
Acta Polytechnica Hungarica Vol. 22, No. 3, 2025

 – 63 –

A Lightweight Execution Manager for Training
TensorFlow Models under the Slurm Queuing
System

Marcos Lupión1, Nicolás C. Cruz2, Felipe Romero1,
Juan F. Sanjuan1, Pilar M. Ortigosa1

1Department of Informatics, ceiA3, University of Almería, Sacramento Road,
04120 Almería, Spain, marcoslupion@ual.es, lfromero@ual.es, jsanjuan@ual.es,
ortigosa@ual.es
2Department of Computer Engineering, Automatic and Robotics, University of
Granada, Periodista Daniel Saucedo Aranda Street, 18071 Granada, Spain,
ncalvocruz@ugr.es

Abstract: Artificial neural networks currently represent the flagship of Machine Learning
and have reached multiple fields alongside Computer Science. This kind of computational
model generally needs massive amounts of data and high-performance computing
resources. The availability of graphical processing units is especially relevant. Thus, only
institutional computing platforms and clusters satisfy such a high demand for
computational power and storage resources. These systems rely on resource managers
capable of handling multiple users and computing resources. However, the users interested
in working with artificial neural networks, especially those without a background in
Computer Engineering, might not master system administration. For them, planning their
executions within the framework of a resource manager focused on high-performance
computing is problematic. This work presents S-TFManager, an easy-to-use open-source
web manager for launching and controlling the execution of TensorFlow models consisting
of artificial neural networks in a heterogeneous cluster with a Slurm queuing system. Both
TensorFlow and Slurm are arguably the most extended tools in their respective fields, so
the proposed tool is of public interest. The tool, written in Python, includes built-in
batching and visualization capabilities, and its simplicity makes it easy to extend.

Keywords: Machine Learning; TensorFlow; Slurm; Resource Management

1 Introduction

Artificial Neural Networks (ANNs) were conceived to mimic the human brain in
learning and solving difficult tasks [1, 22]. In contrast to plain symbolic
programming, ANNs can identify, learn, and extrapolate patterns from data, as

mailto:marcoslupion@ual.es
mailto:lfromero@ual.es
mailto:jsanjuan@ual.es
mailto:ortigosa@ual.es
mailto:ncalvocruz@ugr.es

M. Lupión et al. A Lightweight Execution Manager for Training TensorFlow Models
 under the Slurm Queuing System

 – 64 –

human beings do, without a predefined set of rules. Since the first model in the
late 1950s, called Perceptron, and its simple classification and regression
capabilities, numerous models and architectures have been proposed for many
different tasks [7]. Consequently, one can find successful applications of this bio-
inspired computing approach in a vast scope. It covers from cybersecurity [10] to
energy management [23], including image processing, speech recognition, and
automatic translation, among many others [1, 15, 22].

The evolution of ANNs has relied on designing new mathematical models for
artificial neurons and operators, their combination, as well as methods for tuning
their parameters (training) and hyperparameters. This broad space of design has
even resulted in the field of Neural Architecture Search (NAS), which deals with
automating the design of the most appropriate ANN for a certain task through
optimization [17, 25]. Along with the evolution of theoretical proposals, numerous
software frameworks have arisen to support their deployment. Some of them are
PyTorch [14] and TensorFlow [8, 17, 24], both open source, which provide users
with the fundamental building blocks for designing complex ANNs with state-of-
the-art components.

Regardless, advances in High-Performance Computing (HPC) have been critical
for implementing such computationally demanding models, especially when
concatenating sets of (layers) neurons and operations such as convolutions. In this
regard, using Graphical Processing Units (GPUs) as accelerators due to their
direct compatibility with the computations involved, i.e., matrix multiplications, is
possibly the most relevant milestone [17]. Without the support of modern HPC
hardware, building and deploying the sophisticated models currently used
becomes infeasible [3]. This need for cutting-edge hardware resources makes
Cloud services, such as Google Colab [8], a cost-effective and flexible solution
[11]. However, many professionals and researchers opt for private clusters from
universities and companies, especially when they deal with confidential data.
These clusters serve multiple users concurrently and provide access too many
CPU and GPU cores. Thus, they generally feature resource managers and queuing
systems, such as the widespread Slurm [12, 20].

