack detection accuracy of the employed ML 
algorithms, with Random Forest outperforming the other algorithms. 

In [11], the authors analyzed the UNSW-NB15 dataset by first applying XGBoost 
for feature reduction. They tested several classifiers on the reduced feature space, 
including Support Vector Machine (SVM), k-nearest-neighbor, Logistic regression, 
Artificial neural network, and Decision tree. The Decision tree classifier improved 
its testing accuracy from 88.13% to 90.85% using the XGBoost-selected features, 
demonstrating the utility of FS. Omar Almomani [12] introduced a metaheuristic 
feature selection method for the UNSW-NB15 dataset using Particle swarm 
optimization, firefly optimization, grey wolf optimization and genetic algorithm. 
After iterative optimization, a 30-feature subset was identified and J48 and SVM 
classifiers trained on these features achieved training accuracy of 90.48% and 
90.12%, respectively. In [13] hybrid Information gain and random forest are 
proposed based on the Recursive Feature Elimination (RFE) method. It combines 
Information gain and Random Forest with RFE on the UNSW-NB15 dataset. 
Feature reduction from 42 to 23 features improved multilayer perceptron multi-
class classification accuracy from 82.25% to 84.24%. 

In [14], authors evaluated multiple classifiers with Principal component analyzes 
and Gini impurity-based weighted forest feature selection on the ToN-IoT, UNSW-
NB15 and Bot-IoT datasets. The Random Forest classifier with the proposed FS 
method achieved 97% accuracy on the ToN-IoT and UNSW-NB15 datasets, while 
the accuracy reached 99% on the Bot-IoT database with Principal component 
analyzes. Authors in [15] combined statistical filters like Chi-Square, Pearson’s 
Correlation Coefficient (PCC) and Mutual Information (MI) with a Non-dominated 
sorting genetic algorithm metaheuristic approach for feature optimization on the 
ToN-IoT dataset. With only 13 selected features, accuracy reached 99.48%, 
demonstrating the proposed method’s effectiveness. A genetic algorithm-based 
method for FS is used on the Bot-IoT dataset [16]. With only 6 selected features, 
botnet attack detection accuracy reached 99.98% and F1-score was 99.63%, 
showing the purpose of feature reduction. 

Authors in [17] presented a weighted ensemble feature scoring technique tailored 
for the CSE-CIC-IDS2018 dataset focusing on FTP, SSH, SQL, XSS, and Web 
attacks. Optimal weights were determined using the Taguchi experimental design, 
and a Decision tree, Random Forest, and SVM classifiers were used to classify 
attacks. The proposed method significantly improved accuracy and F1-score for 
XSS, Web, and SQL injection attacks using fewer features. For XSS, the number of 
features is reduced from 10 to 2, while for Web attacks, the number of selected 
features is 13, compared to 44 originally. SQL injection attack is successfully 
classified with selected 7 from originally 26 features. In [18], the correlation-based 
FS is applied to the CIC-IDS2018 dataset for IDS. With optimized 48 features and 
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a 60:40% testing and training data ratio, the IDS achieved 99.9995% accuracy and 
a true positive rate of 99.9992%, demonstrating the utility of correlation analyses 
as a feature selection method. 

In 2022, Sarhan et al. [6] proposed a standard feature set for NIDS datasets.  
The research is focused on general network flow-based intrusion detection. This 
dataset is formed by merging and converting the four datasets (UNSW-NB15 
(2015), BoT-IoT (2018), CSE-CIC-IDS-22018 (2018), and ToN-IoT (2020)) into 
NetFlow version 9 format. In the available literature, two sets of features can be 
found: one with 43 features [6] and a smaller one with 12 features only [4].  
The experiments showed that the 43-feature dataset performed better than the 12-
feature dataset. The NF-UQ-NIDS-v2 dataset showcases the benefits of shared 
dataset features by enabling the consolidation of multiple smaller datasets. 

Our research examines the feature preprocessing and selection techniques for the 
selected portion of the NF-UQ-NIDS-v2 dataset. This dataset's choice is supported 
by its integration of four well-established datasets and its temporal diversity from 
2015 to 2020, effectively capturing the evolution of cyberthreats over time. 
Correlation Analysis is applied to identify and eliminate redundant features within 
the 39-feature space, after eliminating IP addresses and their ports. The goal is to 
refine this feature set to identify informative features that improve anomaly 
detection performance. 

3 Proposed Model Development 

This section provides a detailed description of the proposed method to identify 
attacks. As well, Figure 1 illustrates pipeline architecture used to develop an ML-
based model, including the CA and FS processes. The selected portion of the NF-
UQ-NIDS-v2 NetFlow dataset is leveraged to facilitate reliable evaluation across 
diverse network environments. 

Two approaches are pursued to compare feature sets. The first approach addresses 
redundancy through CA. Pearson correlation coefficients are calculated between all 
feature pairs as well as between each feature and the true label of benign or attack 
type traffic (target variable). Highly correlated features are discarded, except one 
feature among them. Optimized feature subsets are then selected using FS methods. 
The second approach acts directly without performing CA. After eliminating IP 
addresses and ports as in the first approach, feature subsets are immediately selected 
using FS methods without the initial redundancy removal step. 

