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Abstract: This paper introduces a novel approach to control single-phase grid-connected 
inverters (GCIs) using artificial intelligence (AI), specifically employing a deep learning-
based method with Gated Recurrent Unit (GRU) networks. The proposed GRU-based 
controller is trained offline using TensorFlow and Keras libraries in Python, and is 
subsequently implemented for real-time applications. Comparative analysis between the 
GRU-based controller and the conventional PI controller reveals distinct advantages of the 
former, including improved transient response and reduced oscillations. Furthermore, the 
GRU-based controller demonstrates superior performance, reducing the total harmonic 
distortion (THD) and efficiently regulating current in the presence of varying grid 
conditions. 
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1 Introduction 

Nowadays, renewable energy sources, such as photovoltaic (PV) systems, are 
gaining increasing importance due to their availability and environmental 
friendliness [1]. These systems rely on sophisticated power electronic converter 
systems for seamless integration into the grid. Contemporary technological 
advancements have made it feasible to achieve a distributed setup of single-phase 
Grid-Connected Inverters (GCIs), offering superior efficiency and reliability [2-4]. 
In residential areas served by a single-phase distribution system, the integration of 
solar PV distributed generation (DG) plants with the smart grid commonly employs 
a single-phase GCI [5]. However, this integration process could potentially impact 
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the overall performance and integrity of the current injected into the grid. Therefore, 
researchers are proactively working to overcome these challenges, ensuring that 
technological progress not only enhances efficiency but also upholds the stability 
and reliability of the power infrastructure [6-7]. Among the challenges faced by 
researchers is the reduction of harmonics in the grid current generated by the 
interaction between the GCI and the grid or arising from non-linear loads in the 
system. Total Harmonic Distortion (THD) serves as the metric for measuring the 
extent of distortion in the injected current attributed to harmonics in the signal [8]. 
In grid-connected systems, the THD should be maintained at levels below 5% for 
optimal power quality [9]. Excessive harmonic distortion can lead to various issues 
such as increased losses, interference with communication systems, and degradation 
of power factor. Numerous control techniques exist to enhance overall performance, 
tolerate system disturbances, and mitigate THD within the desired range [5]. 
Conventional control methodologies, such as the proportional-integral (PI) 
controller have been widely used. This controller facilitates separate control of 
currents along the direct and transverse axis, enabling efficient tracking of DC 
signals. However, this approach exhibited certain limitations in power quality that 
could impact the system's performance and stability. Recently, AI controllers have 
garnered significant interest in the field of control system [10-16]. For instance, 
artificial neural network (ANN)-based control techniques have been widely studied 
for power electronics control. One study used recurrent neural networks (RNNs) to 
control grid-connected converters [17], while convolutional neural networks 
(CNNs) have been employed in grid-connected PV systems to enhance the quality 
of the current injected into the grid [18]. These studies underscore the effectiveness 
of AI-based control approaches. However, no research has yet explored the use of 
gated recurrent unit (GRU) networks for controlling single-phase grid-connected 
inverters (GCIs). The main contribution of this work is to introduce a GRU-based 
control approach for a single-phase GCI in electric power system applications. This 
proposed method gathers data from a well-tuned PI current controller via Simulink 
and employs it for training the GRU networks. The GRU is trained with an input 
window of prior data, aiming to minimize the disparity between the forecasted and 
the next measured value. Sequential methods forecast a single subsequent value 
based on the window of prior data. The complete training process is implemented 
in Python employing the TensorFlow and Keras libraries. The proposed GRU 
controller is then compared with the conventional PI controller and the CNN-based 
control approach presented in [18]. 

2 Methodology 

In this section, we present our proposed methodology for implementing GRU neural 
networks to control single-phase GCI, as illustrated in Figure 1. The methodology 
begins by extracting multivariate time series data from the conventional PI 
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controller in Simulink. Next, in Python, the data are divided into a training dataset 
and a testing dataset. First, the GRU model is trained until it achieves optimal 
predictive capabilities. After training, the model's performance is evaluated using 
the testing dataset. Following this learning process in Python, the constructed GRU 
model is applied in Simulink for online implementation. 

 
Figure 1 

Methodological framework for implementing GRU neural networks in controlling single-phase GCI 

3 Conventional Control Approach 

3.1 Single-Phase GCI System Description and Mathematical 
Model 

Figure 2 depicts the system structure of a single-phase GCI, which consists of four 
insulated gate bipolar transistors (IGBTs). The power circuit includes a DC voltage 
source, a single-phase GCI, 𝐿𝐿-type filters with internal resistance 𝑅𝑅, and the grid. 