At the same time, as a consequence of the broad space of design mentioned, the
standard workflow for designing ANNs involves trying multiple architectures and
configurations [17, 20, 25]. Accordingly, the experts in charge of building models
based on ANNs must plan numerous executions in shared HPC environments.
This situation involves extensive use of scripting and general-purpose queuing
systems, such as the aforementioned Slurm, which is potentially tedious. Besides,
since the popularity of ANNs has brought different professional profiles to this
field [6], some may find it difficult to collaborate. For example, the recent work in
[9] deals with the relevance of building descriptive and easy-to-use dashboards for
using machine learning models on the side of medical users. Similarly, not all
developers have a background in Computer Engineering [6]. Hence, scripting and
system administration tools can burden their work. Therefore, different tools have

Acta Polytechnica Hungarica Vol. 22, No. 3, 2025

 – 65 –

been proposed to simplify the management of software execution relying on the
industry standards for ANN building and deployment, such as the referred
TensorFlow, in HPC environments [3, 20].

The use of Jupyter Notebooks is arguably the simplest option to provide non-
expert users with a kind of development environment to try different approaches,
and to record and plot results. However, they lack advanced asynchronous features
to plan and manage multiple executions in HPC environments. Therefore, more
advanced tools exist for this purpose. For example, the work in [3] focuses on the
resources required for using built models, known as inference. The solution built,
called ROMA, is an open-source TensorFlow extension equipped with scheduling
heuristics and control-theory ideas [2]. It relies on containers and manages the
execution of different models in a heterogeneous platform combining multiple
CPUs and GPUs while trying to meet user-defined constraints on the execution
time.

Nevertheless, most works focus on training rather than inference, i.e., building
ANN models by tuning their parameters, as it is significantly more
computationally demanding. For example, the proposal in [17] designs an open-
source service that manages GPUs and CPUs while building ANNs. Cleverly,
instead of redefining a queuing system, it exploits an underlying Slurm
installation. Unfortunately, the scope of that work is on automating the design of
ANNs, considering different architectures. The requests made are controlled by an
optimization algorithm, and it cannot be directly used by human experts.
Conversely, our focus is on human users, and several relevant tools exist for this
purpose.

One of them is the open-source tool proposed in [20], TensorHive, which targets
human users interested in managing machine learning workloads. It allows them
to reserve and monitor resources. It also lets them run jobs in a rich web interface
that supports interactive work and leading ANN environments, i.e., TensorFlow
and PyTorch. Another one is Auto-Keras [13], which simplifies the automation of
model selection and training. However, it does not support distributed
environments, making it unsuitable for high-performance computing scenarios.
There also exists H2O.ai [16], which provides extensive preprocessing and model
optimization capabilities but relies heavily on specific distributed
implementations. This approach can reduce flexibility and adaptability in diverse
computing setups. Another option is Google Cloud AutoML [4]. It is a proprietary
solution that offers cloud-based scalability and ease of use. However, its
dependency on Google’s infrastructure and lack of offline usability limits its
application in environments where open-source or on-premises solutions are
preferred. Finally, distributed frameworks such as Horovod [21] and Ray [19],
while powerful, aim at highly technical users and lack the intuitive interfaces
necessary for broader accessibility.

M. Lupión et al. A Lightweight Execution Manager for Training TensorFlow Models
 under the Slurm Queuing System

 – 66 –

This work also presents an open-source tool, S-TFManager, aimed at human users
sharing a cluster for building ANNs. Nevertheless, it differentiates itself from the
previous works by providing a mid-term solution between offering a rich set of
features at the expense of difficulty of use and modification (TensorHive, Ray,
H2O.ai), limited options (Auto-Keras, Horovod), and the lack of accessibility
linked to closed-source tools (Google Cloud AutoML). Our proposal follows a
“Less is more approach” (LIMA) design philosophy [18] that replaces generality
and redundant use cases with a context simpler to deploy, encompass, and extend.
More specifically, it offers a self-contained and minimalist web interface that
provides users with a convenient environment for launching ANN training jobs
using TensorFlow. Resource management is directly outsourced by an existing
Slurm installation, and no overlapping with standard monitoring tools, such as
Munin [5], occurs either. In return, the proposal includes built-in visualization and
systematic hyperparameter exploration capabilities.