Optimized feature subsets are selected using three methods: Recursive Feature 
Elimination (RFE), Mutual Information (MI), and One-way ANOVA (ANOVA). 
For classification, an extremely randomized trees (ExtraTrees), ensemble model is 
used to perform binary classification of normal and traffic under attack.  
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Its performance is comprehensively evaluated on multiple metrics, including 
accuracy, F1-score, recall, precision, Area Under Curve (AUC), False Alarm Rate 
(FAR), and scoring time. This multifaceted assessment examines both detection 
capabilities and efficiency. Varying methods and feature sizes systematically 
examine the optimal approaches for maximizing detection performance. 

Figure 1 
Proposed approaches pipeline 

3.1 Dataset 

The first step of the proposed classification model and methodology is to collect 
data on traffic flow. The dataset selected for this study is the NF-UQ-NIDS-v2 [6], 
a pre-labeled NetFlow packet containing benign and compromised data. The NF-
UQ-NIDS-v2 dataset was originally published by Sarhan et al. [6]. It was 
constructed by merging and converting four existing datasets – (UNSW-NB15, 
BoT-IoT, CSE-CIC-IDS2018, and ToN-IoT) – into the NetFlow version 9 format. 
This unified dataset combines the benefits of these diverse sources, enabling ML 
modeling across varied network environments and attack types. 

The NF-UQ-NIDS-v2 dataset has a total of 75,987,976 records, out of which 
25,165,295 (33.12%) are benign flows and 50,822,681 (66.88%) are various 
attacks. A total of 5,034,361 records were randomly selected from the original 
25,165,295 benign records. Out of the original 50,822,681 attacks, 5,850,596 were 
randomly chosen for the attack records. 

NF-UQ-NIDS-v2 dataset

Pr eprocessing :
• Drop IP source and port
• Drop IP destination and port
• Data normalization

Total number  of features : 39

Featur e selection methods 
using 39 featur es:

(MI, ANOVA, RFE)

Correlation Analysis
Drop high correlated

 feature-feature 
(Correlation ≥  threshold) 

Select set of 
4,8,14,20,26,31 features

Select set of 
4,8,14,20,26,31 features

Ensemble Method classifier
Binary classification (Benign, Attacked)

(ExtraTrees with 5-cross-validation)

Model Evaluation and Comparaison
Accuracy, Precision, Recall, F1-score,  AUC, 

FAR, Score time

Featur e selection methods 
using 31 featur es:

(MI, ANOVA, RFE)

1st appr oach 2nd appr oach
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Table 1 
NetFlow features in the NF-UQ-NIDS-v2 dataset with their index 

Feature Name Description 
f0 IPV4_SRC_ADDR IPv4 source address (dropped) 
f0 IPV4_DST_ADDR IPv4 destination address (dropped) 
f0 L4_SRC_PORT IPv4 source port number (dropped) 
f0 L4_DST_PORT IPv4 destination port number (dropped) 
f1 PROTOCOL IP protocol identifier byte 
f2 L7_PROTO Layer 7 protocol (numeric) 
f3 IN_BYTES Incoming number of bytes 
f4 IN_PKTS Incoming number of packets 
f5 OUT_BYTES Outgoing number of bytes 
f6 OUT_PKTS Outgoing number of packets 
f7 TCP_FLAGS Cumulative of all TCP flags 
f8 CLIENT_TCP_FLAGS Cumulative of all client TCP flags 
f9 SERVER_TCP_FLAGS Cumulative of all server TCP flags 

f10 FLOW_DURATION_MILLISECONDS Flow duration in milliseconds 
f11 DURATION_IN Client to Server stream duration (msec) 
f12 DURATION_OUT Client to Server stream duration (msec) 
f13 MIN_TTL Min flow TTL 
f14 MAX_TTL Max flow TTL 
f15 LONGEST_FLOW_PKT Longest packet (bytes) of the flow 
f16 SHORTEST_FLOW_PKT Shortest packet (bytes) of the flow 
f17 MIN_IP_PKT_LEN Length of the smallest flow IP packet observed 
f18 MAX_IP_PKT_LEN Length of the largest flow IP packet observed 
f19 SRC_TO_DST_SECOND_BYTES Source (src) to destination (dst) Bytes/sec 
f20 DST_TO_SRC_SECOND_BYTES Destination (dst) to source (src) Bytes/sec 
f21 RETRANSMITTED_IN_PKTS Number of retransmitted TCP flow packets (src → dst) 
f22 RETRANSMITTED_IN_BYTES Number of retransmitted TCP flow bytes (src→ dst) 
f23 RETRANSMITTED_OUT_PKTS Number of retransmitted TCP flow packets (dst→ src) 
f24 RETRANSMITTED_OUT_BYTES Number of retransmitted TCP flow bytes (dst→ src) 
f25 SRC_TO_DST_AVG_THROUGHPUT Src to dst average thpt (bps) 
f26 DST_TO_SRC_AVG_THROUGHPUT Dst to src average thpt (bps) 
f27 NUM_PKTS_UP_TO_128_BYTES Packets whose IP size ≤ 128 
f28 NUM_PKTS_128_TO_256_BYTES Packets whose IP size > 128 and ≤ 256 
f29 NUM_PKTS_256_TO_512_BYTES Packets whose IP size > 256 and ≤ 512 
f30 NUM_PKTS_512_TO_1024_BYTES Packets whose IP size > 512 and ≤ 1024 
f31 NUM_PKTS_1024_TO_1514_BYTE: Packets whose IP size > 1024 and ≤ 1514 
f32 TCP_WIN_MAX_IN Max TCP Window src →  dst 
f33 TCP_WIN_MAX_OUT Max TCP Window dst → src 
f34 ICMP_TYPE ICMP Type * 256 + ICMP code 
f35 ICMP_IPV4_TYPE ICMP Type 
f36 DNS_QUERY_ID DNS query transaction ID 
f37 DNS_QUERY_TYPE DNS query type  
f38 DNS_TTL_ANSWER TTL of the first A record (if any) 
f39 FTP_COMMAND_RET_CODE FTP client command return code 