 
Figure 2 

Single-phase GCI 
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3.2 Mathematical Model in the d-q Frame 

To formulate the mathematical model of a single-phase system with an 𝐿𝐿 filter in 
the stationary reference frame (𝛼𝛼,𝛽𝛽), it is necessary to generate an imaginary signal 
that is orthogonal to the original single signal. Since a single-phase system contains 
only one signal, a transport delay block is employed to create the imaginary signal 
𝛽𝛽. This is achieved by delaying the primary signal 𝛼𝛼 by one-fourth of the 
fundamental period. Therefore, the mathematical model of the system in the 
stationary reference frame can be expressed in (1). 

�
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼 = 𝐿𝐿 𝑖𝑖𝛼𝛼

𝑑𝑑𝑑𝑑
+ 𝑅𝑅𝑖𝑖𝛼𝛼 + 𝑉𝑉𝑔𝑔𝛼𝛼

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽 = 𝐿𝐿
𝑖𝑖𝛽𝛽
𝑑𝑑𝑑𝑑

+ 𝑅𝑅𝑖𝑖𝛽𝛽 + 𝑉𝑉𝑔𝑔𝛽𝛽
   (1) 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖, 𝑖𝑖 and 𝑉𝑉𝑔𝑔 represent the inverter’s output voltage, current and grid voltage, 
respectively. The dynamics of the GCI is described by the state-space equations in 
(2): 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵,
𝑦𝑦 = 𝐶𝐶𝐶𝐶

                                                                                       (2) 

Where: 

𝑥𝑥 = �
𝑖𝑖𝛼𝛼
𝑖𝑖𝛽𝛽�, 𝐴𝐴 = �

−𝑅𝑅
𝐿𝐿

0

0 −𝑅𝑅
𝐿𝐿

�, 𝐵𝐵 = �
1
𝐿𝐿

0

0 1
𝐿𝐿

�, 𝑢𝑢 = �
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼 − 𝑉𝑉𝑔𝑔𝛼𝛼
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝛽𝛽 − 𝑉𝑉𝑔𝑔𝛽𝛽

� and 𝐶𝐶 = �1 0
0 1�. 

Applying the Laplace transform to the dynamics, the laplace transfer function of the 
system is presented in (3): 

𝑖𝑖(𝑠𝑠)
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖(𝑠𝑠)−𝑉𝑉𝑔𝑔(𝑠𝑠)

= 1
𝑅𝑅𝑓𝑓+𝐿𝐿𝑓𝑓𝑠𝑠

                                                                            (3) 

To convert (1) and (2) to a 𝑑𝑑𝑑𝑑 reference frame it is important to highlight a 
distinctive characteristic of the dq frame. In this frame, a space vector with an 
unchanging magnitude that rotates at the same speed as the frame, exhibits constant 
𝑑𝑑 and 𝑞𝑞 components. Conversely, if this vector rotates at a different rate or exhibits 
a time-varying magnitude, it gives rise to pulsating elements. Consequently, within 
a 𝑑𝑑𝑑𝑑 reference frame undergoing rotation at the angular speed 𝜔𝜔. (1) can be 
expressed as depicted in (4)[19] 

�
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑓𝑓

𝑖𝑖𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑅𝑅𝑓𝑓𝑖𝑖𝑑𝑑 + 𝑉𝑉𝑔𝑔𝑔𝑔 − 𝜔𝜔𝐿𝐿𝑖𝑖𝑞𝑞

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑓𝑓
𝑖𝑖𝑞𝑞
𝑑𝑑𝑑𝑑

+ 𝑅𝑅𝑓𝑓𝑖𝑖𝑞𝑞 + 𝑉𝑉𝑔𝑔𝑔𝑔 + 𝜔𝜔𝐿𝐿𝑖𝑖𝑑𝑑
                                                            (4) 

and state-space equations becomes as illustrated in (5): 
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�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐴𝐴𝑐𝑐𝑥𝑥 + 𝐵𝐵𝑐𝑐𝑢𝑢,
𝑦𝑦 = 𝐶𝐶𝑐𝑐𝑥𝑥

                                                                       (5) 

Where: 
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𝑖𝑖𝑞𝑞
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𝐿𝐿𝑓𝑓

0

0 1
𝐿𝐿𝑓𝑓

�, 𝑢𝑢 = �
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑔𝑔𝑔𝑔
𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑔𝑔𝑔𝑔

� and 𝐶𝐶𝑐𝑐 = �1 0
0 1�. 