The rest of this paper is structured as follows: Section 2 describes the technical
design of the proposed execution manager and provides the reader with a link to
the source code. Section 3 shows several practical cases where the developed tool
exhibits its capabilities and supports the user. Finally, the last section contains the
conclusions and states the future work.

2 Developed Solution

This section describes the core components of the proposed tool. First, Section 2.1
contains an overview of its technical requirements. Then, Section 2.2 explains the
general architecture of the solution and how its components interact. After that,
the main components, i.e., the database (Section 2.3), the interaction between the
S-TFManager and Slurm (Section 2.4), and the monitoring script (Section 2.5), are
described. Finally, Section 2.6 covers the deployment of the tool, including a basic
troubleshooting guideline.

2.1 Technical Overview

2.1.1 License and Distribution

The software package is publicly available under the Creative Commons
Attribution-Noncommercial 4.0. Accordingly, it can be freely used, distributed,
and modified by anyone without commercial purposes and referring to this source.

Specifically, the tool can be found at the following code repository:
https://gitlab.hpca.ual.es/marcoslupion/s-tfmanager. In addition to the source code,
the repository contains a detailed explanation of the main features of the tool with

https://gitlab.hpca.ual.es/marcoslupion/s-tfmanager

Acta Polytechnica Hungarica Vol. 22, No. 3, 2025

 – 67 –

graphical examples, installation and execution instructions, and contact
information. However, the most relevant aspects are summarized later in this
section.

It is noteworthy that, as usual with open-source projects, even though the tool is
well intentioned and has been successfully tested, it has no warranty of stability or
correctness. This statement makes the authors not liable for any problem caused
by unexpected malfunctioning.

2.1.2 Requirements

S-TFManager consists of Python and shell scripts with HTML parts and JSON
files. Thus, the main requirement for running it is having a Python installation in a
Linux-like environment. Among the necessary libraries, Flask1 has the highest
requirements by expecting Python 3.8 or higher, so it defines the minimum
version supported. Also, the tool uses Slurm to submit jobs. Since its --gres option
is necessary, the Slurm version must be either 2.6 or higher. Other requirements
result from needing a TensorFlow installation, including the appropriate cuDNN,
cudatoolkit, keras, and jinja. The interested reader can check the requirements.txt
file in the code repository for further information.

2.1.3 Supported Platforms

The platform where the tool has been tested uses OpenHPC 2, based on CentOS 8.
It should be equivalent to Ubuntu 20.04 or similar. However, as detailed above,
any Linux-like system with the appropriate versions of Slurm, TensorFlow, and
Python should be compatible. The same occurs with the referred software
packages and libraries. Although we have listed in the repository the specific
versions for which S-TFManager has been developed and tested, similar versions,
especially newer ones, should be valid as long as they keep backward
compatibility. Regardless, the preferred installation process relies on creating a
virtual environment, which allows staying with the checked versions. More
information about this process is provided in Section 2.6. The interested reader
can also check the repository for further details.

2.2 General Architecture

S-TFManager consists of several open-source software components that make it
easy to integrate into Slurm-managed clusters. Figure 1 depicts how users and the
different elements of the tool interact. The core element of the tool is a REST API
developed in Flask. It is in charge of providing the web dashboard and launching
the Slurm jobs in the cluster. Users can interact with the API through the web

1 https://flask.palletsprojects.com/en/3.0.x

M. Lupión et al. A Lightweight Execution Manager for Training TensorFlow Models
 under the Slurm Queuing System

 – 68 –

dashboard, which allows uploading the training scripts, defining the
hyperparameters to consider, and monitoring their performance in real-time.
Nonetheless, the API can be directly accessed, which makes it accessible
programmatically.

The API manages the system database, which consists of raw JSON files, and
interacts with the Slurm queuing system. Depending on the availability of GPU
nodes, the training requests may be executed or enqueued. For the same user and
configuration of tasks, the user perceives them to run in FIFO order. However, the
queuing strategy depends on the system’s configuration. By default, Slurm
follows its backfill2 scheduling paradigm. According to it, Slurm tries to
maximize the system’s throughput by prioritizing jobs and considering variables
such as the possibility of job preemption and the availability of resources. The
interested reader can check the documentation of Slurm for further information.

Concurrently, an auxiliary thread tracks the execution of scripts and provides
information about their status and performance metrics. Thus, this element
represents the keystone of the claimed integrated monitoring support. Along with
the API, it runs in a CPU-only node so as not to interfere with the computational
resources aimed at ANN training.