For cyberattacks, Analysis, Backdoor, Exploits, Fuzzers, Generic, Shellcode, Theft, 
Worms, MitM, and Ransomware, all available records from the dataset are selected 
(2,299, 18,978, 31,551, 22,310, 16,560, 1,427, 2,431, 164, 7,723, 3,425 
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respectively). In this research, from 143,097 records for Bot attacks, 57,214 were 
chosen, while 123,982 available records for Brute Force attacks and 21,748,351 
DDoS attacks, 49,819 and 2,175,293 records were selected, respectively. For the 
DoS type of attack, 1,790,782 records were picked out of 17,875,585 available, 
while 46,862 records out of 116,361 and 264,354 out of 2,633,778 were selected 
for Infiltration and Reconnaissance type of attack, respectively. Furthermore, from 
684,897 records for Injection attacks, 273,272 were selected, and from 1,153,323 
Password attacks, 460,737 records were chosen. It picked 379,015 and 246,380 
records out of 3,781,419 and 2,455,020 for Scanning and XSS type of attack, 
respectively. The original dataset contained 75,987,976 records, from which 
10,884,957 records were selected for training and testing purposes, maintaining a 
balanced portion to address class imbalance. The training set comprised 80% of the 
chosen records, totaling 8,707,965 records (4,027,489 benign and 4,680,476 
compromised). The remaining 20%, consisting of 2,176,992 records, were 
designated for testing. 

A total of 43 relevant features were chosen to construct this dataset in the original 
database. Table 1 shows the descriptions of these features, with four features 
omitted (source/destination IP addresses and their port number- features f0) as in 
[6]. The feature number represents the feature's position in the dataset. By referring 
to the feature numbers, the specific features selected through the feature selection 
methods can be easily identified and analyzed. 

3.2 Data Pre-Processing 

Data preprocessing is a crucial initial step when applying ML to real-world 
problems. In this research, the IP addresses and their associated ports, following the 
approach of [6], are not considered, resulting in a set of 39 features. The key data 
preprocessing challenge involves dealing with features that have different scales or 
distributions. Normalization facilitates feature transformation to share comparable 
value ranges. The NF-UQ-NIDS-v2 dataset exhibits these common data 
preprocessing challenges because it contains features with widely varying value 
ranges. To handle this challenge, the dataset has been preprocessed using feature 
normalization to standardize the feature value scales to a predefined range. 

Normalization plays a crucial role in improving the performance and reliability of 
the ML model by ensuring that each feature contributes equally to the model's 
prediction results. In this study, the Min-Max normalization technique was applied 
to rescale all values linearly within the dataset to a uniform range between 0 
(corresponds to minimum) and 1 (corresponds to maximum) [19]. One notable 
advantage of Min-Max normalization is its ability to maintain the underlying 
relationships among the original data values. 
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3.3 Correlation Analysis 

The Pearson correlation coefficient (r) was utilized to measure the relationship 
between variables in the dataset. Determined through CA, r quantifies the degree 
and direction of the linear relationship between two variables. Its values range from 
-1 (a perfect negative correlation) to 1 (a perfect positive correlation). The formula 
for the Pearson correlation coefficient is: 

2 2
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( ) ( )
i i

i i

x x y y
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x x y y

− −
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− −
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∑

,      (1) 

where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖  denote the values of the two variables for the i-th observation, and 
𝑥𝑥‾ and 𝑦𝑦‾ are the sample means of the respective variables. 

Our analysis employed a correlation-based approach to assess the relationships 
among features and between features and the target variable y (0 for benign and 1 
for compromised records). We aimed to identify and retain the most informative 
features while eliminating highly correlated ones to ensure the model's robustness 
and interpretability. 