3.3 Conventional PI Controller 

The structure of the PI controller scheme for a single-phase GCI is illustrated in 
Figure 3. The output current from the inverter is decoupled into active and reactive 
currents 𝑖𝑖𝑑𝑑 and 𝑖𝑖𝑞𝑞 respectively, as expressed in (4). Each current is independently 
controlled through a PI controller, one controller regulates active current 𝑖𝑖𝑑𝑑, while 
the other focuses on controlling the reactive current 𝑖𝑖𝑞𝑞. Assuming a constant DC 
source voltage, the reference active and reactive currents are specified as user input 
commands. These reference signals are then compared to the actual 𝑑𝑑- and 𝑞𝑞-axis 
currents, and the controller’s objective is to reduce the absolute root-mean-square 
(RMS) error. The output voltage control signals 𝑉𝑉𝑐𝑐𝑐𝑐 and 𝑉𝑉𝑐𝑐𝑐𝑐 are converted to the 
stationary frame 𝑉𝑉𝑐𝑐𝛼𝛼 and 𝑉𝑉𝑐𝑐𝛼𝛼 using (6). The 𝑉𝑉𝑐𝑐𝛼𝛼 signal is used for the generation of 
pulse width modulation (PWM) signal to control the GCI. 

 

The structure of PI-based d-q current control scheme 

�
𝑉𝑉𝑐𝑐𝛼𝛼 = 𝑉𝑉𝑐𝑐𝑐𝑐cos𝜔𝜔𝑡𝑡 − 𝑉𝑉𝑐𝑐𝑐𝑐sin𝜔𝜔𝑡𝑡
𝑉𝑉𝑐𝑐𝛽𝛽 = 𝑉𝑉𝑐𝑐𝑐𝑐sin𝜔𝜔𝑡𝑡 + 𝑉𝑉𝑐𝑐𝑐𝑐cos𝜔𝜔𝑡𝑡                                                                             (6) 

The control law is given by (7) 

𝑢𝑢𝑑𝑑,𝑞𝑞(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒𝑑𝑑,𝑞𝑞(𝑡𝑡) + 𝐾𝐾𝑖𝑖 ∫ 𝑒𝑒𝑑𝑑,𝑞𝑞(𝑡𝑡)𝑑𝑑𝑑𝑑                                                                   (7) 

The Laplace transfer function for the PI controller is provided. in (8): 

𝐺𝐺𝑃𝑃𝑃𝑃(𝑠𝑠) = 𝑘𝑘𝑝𝑝 + 𝑘𝑘𝑖𝑖
𝑠𝑠

                                                                           (8) 
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Where 𝑘𝑘𝑝𝑝 is the proportional gain and 𝑘𝑘𝑖𝑖 is the integral gain. The open-loop Laplace 
transfer function of the system incorporating the PI controller is obtained by 
multiplication (3) by (8). as shown in (9): 

𝐺𝐺𝑂𝑂(𝑠𝑠) = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃(𝑠𝑠) = (𝑘𝑘𝑝𝑝 + 𝑘𝑘𝑖𝑖
𝑠𝑠

)( 1
𝑅𝑅𝑓𝑓+𝐿𝐿𝑓𝑓𝑠𝑠

)                                                             (9) 

The closed-loop Laplace transfer function of the whole system is given by (10) 

⎩
⎪
⎨

⎪
⎧𝐺𝐺𝑐𝑐𝑐𝑐(𝑠𝑠) = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃(𝑠𝑠)

1+𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑃𝑃𝑃𝑃(𝑠𝑠)

𝐺𝐺𝑐𝑐𝑐𝑐(𝑠𝑠) = 𝑠𝑠𝑘𝑘𝑝𝑝+𝑘𝑘𝑖𝑖
𝑠𝑠2𝐿𝐿𝑓𝑓+𝑠𝑠(𝑅𝑅𝑓𝑓+𝑘𝑘𝑝𝑝)+𝑘𝑘𝑖𝑖

                                                                       (10) 

The proportional and integral gains 𝑘𝑘𝑝𝑝 and 𝑘𝑘𝑖𝑖 are determined using the modulus 
optimum approach as presented in (11) and (12) respectively[20]. 