Figure 1

Architecture of the tool

2 https://slurm.schedmd.com/sched_config.html#backfill

Acta Polytechnica Hungarica Vol. 22, No. 3, 2025

 – 69 –

2.3 Structure of the Database

As mentioned, the API relies on a database of JSON files to track pending,
running, and failed executions. The standard approach might have been using
SQLite instead. However, the direct use of JSON files was considered easier to
integrate, as it avoids a relational database management system and its related
queries.

The database contains two kinds of data types: jobs and tasks. A job stores the
information of the training name, description, and the associated training script.
The task is the particular training that is sent as a Slurm task. It references the job
and also stores the information of the hyperparameters (batch size, learning rate,
number of epochs, early stopping) of the execution. Furthermore, the status of the
task is stored, as well as the submission, start, and finalization date and time.

2.4 Slurm Management

The proposed solution mainly focuses on simplifying the interaction of users with
the Slurm queuing system for training ANNs. The latter procedure may involve
trying multiple parameters, such as batch sizes and learning rates. Hence, when
the API receives a list of potential values for variables, it automatically creates
their combinations with the rest. Each permutation will result in a new training
task. The API also generates the appropriate launch command and submits it to
Slurm using the Process Python module.

Slurm commands include the parameters shown in Code 1. The --partition
parameter specifies the nodes where the training can run, as they feature GPUs.

The --gres3 parameter states that the task requires one GPU to be executed. The --
ntasks-per-node parameter indicates that the script will launch a single task in the
assigned node. For example, in the cluster used for experimentation, the gpu_volta
partition has two nodes, each containing two GPUs. The script in Code 1 will
result in up to four processes running concurrently, two at each node, and one for
each GPU.

Code 1
Slurm launching script

1. # SBATCH --partition=gpu_volta
2. # SBATCH --gres=gpu:1
3. # SBATCH --ntasks-per-node=1

3 https://slurm.schedmd.com/gres.htm

M. Lupión et al. A Lightweight Execution Manager for Training TensorFlow Models
 under the Slurm Queuing System

 – 70 –

2.5 Monitoring Script

Since the API ultimately delegates task managing to Slurm asynchronously, the
tool needs an extra component to track the requests made. For this purpose, as
mentioned, it is equipped with a monitoring script as well. This script contains an
infinite loop checking the different tasks every minute. When a task is initialized,
it creates a file called START, which indicates that the task started. When it
finishes, it creates another file called END. The monitoring script registers the
initialization and finalization times, as well as the current status in the database.
Besides, while every training occurs, the monitoring script creates and maintains a
figure that shows its evolution. It also registers the lowest loss value and the epoch
when it takes place, which is valuable information for the users.

2.6 Tool Installation, Initialization, and Troubleshooting

The installation process for S-TFManager has been designed to be as
straightforward as possible while ensuring compatibility with the necessary
dependencies and configurations.

The installation procedure should start by checking the requirements previously
summarized and detailed in the code repository. It will also be necessary to clone
the repository or download it as a zip file to a preferred directory.

Then, the next step is to create an isolated virtual environment4. This approach is
widespread as users are not generally allowed to install software packages
globally in a shared cluster. Accordingly, it will allow the user to install the
dependencies listed in the above-mentioned requirements.txt file. These include
Flask, TensorFlow, and other auxiliary libraries needed for execution. Code 2
contains the commands for creating a virtual environment (first line) and
launching the installation of the software packages listed in the requirements.txt
file (second line).

Code 2
Commands for virtual environment creation and installation of packages in requirements.txt

1. python -m venv {path}
2. pip -r install requirements.txt

After that, the user must ensure that the configuration files, such as the JSON
settings, are correctly updated to reflect the system's specifics (e.g., paths to Slurm
and TensorFlow installations, job submission parameters, etc.). Once installed and
configured, the tool can be executed directly by running the appropriate scripts.

4 https://docs.python.org/3/library/venv.html

Acta Polytechnica Hungarica Vol. 22, No. 3, 2025

 – 71 –

The main script is script.sh, which initializes the API in a CPU node. The number
of threads can be defined with the SBATCH --cpus-pertask parameter. The more
threads, the more concurrent queries the system can handle flawlessly. Another
script, process_results_tasks.sh, sets up the monitoring component in a similar
way. The other relevant script, models/model_script.sh, is used to launch the
model training to the SLURM queuing system.