 
Figure 2 

Correlation analysis between analyzed features and between features and target variable 

Analysis of the correlation matrix (Figure 2) leads to several notable relationships 
between the features and with the target variable y. The most highly correlated 
feature-feature pairs were f15-f18 (1.0), f34-f35 (1.0), f13-f14 (1.0), f7-f8 (1.0), and 
f23-f24 (0.99), indicating potential redundancy. In contrast, feature pairs like f4-f17, 
f19-f20, f3-f38, f16-f20, and f27-f39 exhibited negligible correlation, suggesting 
distinct information. Concerning the target variable y, features f10, f11, f17, f2 and 
f36 demonstrated relatively high correlations of 0.673, 0.457, 0.469, 0.4020 and 
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0.323, respectively. On the other hand, features f19, f38, f20, f3, and f4 exhibited 
weak correlations with y, ranging from 0.0004 to 0.009. These findings informed 
the subsequent feature selection process, where highly correlated features were 
carefully evaluated for potential dimensionality reduction while retaining the most 
informative features for the classification task. The columns in the dataset that have 
an absolute value of feature-feature correlation coefficient greater than a threshold 
of 0.8 were dropped and one among them was retained. This decision aimed to 
eliminate redundancies and reduce multicollinearity, factors that could compromise 
the performance and interpretability of the proposed model. 

3.4 Feature Selection 

Feature selection refers to techniques that select a subset of the most relevant 
features for a dataset. Fewer features can allow ML algorithms to run more 
efficiently (less space or time complexity) and be more effective. Some ML 
algorithms can be misled by irrelevant input features, resulting in lower 
performance [20]. FS methods are one of the most significant pre-processing phases 
to succeed the anomaly detection models [21]. Using optimized subset features not 
only improves the accuracy and detection rate of the classifier but also reduces the 
execution time, which can help develop a lightweight model that can detect 
malicious attacks in a real-time network. In addition, avoiding the curse of 
dimensionality through the FS methods makes the model less prone to overfitting 
problem. Thus, removing significant noisy and informationless features has gained 
the attention of many researchers to use FS strategies in many cybersecurity 
intelligence solutions to achieve a high model performance using ML tasks [22]. 
This study used three FS approaches: RFE, MI and ANOVA. These methods 
represent both wrapper and filter techniques for feature selection. 

RFE operates as a wrapper-type FS algorithm, using a specific ML algorithm within 
its core to facilitate FS [23]. It involves searching for a subset of features by initially 
including all features from the training dataset and then removing features until the 
desired number remains. This is achieved by fitting the given ML algorithm used in 
the model's core, ranking features by importance, discarding the least important 
features, and re-fitting the model. This process is repeated until a specified number 
of features remains [24]. RFE is popular due to its ease of configuration and usage 
and its effectiveness in selecting the most relevant features for predicting the target 
variable within a training dataset. In this research, ExtraTrees is used as an estimator 
for RFE. 

In contrast, as multivariate and univariate filter methods, MI and ANOVA rely on 
statistical relationships in the data to select features without any learning model 
[25]. MI quantifies how much knowing one variable reduces uncertainty about 
another variable. It is a widely used criterion in FS, determining the relevance 
between features and target classes. Features with high MI amongst themselves are 
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redundant [20, 26]. In FS, the focus is on the mutual information between candidate 
features and the target variable. A higher value of this information indicates that the 
feature is highly relevant to predicting the target. To avoid redundant features, the 
MI between features can be used where highly redundant features have higher MI 
value.  In many MI-based filters, the objective is to maximize the relevance term 
while minimizing the redundancy term. ANOVA, a statistical technique, compares 
the means between two or more data groups. It tests the null hypothesis that the 
means of all groups are equal against the alternative hypothesis that at least one 
group's mean is different from the others. The F-test statistic is calculated as the 
ratio of the between-group variance (𝑣𝑣𝑣𝑣𝑟𝑟𝐵𝐵𝐵𝐵) to the within-group variance (𝑣𝑣𝑣𝑣𝑟𝑟𝑊𝑊𝑊𝑊) 
[27]: 

BG

WG

var
var

F =         (2) 

In FS for binary classification, the F-test ranks the importance of each feature by its 
ability to differentiate between the two classes. A p-value obtained from the  
F-distribution assesses the test's significance. Features with high F-values and low 
p-values are selected for inclusion in the classification model [28]. The diversity of 
these approaches enables a thorough evaluation of FS techniques and their potential 
benefits for Anomaly-based NIDS. 

3.5 Ensemble Method Classifier (ExtraTrees) 

Machine learning algorithms can classify traffic as normal or under attack. Their 
ability to model unknown patterns makes ML suitable for identifying new attacks. 
Once trained, these models can accurately classify unknown traffic patterns and take 
proactive measures to mitigate anomalies [29]. This research adopts a supervised 
approach using the labeled NetFlow dataset. Normal traffic was assigned to class 0, 
anomalies were labeled as class 1, and the traffic label represents the target variable 
y. Ensemble-based methods are preferred for classifying unseen instances, as they 
demonstrate superior performance across a wide range of data sizes or types in 
intrusion detection [30]. To carry out this classification task, an ExtraTrees 
ensemble classifier was used as it belongs to the "trees" family. It has demonstrated 
reliable performance in NIDS datasets, allowing for a valid comparison with [6]. 
ExtraTrees is known for reducing overfitting and improving performance [31]. This 
study selected the ExtraTrees classifier, employing 50 randomized decision tree 
estimators. 
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4 Results and Discussion 