𝑘𝑘𝑝𝑝 = 𝜔𝜔𝑐𝑐𝑇𝑇𝑖𝑖𝑅𝑅𝑓𝑓�(1 + 𝑇𝑇𝑎𝑎2𝜔𝜔𝑐𝑐2)                                                                                  (11) 

𝑘𝑘𝑖𝑖 = 𝑘𝑘𝑝𝑝
𝑇𝑇𝑖𝑖

                                                                                                                 (12) 

Where 𝜔𝜔𝑐𝑐 is the cut off frequency, and 𝑇𝑇𝑖𝑖 is the time constant of the system as 
illustrated in (13), and 𝑇𝑇𝑎𝑎 the first order delay of the inverter, given by (14): 

𝑇𝑇𝑖𝑖 =
𝐿𝐿𝑓𝑓
𝑅𝑅𝑓𝑓

                                                                                                                 (13) 

𝑇𝑇𝑎𝑎  =  1
2𝑓𝑓𝑠𝑠 

                                                                                                              (14) 

4 Proposed GRU-based Control 

The proposed GRU based controller design for a single-phase GCI implements a 
fast inner current-loop control function [21] as shown in Figure 4, the controller is 
trained offline using data collected from the conventional PI-controller.  
The proposed GRU network architecture, as illustrated in Figure 5, consists an input 
layer, two GRU layers, each followed by a dropout layer, and a final output layer. 
The input layer contains six neurons that represent the measured currents 𝑖𝑖𝑑𝑑𝑑𝑑, the 
error between the desired and actual currents 𝑒𝑒𝑑𝑑𝑑𝑑, and the integrals of the error 𝑠𝑠𝑑𝑑𝑑𝑑 
as expressed in (15). 

𝑠𝑠𝑑𝑑𝑑𝑑 = ∫𝑡𝑡0 𝑒𝑒𝑑𝑑𝑑𝑑(𝑡𝑡) 𝑑𝑑𝑑𝑑.                                                                        (15) 

The specific settings for the GRU layers and dropout layers are provided at the 
bottom of each corresponding layer in Figure 5. The output layer contains two 
neurons, representing the control signals 𝑉𝑉𝑐𝑐𝑐𝑐 and 𝑉𝑉𝑐𝑐𝑐𝑐. 
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Proposed GRU based control architecture for single-phase GCI 

 

GRU network architecture 

4.1 GRU Model 

4.1.1 GRU Model Architecture 

The GRU emerges as an effective solution to the vanishing gradient problem 
encountered in traditional RNNs. Through its inventive gating mechanisms [22], 
the GRU enables selective updates and resets within the hidden state. This 
distinctive feature allows the GRU to retain relevant data while discarding irrelevant 
information, thus optimizing the acquisition of long-term dependencies in the 
learning process. Figure 6 illustrates the basic architecture of the GRU cell which 
contains two specific gates: a reset gate, and an update gate. The reset gate allows 
the model to determine which portion of the previous information should be 
forgotten, while the update gate empowers the model to decide the degree to which 
past information should influence the update of the hidden state, thereby guiding its 
propagation into the future. 
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GRU cell structure 

4.1.2 GRU Model Mathematical Formulation 

The mathematical model that describes the behavior of the GRU involves various 
equations that describe the calculations happening at each time step [23]. First let’s 
denote: ℎ𝑡𝑡 as the hidden state at time 𝑡𝑡, 𝑥𝑥𝑡𝑡 as the input state at time 𝑡𝑡, 𝑟𝑟𝑡𝑡 as the reset 
gate at time 𝑡𝑡, 𝑧𝑧𝑡𝑡 as the hidden state at time 𝑡𝑡. 

The equations used to calculate the update gate, reset gate, and hidden state of a 
GRU are as shown in (16), (17), (18), and (19): 

1. Update Gate (𝑧𝑧𝑡𝑡):  

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ⋅ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧 ⋅ ℎ𝑡𝑡−1)                                                                        (16) 

2. Reset Gate (𝑟𝑟𝑡𝑡):  

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ⋅ 𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟 ⋅ ℎ𝑡𝑡−1)                                                                        (17) 

3. Candidate Hidden State (ℎ�𝑡𝑡):  

ℎ�𝑡𝑡 = tanh(𝑊𝑊ℎ ⋅ 𝑥𝑥𝑡𝑡 + (𝑟𝑟𝑡𝑡 ⊙ (𝑈𝑈ℎ ⋅ ℎ𝑡𝑡−1)))                                  (18) 

4. Hidden State Update (ℎ𝑡𝑡):  

ℎ𝑡𝑡 = (1 − 𝑧𝑧𝑡𝑡) ⊙ℎ𝑡𝑡−1 + 𝑧𝑧𝑡𝑡 ⊙ ℎ�𝑡𝑡                                                        (19) 