After deploying the API and the monitoring scripts, the tool can be accessed at the
IP of the installation node (port 54322 by default). Due to standard safety policies,
the API is not expected to be available outside the cluster network. To cope with
this situation, users must open an SSH tunnel. It provides a secure channel
between local and remote machines.

Code 3 shows an example of building an appropriate SSH tunnel. The -L
parameter defines the port forwarding. Accordingly, any accessing
http://localhost: is redirected to its instance of the application running in the
cluster.

Code 3
SSH tunneling command

1. ssh -N -L < local port >:<node name>:<API
port(default:54322)><username>@<cluster ip>

Although unlikely, the user may encounter problems with the installation and use
of S-TFManager. If troubles arise, the first aspect to check is that dependencies
are provided. Then, it is necessary to ensure the correct versions are installed as
specified in the requirements and check the repository's documentation for further
details. If the tool fails to interact with Slurm, the user should verify that the `--
gres` option is enabled. It is also advisable to revise the configuration files to
ensure the paths and parameters are correctly set. If TensorFlow cannot access the
GPU or reports CUDA/cuDNN mismatches, ensure the correct versions of these
libraries are installed and properly configured. In this regard, it is critical to
remember to execute the tool under the virtual environment created. Finally, if the
problems persist or S-TFManager presents unexpected problems, the users can ask
for further support through the contact details provided in the repository.

3 Features and Use Cases

This section exhibits the functionality of the tool with the aid of examples and
figures. It starts with the form designed for submitting models to train. It ends by
showing the visualization dashboard of models being trained.

M. Lupión et al. A Lightweight Execution Manager for Training TensorFlow Models
 under the Slurm Queuing System

 – 72 –

3.1 Submission of Training Tasks

Users can submit new training tasks to the underlying Slurm system by
completing the web form shown in Figure 2. As can be seen, it has four main
parts: i) the training information, i.e., name and description; ii) the Python script
defining the model and its training; iii) the script parameters and callback; and iv)
the hyperparameters to try. The default training options are the ones shown, i.e.,
batch size, early stopping, number of epochs, and learning rate. Since users must
parameterize the submitted script accordingly, the form warns about this
requirement below the file input. They must also include an appropriate CSV
callback in their model so that the tool can offer its visualization capabilities.
Notice that the fields “batch size” and “learning rate” can contain several values
separated by commas. This way, users indicate that there will be one configuration
for each value in the list. Regardless, the simplicity of our tool allows for
including new parameters and options to consider.

3.2 Training Task Monitoring

As introduced, when a user submits a job with comma-separated hyperparameters,
the API creates as many tasks as combinations of them exist. After submitting the
form correctly, the dashboard page appears. There, the user can see all the
launched tasks and their status (see Figure 3). At first glance, the name and
description of each job are shown alongside its state. The possible states are the
following:

• Submitted: Task sent to the Slurm queue yet pending of execution.

• Running: Task already running in a node.

• Error: The task finished with an error and did not complete.

• Stopped: The user decided to stop the training process.

• Finished: The training process completed successfully.

The user can click on a job to see further details (see Figure 4), i.e., the model's
name, the number of associated training tasks, and submission time. Besides, if at
least one of the training procedures has started, the validation loss will be
automatically displayed in a common per-model graph. This feature aims to
facilitate users to compare different configurations of their model at a glance.
The user can also stop and remove the selected job. Any linked task is
automatically removed in this case.

Acta Polytechnica Hungarica Vol. 22, No. 3, 2025

 – 73 –

Figure 2

Form for submitting a new training job

Figure 3

General view of the dashboard. List of submitted jobs

M. Lupión et al. A Lightweight Execution Manager for Training TensorFlow Models
 under the Slurm Queuing System

 – 74 –

Figure 4

Job details. Execution evolution of the different configurations defined in training script

After the graph, the application shows the different training configurations, like
jobs, indicating their state. The user can see further details by clicking on them
(see Figure 5). The hyperparameters appear first. After that, the training results are
summarized, including the current epoch, the best validation loss achieved, and
when it was achieved. The training and validation loss evolution are plotted as
well. Running tasks display a progress bar linked to the remaining epochs. Finally,
the submission, initialization, and finalization times are indicated. If there is an
error in the execution, the log file of the error is included in the graphical interface
as well (see Figure 6). It is also relevant to highlight that users can stop pending
and running tasks. After stopping, the user can restart them from scratch. Jobs that
are either completed or failed can also be restarted.