The experimentation phase involved a hardware setup consisting of an 11th Gen 
Intel(R) Core (TM) i7-11800H processor running at a frequency of 2.30G Hz.  
The system had 16GB of RAM and an NVIDIA RTX 3060 GPU. The Python 
programming language (3.9.16) and the Scikit-learn platform (1.2.1) were used. For 
this study, seven metrics were made to ensure a comprehensive assessment. These 
metrics are based on the confusion matrix with four conditions under binary 
classification: TP – True Positive, TN – True Negative, FP – False Positive, FN – 
False Negative. The accuracy of the proposed ML algorithm can be defined as [10]: 

Acc = (TP+TN)/(TP+FP+TN+FN),     (3) 

while True Positive Rate (TPR or Recall) is [10]: 

TPR (Recall) = TP/(TP+FN).      (4) 

Precision (Prec) is defined as [10]: 

Prec = TP/(TP+FP),       (5) 

and False Alarm Rate (FAR or False Positive Rate) can be calculated as [10]: 

FAR = FP/(FP+TN).       (6) 

F1-Score is calculated using Recall and Precision as [10]: 

F1-Score = 2 × (Recall×Prec / Recall+Prec)     (7) 

The dependence between False Positive Rate and True Positive Rate can be 
represented as a curve showing the classifier's performance between error costs and 
class distributions. Area Under the Curve (AUC) shows the accuracy of the model 
estimation to be obtained as a result of the classification [10]: 

 AUC =∫ TPR(FAR) dFAR
1

0       (8) 

In order to compare the complexity of the proposed method, Score time is used, and 
it refers to the duration required for predicting a single test sample. In this context, 
a “single test sample” is an individual network flow or record in the test dataset. 
The Score time was calculated by timing the prediction process for the entire test 
set and then dividing it by the number of samples, rather than selecting a specific 
individual sample. This method ensures a more representative measure of prediction 
speed across varied network records in the dataset. It should be noted that while 
GPU acceleration was used for model training, the Score time refers to CPU-based 
prediction performance. 

The experimental design was structured into two primary approaches, with and 
without CA, as shown in Figure 1. These approaches were used to evaluate the 
performance of the FS methods MI, RFE, and ANOVA. 
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4.1 Experiment 1 

After the preprocessing step, correlation coefficients for both feature-feature and 
feature-target variables were calculated, as shown in Figure 2. Features with 
absolute correlation coefficients (feature-feature) greater than 0.8 were identified. 
To ensure redundancy reduction, only one feature was retained within each group 
of correlated features, while the remaining features were eliminated from the 
analysis. 

Based on the obtained results, f31 was retained over f5 and f6, as they were highly 
correlated with f31 and with each other. In the case of f22 and f21, f22 was chosen 
as it showed a higher correlation with y. Similarly, f24 was selected over f23 due to 
its higher correlation with y. In the case of f7, f13, f15 and f34 they were favored 
over f8, f14, f18 and f35, respectively. This decision was based on the fact that each 
pair of features exhibited a high correlation and shared the same correlated value 
with the target variable y. As a result, the following features were removed for 
further analysis: f5, f6, f8, f14, f18, f21, f23, f35, resulting in a set of 31 features. In 
the next step, the three methods for FS (RFE, ANOVA and MI) are implemented 
with various numbers of selected features (4, 8, 14, 20 and 26). The selected features 
are given in Table 2. 

Table 2 
FS features index results for 31 features set after CA 

Methods 4 8 14 20 26 

RFE 

f2, 
f10, 
f13, 
f32 

f2, f7, f10, 
f13, f15, 
f17, f32, 

f33 

f2, f7, f9, f10, 
f13, f15, f16, 
f17, f25, f26, 

f32, f33, f34, f36 

f1, f2, f3, f4, f7, f9, f10, 
f13, f15, f16, f17, f25, 
f26, f27, f28, f32, f33, 

f34, f36, f39 

f1, f2, f3, f4, f7, f9, f10, f11, 
f12, f13, f15, f16, f17, f24, 
f25, f26, f27, f28, f29, f32, 
f33, f34, f36, f37, f38, f39 

ANOVA 

f2, 
f10, 
f11, 
f17 

f2, f7, f9, 
f10, f11, 
f15, f17, 

f36 

f2, f7, f9, f10, 
f11, f12, f13, 
f15, f16, f17, 

f25, f26, f33, f36 

f1, f2, f7, f9, f10, f11, 
f12, f13, f15, f16, f17, 
f24, f25, f26, f27, f33, 

f34, f36, f37, f39 

f1, f2, f3, f7, f9, f10, f11, f12, 
f13, f15, f16, f17, f24, f25, 
f26, f27, f28, f29, f30, f31, 
f32, f33, f34, f36, f37, f39 

MI 

f3, 
f13, 
f15, 
f25 

f2, f3, f13, 
f15, f16, 
f25, f26, 

f32 

f1, f2, f3, f4, f10, 
f11, f13, f15, 
f16, f17, f25, 
f26, f32, f33 

f1, f2, f3, f4, f7, f9, f10, 
f11, f13, f15, f16, f17, 
f25, f26, f27, f32, f33, 

f36, f37, f38 

f1, f2, f3, f4, f7, f9, f10, f11, 
f12, f13, f15, f16, f17, f22, 
f24, f25, f26, f27, f28, f31, 
f32, f33, f34, f36, f37, f38 