The symbol ⊙ denotes Hadamard (element-wise) multiplication, 𝜎𝜎 and tanh 
represent the activation functions, sigmoid and hyperbolic tangent respectively. 
This equation combines ℎ𝑡𝑡−1 with ℎ�𝑡𝑡 based on 𝑧𝑧𝑡𝑡. If 𝑧𝑧𝑡𝑡 is close to 1, it allows for 
more information from the candidate hidden state to be included; otherwise, it 
retains more of the previous hidden state. The matrices 𝑊𝑊𝑧𝑧, 𝑊𝑊𝑟𝑟, and 𝑊𝑊ℎ are the 
weight matrices associated with the update gate, reset gate, and candidate hidden 
state, respectively.  
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Algorithm for GRU-based Control of a Grid-Connected Inverter 

1. Collect Data 

Input matrix : 𝑋𝑋 ∈ ℝ𝑀𝑀×6,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋 = {[𝑖𝑖𝑑𝑑 , 𝑒𝑒𝑑𝑑 , 𝑠𝑠𝑑𝑑 , 𝑖𝑖𝑞𝑞 , 𝑒𝑒𝑞𝑞 , 𝑠𝑠𝑞𝑞]𝑡𝑡|𝑡𝑡 = 1, . . .𝑀𝑀} 
Target matrix : 𝑌𝑌 ∈  ℝ𝑀𝑀×2,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑌𝑌 = {[𝑢𝑢𝑑𝑑 ,𝑢𝑢𝑞𝑞]𝑡𝑡 | 𝑡𝑡 = 1,2, . . . ,𝑀𝑀}. 
Predicted control outputs: 𝑌𝑌� = {𝑢𝑢�𝑑𝑑 ,𝑢𝑢�𝑞𝑞} 𝑓𝑓𝑓𝑓𝑓𝑓 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

2. Data preprocessing 

#Normalize the input and target matrices using Min-Max scaling: 
For 𝑥𝑥𝑗𝑗  𝑖𝑖𝑖𝑖 𝑋𝑋  do 

(𝑥𝑥,𝑦𝑦)𝑗𝑗,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
(𝑥𝑥,𝑦𝑦)𝑗𝑗  −  (𝑥𝑥,𝑦𝑦)𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚

(𝑥𝑥,𝑦𝑦)𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚 −  (𝑥𝑥,𝑦𝑦)𝑗𝑗 ,𝑚𝑚𝑚𝑚𝑚𝑚
 

End 

3. Model Initialization 

#Define GRU layers and dropout as follows 
For 𝒕𝒕 = 𝟏𝟏 to 𝑴𝑴 do 

#Compute the hidden state ℎ𝑡𝑡
(1) 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ⋅ 𝑥𝑥𝑡𝑡,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑈𝑈𝑧𝑧 ⋅ ℎ𝑡𝑡−1
(1) ) 

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ⋅ 𝑥𝑥𝑡𝑡,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑈𝑈𝑟𝑟 ⋅ ℎ𝑡𝑡−1
(1) ) 

ℎ�𝑡𝑡
(1) = tanh(𝑊𝑊ℎ ⋅ 𝑥𝑥𝑡𝑡,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + (𝑟𝑟𝑡𝑡 ⊙ (𝑈𝑈ℎ ⋅ ℎ𝑡𝑡−1

(1) ))) 

ℎ𝑡𝑡
(1) = (1 − 𝑧𝑧𝑡𝑡) ⊙ℎ𝑡𝑡−1

(1) + 𝑧𝑧𝑡𝑡 ⊙ ℎ�𝑡𝑡
(1) 

#𝑤𝑤𝑤𝑤𝑤𝑤ℎ ℎ𝑡𝑡1 ∈ ℝ𝑁𝑁1  , Where:𝑁𝑁1 = 50 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 
#Apply dropout layer to prevent overfitting 

ℎ𝑡𝑡
(1,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = ℎ𝑡𝑡

(1) ⊙  𝑚𝑚 
#𝑚𝑚 ∼ Bernoulli (1 − 𝑝𝑝) is a binary mask tensor, where 𝑝𝑝 is the dropout rate = 
0.1 

#Compute the hidden state ℎ𝑡𝑡
(2) 

𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧 ⋅ ℎ𝑡𝑡
(1,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + 𝑈𝑈𝑧𝑧 ⋅ ℎ𝑡𝑡−1

(2) ) 

𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟 ⋅ ℎ𝑡𝑡
(1,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + 𝑈𝑈𝑟𝑟 ⋅ ℎ𝑡𝑡−1

(2) ) 

ℎ�𝑡𝑡
(2) = tanh(𝑊𝑊ℎ ⋅ ℎ𝑡𝑡

(1,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + (𝑟𝑟𝑡𝑡 ⊙ (𝑈𝑈ℎ ⋅ ℎ𝑡𝑡−1
(2) ))) 

ℎ𝑡𝑡
(2) = (1 − 𝑧𝑧𝑡𝑡) ⊙ℎ𝑡𝑡−1

(2) + 𝑧𝑧𝑡𝑡 ⊙ ℎ�𝑡𝑡
(2) 

#𝑤𝑤𝑤𝑤𝑤𝑤ℎ ℎ𝑡𝑡2 ∈ ℝ𝑁𝑁2  , where: 𝑁𝑁2  =  50 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 
#Apply dropout layer to prevent overfitting 

ℎ𝑡𝑡
(2,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) = ℎ𝑡𝑡

(2) ⊙  𝑚𝑚 
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#Map the output using a dense layer 

𝑌𝑌� = 𝑊𝑊.ℎ𝑡𝑡
(2,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) + 𝑏𝑏 

#Where 𝑊𝑊 ∈ ℝ2×𝑁𝑁2  𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 ∈ ℝ2  . 
End 

4.1.3 Training of GRU Controller 

A total of 40,000 data points were collected and divided into two parts: 75% for 
training data and 25% as the test set. The data collection process was executed in 
Simulink, where the total simulation duration was set to 2 seconds. The sampling 
time for the system was configured as 𝑇𝑇𝑇𝑇 = 0.05𝑚𝑚𝑚𝑚. To compile the GRU model, 
adaptive momentum estimation (Adam) was selected as the optimizer and the loss 
function used was the mean squared error (MSE), with a learning rate of 0.001. 

The Adam optimizer, an extension of stochastic gradient descent, has recently 
gained widespread acceptance for deep learning applications [24], [25]. The loss 
function computes the average squared difference between the actual value 𝑦𝑦(𝑡𝑡) 
and the target value 𝑦𝑦�(𝑡𝑡), as presented in (20). 

MSE = 1
𝑁𝑁
∑𝑁𝑁
𝑖𝑖=1 (𝑦𝑦𝑖𝑖(𝑡𝑡) − 𝑦𝑦�𝑖𝑖(𝑡𝑡))2                                                         (20) 

Figure 7 illustrates the flowchart of the GRU controller's training process, where 
the model is trained offline for 300 epochs. The learning curve, shown in Figure 8, 
demonstrates the successful training of the GRU model. 

4.1.4 Computational Complexity 

The computational complexity of the proposed GRU-based controller design is 
influenced by the architecture, training data, and optimization process. The network 
consists of two GRU layers, each with 50 units, and an input layer with 6 neurons, 
processing 30,000 training samples (75% of 40,000 data points). The time 
complexity for training the GRU model is dominated by the GRU layers, which is 
approximately 𝑂𝑂(𝑇𝑇.𝑛𝑛.ℎ2), where 𝑇𝑇 is the number of training samples (30,000), 𝑛𝑛 
is the number of time steps, and ℎ is the number of GRU cells. This results in 
approximately 75 million operations per epoch. The Adam optimizer and MSE loss 
function add additional computational overhead, but their impact is relatively small 
compared to the GRU layers. Given the hardware setup of an Intel® Core™ i7-
12650H Processor, 32 GB RAM, and an RTX 3060 GPU, the training process will 
be accelerated by the GPU, especially for operations like matrix multiplications and 
backpropagation. The 32 GB of RAM ensures smooth data handling without 
memory limitations, allowing efficient training and validation of the model.  
The overall training complexity is thus manageable with the provided hardware, 
ensuring fast model convergence. 
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Figure 7 

Flowchart of the training process for GRU-based controller 

 

 

 

 

 

 

 

 

 

Figure 8 
GRU-based controller learning curve 
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5 Simulation Results and Discussion 

Table 1 provides details on the single-phase GCI system parameters, to assess the 
effectiveness of the proposed GRU controller and compare it with the conventional 
PI controller and CNN controller, a Simulink model has been created to conduct the 
necessary simulations. 