Additionally, notice that the task visualization capabilities of the proposal are
compatible with other monitoring tools from the command line for expert users
and system administrators.

Acta Polytechnica Hungarica Vol. 22, No. 3, 2025

 – 75 –

Figure 5

Execution details of a concrete ANN configuration

Figure 6
Error handling on a concrete ANN configuration

M. Lupión et al. A Lightweight Execution Manager for Training TensorFlow Models
 under the Slurm Queuing System

 – 76 –

Conclusions

ANNs represent a very active research branch of Machine Learning. Alongside
the conceptual advances in this field, HPC platforms have been critical for
supporting the implementation of models that have progressively become more
sophisticated and well-performing.

In this context, experts working with ANNs have two main options, i.e., cloud
platforms and institutional clusters. While the former is a cost-effective and
flexible option, the latter is also widespread, especially when dealing with
confidential data. However, working in a shared computing cluster involves
managing multiple users and resources. Besides, given the current activity and
ubiquity of the field, not every researcher or engineer working with ANNs masters
traditional command-line and scripting tasks.

This work has presented and described a lightweight yet powerful Python web app
(S-TFManager) for working with TensorFlow models in a shared cluster.
Although other alternatives exist, there are few options, and the proposal offers a
perfect trade-off between design simplicity, which facilitates its adoption and
adaptation, and features. It allows users to execute, queue, and track jobs.

Instead of duplicating components already expected in a standard cluster, the tool
relies on an existing Slurm system for managing the available resources. Hence,
users do not need to type the commands required by Slurm for launching tasks.
The proposed system takes care of this interaction. It also integrates visualization
capabilities for tracking and comparing the performance of different models.
Furthermore, as considering multiple model configurations is part of the standard
workflow in machine learning, the tool includes an option to automate the
execution of models with different parameter sets.

For future work, supporting other machine learning frameworks, such as PyTorch
and Mxnet, will be studied to increase the tool’s compatibility. Moreover, more
advanced optimization strategies will be incorporated, allowing for a more precise
and efficient hyperparameter search. Finally, the inclusion of some NAS
algorithms will also be considered. They should allow users to discover more
performant architectures than those hand-crafted by them.

Acknowledgement

This work has been funded by the projects R+D+i PID2021-123278OB-I00 and
PDC2022-133370-I00 from MCI-N/AEI/10.13039/501100011033/ and ERDF
funds; and the Department of Informatics of the University of Almería. M. Lupión
is a fellowship of the FPU program from the Spanish Ministry of Education
(FPU19/02756). N.C. Cruz is supported by the Ministry of Economic
Transformation, Industry, Knowledge and Universities from the Andalusian
government (PAIDI 2021: POSTDOC_21_00124).

Acta Polytechnica Hungarica Vol. 22, No. 3, 2025

 – 77 –

References

[1] Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Mohamed, N. A.,
Arshad, H.: State-of-the-art in artificial neural network applications: A
survey. Heliyon 4(11), e00938 (2018)

[2] Baresi, L., Leva, A., Quattrocchi, G.: Fine-grained dynamic resource
allocation for big-data applications. IEEE Transactions on Software
Engineering 47(8), 1668-1682 (2019)

[3] Baresi, L., Quattrocchi, G., Rasi, N.: Resource management for Tensorflow
inference. In: International Conference on Service-Oriented Computing.
pp. 238-253, Springer (2021)

[4] Bisong, E. (2019) Google Cloud AutoML. In: Building Machine Learning
and Deep Learning Models on Google Cloud Platform (pp. 297-308)

[5] Brinke, B. T.: Instant Munin Plugin Starter. Packt Publishing (2013)

[6] Cullell-Dalmau, M., Noé, S., Otero-Viñas, M., Meic, I., Manzo, C.:
Convolutional neural network for skin lesion classification: understanding
the fundamentals through hands-on learning. Frontiers in Medicine 8,
644327 (2021)

[7] Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its
applications. Computer Science Review 40, 100379 (2021)