Analyzing the selected features by all three methods in Table 2, it can be observed 
an increasing number of common features as the subset size grows larger. For the 
8-feature subset, the intersection includes features f2 and f15. For the 14-feature 
subset, in addition to features f2 and f15, the intersection expands to include features 
f10, f13, f16, f17, f25, f26, and f33 while for the 20-feature subset, additional 
features f1, f7, f9, f27, and f36 are consistently selected across all three methods. 
Finally, for the 26-feature subset, the substantial features: f3, f11, f12, f24, f28, f32, 
f34 and f37 are added. The selected features in all analysis consist of information 
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that distinguishes normal and traffic under attack. Binary classification experiments 
were conducted using the selected features for different set sizes. To reliably 
evaluate the datasets, five cross-validation splits were conducted and the average 
metrics were collected. The results of this experiment are listed in Table 3 together 
with all 39 features set. 

Table 3 
Binary classification results using features selected after correlation analysis 

Number of features 4 8 14 20 26 31 39 

Acc 
RFE 0.9585 0.9813 0.9790 0.9790 0.9797 

0.9797 0.9797 ANOVA 0.8916 0.9692 0.9786 0.9788 0.9792 
Mut inf 0.9637 0.9783 0.9815 0.9797 0.9797 

F1-score 
RFE 0.9584 0.9812 0.9789 0.9789 0.9797 

0.9797 0.9797 ANOVA 0.8916 0.9691 0.9785 0.9787 0.9791 
Mut inf 0.9636 0.9783 0.9814 0.9797 0.9797 

Prec 
RFE 0.9583 0.9806 0.9783 0.9783 0.9791 

0.9791 0.9791 ANOVA 0.8970 0.9685 0.9779 0.9781 0.9785 
Mut inf 0.9631 0.9776 0.9808 0.9791 0.9791 

Recall 
RFE 0.9609 0.9823 0.9799 0.9798 0.9806 

0.9806 0.9806 ANOVA 0.8968 0.9698 0.9795 0.9797 0.9800 
Mut inf 0.9655 0.9795 0.9825 0.9806 0.9806 

AUC 
RFE 0.9866 0.9973 0.9938 0.9938 0.9948 

0.9948 0.9948 ANOVA 0.9560 0.9904 0.9936 0.9937 0.9940 
Mut inf 0.9904 0.9971 0.9974 0.9948 0.9948 

FAR % 
RFE 0.6098 0.3589 0.8282 0.8469 0.7682 

0.7661 0.7756 ANOVA 3.3782 2.1313 0.8552 0.8378 0.8261 
Mut inf 1.0936 0.4822 0.4097 0.7645 0.7686 

Score time 
(µs) 

RFE 55.3298 73.7132 101.4184 107.5398 105.7835 
103.8625 112.0425 ANOVA 59.9140 99.0251 100.8816 108.9671 109.2872 

Mut inf 80.9242 77.9979 88.5148 103.1207 94.9661 

After applying CA and removing highly correlated features, the performance of the 
FS methods was compared on the reduced 31-feature set with the complete set. As 
shown in Table 3, the results indicate that using 31 features, obtained after CA, 
yields similar results to the complete 39-features set across various metrics. 
Furthermore, the reduced feature set exhibited a lower FAR, decreasing by 1.22%, 
and a reduced scoring time of approximately 7.30%. 

Upon applying the FS methods and analyzing the results, it was observed that the 
MI and RFE methods yielded the best and closest results using 14 and 8 features, 
respectively. Moreover, these subsets outperformed both the 31-feature and the  
39-features sets. For features greater than 14, the MI method provides the best 
results according to analyzed metrics while for 8 features, the RFE method shows 
the highest performance. The MI method gives the highest metrics values, except 
for FAR and Score time where features selected by RFE exhibit the best results. 
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It can be noticed that the RFE method with 8 selected features achieved a decrease 
of 53.15% in FAR and a decrease in scoring time of 29.03% compared to the 31-
feature set. In contrast, MI with 14 features achieved a decrease of 46.52% in FAR 
and a gain in scoring time of 14.78% compared to the 31-feature set. However, 
ANOVA started from 8 features to provide closer results on all analyzed metrics to 
the 31-feature set, but it consistently exhibited higher FAR and scoring time. In 
conclusion, the RFE method with 8 features presents the optimal subset and 
achieves the best results. It exhibits a lower FAR, crucial in anomaly detection, and 
a lower scoring time. Furthermore, it closely matches the performance of MI with 
14 features across other evaluation metrics. 

4.2 Experiment 2 

In the second approach, FS was directly applied to the 39 features, resulting in the 
selected features 4, 8, 14, 20, 26 and 31. The results are detailed in Table 4. 