Table 1 
Single-phase GCI system parameters 

Parameter Symbol Value Unit 
DC link voltage 𝑉𝑉𝑑𝑑𝑑𝑑 400 𝑉𝑉 

Grid voltage (rms) 𝑉𝑉𝑔𝑔 230 𝑉𝑉 
Nominal grid frequency 𝑓𝑓 50 𝐻𝐻𝐻𝐻 

Filter Resistance 𝑅𝑅𝑓𝑓 0.19 Ω 
Filter inductance 𝐿𝐿𝑓𝑓 30 𝑚𝑚𝑚𝑚 

Switching frequency 𝑓𝑓𝑠𝑠 10 𝐾𝐾𝐾𝐾𝐾𝐾 

5.1 Assessment and Analysis of the Transient Response Under 
Standard Operating Conditions 

To assess the transient response of the PI controller, CNN controller and the 
proposed GRU controller, two cases were tested. In the first case, a step change in 
the direct axis current (𝑖𝑖𝑑𝑑) was initiated from 0 to 20 A, while the quadrature axis 
current (𝑖𝑖𝑞𝑞) remained at zero A. This procedure aimed to observe the impact of 
altering the 𝑖𝑖𝑑𝑑 step on 𝑖𝑖𝑞𝑞 and to evaluate the transient performance of 𝑖𝑖𝑑𝑑 when the 
reference changes. In the second case, the scenario was reversed: a step change in 
the quadrature axis current (𝑖𝑖𝑞𝑞) was induced from 0 to 10 A, while the direct axis 
current (𝑖𝑖𝑑𝑑) remained at zero A. Figure 10(a) and Figure 10(b) illustrate the first 
case, showcasing the step change in reference direct axis current under both the PI 
controller and the GRU controller, respectively. 

Figure 11(a) and Figure 11(b) illustrate the second case, depicting the step change 
in reference quadrature axis current under both the PI controller and the GRU 
controller, respectively. 

Table 2 provides an analysis for both scenarios of the obtained results, 
encompassing parameters such as settling time, overshoot, disturbance on the other 
current, and the time of the disturbance on the other current. 

 

 

 



Acta Polytechnica Hungarica Vol. 22, No. 3, 2025 

‒ 281 ‒ 

(a)  (b) 

 
(c) 

 
Figure 10 

Direct and Quadrature Axis Current Response to a Step Change in Direct Current Reference: (a) PI 
controller, (b) CNN controller, (c) GRU controller 

 

(a) (b) 
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(c) 

 
Figure 11 

Direct and Quadrature Axis Current Response to a Step Change in Quadrature Current Reference: (a) 
PI controller, (b) CNN controller, (c) GRU controller 

Table 2 
Analysis of the transient response under standard operating conditions 

Cases Parameters PI CNN GRU 
Case 1:  
id_ref = 20 A 
iq_ref = 0 A 

Settling time [ms] 23 14 13 
Overshoot [%] 25 17.5 5 
Disturbance on iq [A] 12.5 10 7.5 
Time of disturbance on iq [ms] 20 9 9 

Case 2:  
id_ref = 0 A 
iq_ref = 10 A 

Settling time [ms] 20 18 11 
Overshoot [%] 6 6 0.5 
Disturbance on id [A] 3  2.5  2 
Time of disturbance on id [ms] 24 16 14 

In Scenario 1, where the 𝑖𝑖𝑑𝑑 reference is 20 A and the 𝑖𝑖𝑞𝑞 reference is 0 A, the PI 
controller has a settling time of 23 ms and 14 ms for CNN controller, while the 
GRU controller reduces this to 13 ms. This faster settling time indicates that the 
GRU controller reaches the desired value more quickly. The PI controller exhibits 
an overshoot of 25% and 17.5% for CNN controller, compared to the GRU 
controller's much lower overshoot of 5%, demonstrating significantly better 
transient response control with the GRU controller. When considering disturbances 
on 𝑖𝑖𝑞𝑞, the PI controller and CNN controller experience a pick of 12.5 A and 10 A 
respectively, whereas the GRU controller limits disturbances to 7.5 A, indicating 
better disturbance handling. Additionally, the GRU controller and CNN controller 
mitigate disturbances in 9 ms compared to the PI controller with 20 ms, leading to 
a more stable system. In Scenario 2, with an 𝑖𝑖𝑞𝑞 reference of 10 A and an 𝑖𝑖𝑑𝑑 reference 
of 0 A, the PI controller has a settling time of 20 ms and 18 ms for CNN controller, 
while the GRU controller improves this to 11 ms, again showing enhanced 
responsiveness. The overshoot is reduced with the GRU controller to 0.5%, 
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compared to the PI and CNN controllers with 6 % of overshoot, suggesting a 
significant improvement in transient response. For disturbances on 𝑖𝑖𝑑𝑑, the PI 
controller experiences 3 A and 2.5 A for CNN controller, while the GRU controller 
handles disturbances more effectively at 2 A. The time to resolve disturbances is 
also shorter with the GRU controller, at 14 ms versus the PI and CNN controllers 
with 16 ms and 24 ms respectively, contributing to system stability. Overall, the 
GRU controller consistently outperforms the PI controller and CNN controller 
across all metrics in both scenarios. The GRU controller achieves faster settling 
times, enhancing system responsiveness. It exhibits significantly lower overshoot, 
indicating much better transient performance. Additionally, it handles disturbances 
more effectively, both in terms of magnitude and duration. These improvements 
suggest that the GRU controller provides more robust and efficient control, leading 
to better overall performance. 