[8] Estrada, J. F. S., Cruz, N. C., Lupión, M., Garzón, E. M., Ortigosa, P. M.:
Teamwork using colab notebooks in the cloud. In: EDULEARN23
Proceedings. pp. 2710-2718, IATED (2023)

[9] Fritz, B. A., Pugazenthi, S., Budelier, T. P., Pennington, B. R. T., King, C.
R., Avidan, M. S., & Abraham, J.: User-centered design of a machine
learning dashboard for prediction of postoperative complications.
Anesthesia & Analgesia, 138(4), 804-813 (2024)

[10] Issa, A. S. A., & Albayrak, Z.: DDoS attack intrusion detection system
based on hybridization of CNN and LSTM. Acta Polytechnica Hungarica
20(2), 1-19 (2023)

[11] Jahani, A., Lattuada, M., Ciavotta, M., Ardagna, D., Amaldi, E., Zhang, L.:
Optimizing on-demand GPUs in the cloud for deep learning applications
training. In: 2019 4th International Conference on Computing,
Communications and Security (ICCCS) pp. 1-8, IEEE (2019)

[12] Jette, M. A., Wickberg, T.: Architecture of the Slurm Workload Manager.
In: Workshop on Job Scheduling Strategies for Parallel Processing. pp. 3-
23, Springer (2023)

[13] Jin, H., Chollet, F., Song, Q., & Hu, X. (2023) AutoKeras: An AutoML
Library for Deep Learning. Journal of Machine Learning Research, 24(6),
1-6

M. Lupión et al. A Lightweight Execution Manager for Training TensorFlow Models
 under the Slurm Queuing System

 – 78 –

[14] Ketkar, N., Moolayil, J.: Introduction to PyTorch, pp. 27-91, Apress,
Berkeley, CA (2021)

[15] Krogh, A.: What are artificial neural networks? Nature Biotechnology
26(2), 195-197 (2008)

[16] LeDell, E., & Poirier, S. (2020) H2O AutoML: Scalable Automatic
Machine Learning. In: Proceedings of the ICML 2020 AutoML Workshop

[17] Lupión, M., Cruz, N. C., Sanjuan, J. F., Paechter, B., Ortigosa, P. M.:
Accelerating neural network architecture search using multi-GPU high-
performance computing. Journal of Supercomputing 79(7), 7609-7625
(2023)

[18] Mladenovic, N., Pei, J., Pardalos, P. M., Urosevic, D.: Less is more
approach in optimization: A road to artificial intelligence. Optimization
Letters 16(1), 409-420 (2022)

[19] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., &
Stoica, I. (2018) Ray: A Distributed Framework for Emerging AI
Applications. In: Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (pp. 561-577)

[20] Rosciszewski, P., Martyniak, M., Schodowski, F.: TensorHive:
management of exclusive GPU access for distributed machine learning
workloads. The Journal of Machine Learning Research 22(1), 9766-9770
(2021)

[21] Sergeev, A., & Del Balso, M. (2018) Horovod: Fast and Easy Distributed
Deep Learning in TensorFlow. arXiv preprint arXiv:1802.05799

[22] Sharma, N., Sharma, R., Jindal, N.: Machine learning and deep learning
applications–A vision. Global Transitions Proceedings 2(1), 24-28 (2021)

[23] Shvets, O., Seebauer, M., Naizabayeva, A., & Toleugazin, A.: Monitoring
and Control of Energy Consumption Systems, using Neural Networks. Acta
Polytechnica Hungarica 20(2), 125-144 (2023)

[24] Singh, P., Manure, A.: Introduction to TensorFlow 2.0, pp. 1-24, Apress,
Berkeley, CA (2020)

[25] Talbi, E. G.: Automated design of deep neural networks: A survey and
unified taxonomy. ACM Computing Surveys 54(2), 1-37 (2021)

	1 Introduction
	2 Developed Solution
	2.1 Technical Overview
	2.1.1 License and Distribution
	2.1.2 Requirements
	2.1.3 Supported Platforms

	2.2 General Architecture
	2.3 Structure of the Database
	2.4 Slurm Management
	2.5 Monitoring Script
	2.6 Tool Installation, Initialization, and Troubleshooting

	3 Features and Use Cases
	3.1 Submission of Training Tasks
	3.2 Training Task Monitoring