Table 4 
FS features index results for all 39 features 

Methods 4 8 14 20 26 31 

RFE 
f2, 

f10, 
f13, 
f32 

f2, f8, 
f10, f13, 
f14, f15, 
f18, f32 

f2, f7, f8, f9, 
f10, f13, 
f14, f15, 
f16, f17, 
f18, f32, 
f33, f36 

f1, f2, f5, f7, f8, 
f9, f10, f13, f14, 

f15, f16, f17, 
f18, f25, f26, 
f32, f33, f34, 

f35, f36 

f1, f2, f3, f4, f5, f6, 
f7, f8, f9, f10, f13, 
f14, f15, f16, f17, 
f18, f25, f26, f27, 
f28, f32, f33, f34, 

f35, f36, f37 

f1, f2, f3, f4, f5, f6, f7, 
f8, f9, f10, f11, f12, f13, 
f14, f15, f16, f17, f18, 
f25, f26, f27, f28, f29, 
f32, f33, f34, f35, f36, 

f37, f38, f39 

ANOVA 
f2, 

f10, 
f11, 
f17 

f2, f7, 
f8, f9, 

f10, f11, 
f17, f36 

f2, f7, f8, f9, 
f10, f11, 
f13, f15, 
f16, f17, 
f18, f26, 
f33, f36 

f2, f7, f8, f9, 
f10, f11, f12, 
f13, f14, f15, 
f16, f17, f18, 
f23, f24, f25, 
f26, f33, f36, 

f37 

f1, f2, f6, f7, f8, f9, 
f10, f11, f12, f13, 
f14, f15, f16, f17, 
f18, f22, f23, f24, 
f25, f26, f27, f33, 
f35, f36, f37, f39 

f1, f2, f5, f6, f7, f8, f9, 
f10, f11, f12, f13, f14, 
f15, f16, f17, f18, f22, 
f23, f24, f25, f26, f27, 
f28, f29, f31, f33, f34, 

f35, f36, f37, f39 

MI 
f13, 
f14, 
f15, 
f18 

f2, f3, 
f13, f14, 
f15, f16, 
f18, f25 

f2, f3, f5, 
f10, f11, 
f13, f14, 
f15, f16, 
f17, f18, 

f25, f26, f32 

f1, f2, f3, f4, f5, 
f6, f9, f10, f11, 
f13, f14, f15, 
f16, f17, f18, 
f25, f26, f27, 

f32, f33 

f1, f2, f3, f4, f5, f6, 
f7, f8, f9, f10, f11, 
f13, f14, f15, f16, 
f17, f18, f25, f26, 
f27, f32, f33, f34, 

f36, f37, f38 

f1, f2, f3, f4, f5, f6, f7, 
f8, f9, f10, f11, f13, f14, 
f15, f16, f17, f18, f21, 
f22, f24, f25, f26, f27, 
f28, f32, f33, f34, f35, 

f36, f37, f38 

For the 8-feature subset, the only common feature across all three methods is f2, 
while in the 14-feature subset, common features across all methods include f2, f10, 
f13, f15, f16, f17, and f18. The 20-feature subset includes the above features and 
additional ones: f9, f14, f25, f26, and f33. Expanding to the 26-feature subset, the 
common features across all three methods include f1, f6, f7, f8, f27, f36, and f37. 
Finally, in the 31-feature subset, the common features across all three methods also 
include f5, f11, f28, f34, and f35. As in experiment 1, the selected features represent 
important information for benign and anomalous traffic. The results obtained for 
the binary classification technique using the entire feature space as used in [6], 
including FS subsets without CA, are presented in Table 5. 
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Table 5 
Binary classification results using features selected without correlation analysis 

Number of features 4 8 14 20 26 31 39 

Acc 
RFE 0.9585 0.9795 0.9785 0.9789 0.9791 0.9797 

0.9797 ANOVA 0.8916 0.9161 0.9782 0.9788 0.9788 0.9788 
Mut inf 0.9557 0.9739 0.9813 0.9816 0.9797 0.9797 

F1-score 
RFE 0.9584 0.9794 0.9784 0.9789 0.9791 0.9809 

0.9797 ANOVA 0.8916 0.9160 0.9781 0.9787 0.9787 0.9800 
Mut inf 0.9556 0.9739 0.9813 0.9816 0.9797 0.9797 

Prec 
RFE 0.9583 0.9788 0.9778 0.9783 0.9785 0.9791 

0.9791 ANOVA 0.8970 0.9158 0.9775 0.9781 0.9781 0.9781 
Mut inf 0.9550 0.9732 0.9806 0.9809 0.9791 0.9790 

Recall  
RFE 0.9609 0.9806 0.9794 0.9798 0.9800 0.9806 

0.9806 ANOVA 0.8968 0.9181 0.9791 0.9796 0.9797 0.9797 
Mut inf 0.9569 0.9752 0.9823 0.9826 0.9806 0.9806 

AUC 
RFE 0.9866 0.9949 0.9935 0.9938 0.9939 0.9948 

0.9948 ANOVA 0.9560 0.9623 0.9933 0.9937 0.9938 0.9938 
Mut inf 0.9879 0.9959 0.9974 0.9975 0.9948 0.9948 

FAR % 
RFE 0.6098 0.5011 0.8436 0.8532 0.8339 0.7744 

0.7756 ANOVA 3.3782 5.3901 0.8762 0.8483 0.8527 0.8503 
Mut inf 2.6874 0.8664 0.4263 0.4038 0.7691 0.7730 

Score time 
(µs) 

RFE 59.7418 70.9827 96.2522 106.7953 107.5689 109.7750 
112.0425 ANOVA 58.7220 107.1806 100.9185 103.1657 105.6958 110.5406 