5.2 Steady‐State Performance Under Standard Operating 
Conditions 

(a)                                                (b) 

 

(c) 

 

Figure 12 
Grid voltage and inverter output current: Steady-state performance comparisons between conventional 

PI, CNN controller and proposed GRU controller. (a) PI controller, (b) CNN controller, (c) GRU 
controller 
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Figure 12 presents the simulation results for all controllers during the steady  state 
performance from 0.2 s to 0.3 s. The inverter output current is shown in phase with 
the grid voltage. This setup uses a quadrature axis current reference of 0 A and a 
direct axis current reference of 20 A. These results demonstrate that both the direct 
and quadrature axis currents are well controlled to their reference values by the PI 
controller, CNN controller and the GRU controller, respectively. However, the 
GRU controller achieves a lower THD of 1.52 compared to the PI and CNN 
controllers with THD of 1.79 and 2.63 respectively, as illustrated in Figures 13(a), 
13(b) and 13(c) respectively. 

(a)                                (b)                                  (c) 

Figure 13 
Total Harmonic Distortion (THD). (a) PI controller, (b) CNN controller, (c) GRU controller 

5.3 Dynamic Performance Analysis Under Distorted Grid 
Voltage 

 
Figure 14 

Simulation results for steady-state responses under a sudden change, grid-voltage sag, and grid-voltage 
distortion conditions 
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Figure 15 

Simulation results for steady-state responses of direct and quadrature axis currents under a sudden 
change, grid-voltage sag, and grid-voltage distortion conditions 

The robustness of the proposed GRU controller was evaluated under two 
challenging conditions: grid voltage sag and grid voltage distortion. A voltage sag 
was induced between 0.1 s and 0.16 s by reducing the voltage magnitude to 80% of 
its rated value. Following this, a grid voltage distortion scenario was applied 
between 0.2 s and 0.3 s, introducing 5th, 7th, 11th, and 13th harmonic orders with 
magnitudes equivalent to 15% of the fundamental component. Figure 14 and Figure 
15 illustrates the performance of the GRU controller compared to the conventional 
PI and CNN controllers. The results show that the PI and CNN controllers are 
significantly affected by the voltage changes, particularly during the grid voltage 
distortion phase, leading to increased oscillations and degraded performance. In 
contrast, the GRU controller demonstrates superior harmonic compensation 
capability, effectively mitigating the adverse effects of voltage sags and distortions. 
This not only ensures stable operation but also enhances the overall grid 
performance during such conditions. The GRU controller's ability to handle grid 
abnormalities stems from its advanced learning capabilities, allowing it to 
effectively capture and adapt to non-linear dynamics. While the PI controller 
struggles due to its fixed-gain structure and the CNN controller's limitations in 
temporal dependency modelling, the GRU leverages its recurrent architecture to 
predict and respond to disturbances in real-time. The improved harmonic 
compensation highlights its potential to support grid stability, especially under 
varying operational conditions. This robustness makes the GRU controller a 
promising solution for modern power systems, where grid resilience is paramount 
in renewable energy integration and fluctuating grid conditions. 

Conclusion 

This paper introduced a GRU-based current controller designed for a single-phase 
grid-connected inverter. The methodology involved creating a GRU-based vector 
controller by collecting data from a conventional PI controller, followed by offline 
training in Python using the TensorFlow and Keras libraries. The fully trained 
GRU-based vector controller was then implemented for real-time applications.  
The simulation results demonstrated superior performance compared to the 
conventional PI controller and the CNN controller, including minimal oscillation 
and improve overall performance in response to change in system parameters. 
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