Mut inf 56.2335 92.5945 89.6046 85.6696 104.7706 108.3073 

As in experiment 1, the MI method provides the highest or equally high 
performance as the RFE method for 14 or higher selected features. For 4 and 8 
features based on accuracy, F1-score, precision, recall and FAR, the RFE method 
provides the highest performance, while MI is chosen as best according to AUC. MI 
and RFE are the optimal choices for Score time for 4 and 8 features, respectively 

The subset of 20 features selected by MI achieved the optimal performance in 
accuracy, F1-score, precision, recall, AUC and FAR, while it performed the second 
lowest scoring time. Furthermore, MI with 14 features delivered similar results to 
the 20-feature subset and outperformed the use of all 39 features. RFE performed 
well with only 8 features, achieving results close to those obtained with the full 
feature set. However, MI outperformed RFE in terms of performance metrics when 
using 14 and 20 features. ANOVA method performed well starting from 14 features 
but consistently underperformed compared to other methods, including the full 
feature set, especially in terms of FAR. Given the importance of FAR in anomaly 
detection, the 20-feature subset selected by MI is the optimal choice for binary 
classification and anomaly detection tasks. It achieves high performance across 
various metrics while maintaining a low FAR. 
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4.3 Comparative Analysis 

The experiments show that in most cases, RFE and MI methods provide reasonably 
good performances (accuracy, F1-score, recall, precision and AUC). In contrast, 
ANOVA's performance on these metrics was lower when few features were used. 
For FAR, MI and RFE maintain relatively stable and low FARs as the number of 
features is reduced while ANOVA leads to higher FARs with fewer features. As 
expected, there is a consistent overall increase in Score time as more features are 
added. The MI and RFE methods usually yield similar results across all evaluation 
metrics. Table 5 and Table 3 indicate that the MI and RFE methods achieve 
performance similar to the full feature set when only 8 selected features are used. 
In certain cases, these techniques yield marginal improvements over the models 
using all features, implying the successful elimination of distracting or redundant 
features. Conversely, the ANOVA method requires approximately 14 features to 
approach the performance levels of the full feature set. 

When considering the scenario with CA, it was found that using the 31-feature set 
produced similar results to the complete 39-feature set across various metrics while 
also demonstrating lower FAR and scoring time. This suggests that CA effectively 
reduced the feature set without significantly compromising the overall performance. 
It can be argued that the performance was improved by dropping the highly 
correlated features. For the best subset of features, our findings suggest that RFE 
with 8 features, in conjunction with CA, achieved close results compared to MI with 
20 features without CA. Specifically, the RFE method with 8 features, compared to 
all 39 features, demonstrated an increase in accuracy, F1-score, recall, precision and 
AUC by 0.16%, 0.15%, 0.17%, 0.15% and 0.25%, respectively, while for MI with 
20 features provides an increase by 0.19%, 0.19%, 0.20%, 0.18% and 0.27% in 
these metrics, respectively. Furthermore, considering the FAR, the RFE method 
with 8 features significantly decreased it by 53.73%, while the MI method with 20 
features reduced it by 47.94% compared to the 39-features set. Regarding 
computational efficiency, RFE with 8 features outperformed MI with 20 features, 
decreasing the Score time by 34.21%, whereas the MI method showed a decrease 
of 23.54%. Given the significance of minimizing FAR while maintaining NIDS 
accuracy, the results indicate a preference for RFE with 8 features along with CA. 

Conclusions 

This study demonstrates the efficiency of CA and FS techniques for enhancing 
anomaly-based NIDS. The NF-UQ-NIDS-v2 NetFlow dataset was leveraged, 
representing an advance over prior work since this benchmark dataset has not been 
previously explored using FS methods. Two approaches were pursued – one 
involved applying FS directly to the initial feature set of 39 features, while the 
second approach implemented FS after conducting CA. Our approach involved 
evaluating the correlation between features, analyzing the effectiveness of different 
FS methods, and comparing the results obtained from the selected feature subsets 
with the full set of features. CA effectively reduced the feature sets without 
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significantly compromising overall performance. The reduced 31 sets after CA 
yielded comparable results to the full 39 sets while improving FAR and scoring 
time. This indicates that CA successfully eliminated redundant attributes to refine 
the feature space. RFE, MI, and ANOVA methods then selected optimized feature 
subsets from the reduced and full sets. An ExtraTrees ensemble classifier performed 
binary classification of benign and attack traffic. ANOVA did not perform as well 
as MI and RFE in selecting the most informative features for NIDS. Both MI and 
RFE exhibited superior performance in improving detection accuracy, reducing 
FAR, and optimizing computational resources. Results indicate RFE filtering on 8 
of features leads to an improvement in accuracy of 0.16% compared to the 39 
features, and a decrease of FAR rate by 53.73%, alongside a time gain of 34.21%. 

While the NF-UQ-NIDS-v2 dataset provided a comprehensive evaluation, future 
work will explore testing on additional datasets to validate the generalizability of 
our findings across different network environments. Further research can extend 
this work by exploring the use of ensemble classifiers and emerging FS methods to 
improve NIDS performance further. Additionally, it can be explored how these 
techniques can be applied to multiclass classification. 
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