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Abstract: Artificial neural networks currently represent the flagship of Machine Learning 
and have reached multiple fields alongside Computer Science. This kind of computational 
model generally needs massive amounts of data and high-performance computing 
resources. The availability of graphical processing units is especially relevant. Thus, only 
institutional computing platforms and clusters satisfy such a high demand for 
computational power and storage resources. These systems rely on resource managers 
capable of handling multiple users and computing resources. However, the users interested 
in working with artificial neural networks, especially those without a background in 
Computer Engineering, might not master system administration. For them, planning their 
executions within the framework of a resource manager focused on high-performance 
computing is problematic. This work presents S-TFManager, an easy-to-use open-source 
web manager for launching and controlling the execution of TensorFlow models consisting 
of artificial neural networks in a heterogeneous cluster with a Slurm queuing system. Both 
TensorFlow and Slurm are arguably the most extended tools in their respective fields, so 
the proposed tool is of public interest. The tool, written in Python, includes built-in 
batching and visualization capabilities, and its simplicity makes it easy to extend. 
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1 Introduction 

Artificial Neural Networks (ANNs) were conceived to mimic the human brain in 
learning and solving difficult tasks [1, 22]. In contrast to plain symbolic 
programming, ANNs can identify, learn, and extrapolate patterns from data, as 
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human beings do, without a predefined set of rules. Since the first model in the 
late 1950s, called Perceptron, and its simple classification and regression 
capabilities, numerous models and architectures have been proposed for many 
different tasks [7]. Consequently, one can find successful applications of this bio-
inspired computing approach in a vast scope. It covers from cybersecurity [10] to 
energy management [23], including image processing, speech recognition, and 
automatic translation, among many others [1, 15, 22]. 

The evolution of ANNs has relied on designing new mathematical models for 
artificial neurons and operators, their combination, as well as methods for tuning 
their parameters (training) and hyperparameters. This broad space of design has 
even resulted in the field of Neural Architecture Search (NAS), which deals with 
automating the design of the most appropriate ANN for a certain task through 
optimization [17, 25]. Along with the evolution of theoretical proposals, numerous 
software frameworks have arisen to support their deployment. Some of them are 
PyTorch [14] and TensorFlow [8, 17, 24], both open source, which provide users 
with the fundamental building blocks for designing complex ANNs with state-of-
the-art components. 

Regardless, advances in High-Performance Computing (HPC) have been critical 
for implementing such computationally demanding models, especially when 
concatenating sets of (layers) neurons and operations such as convolutions. In this 
regard, using Graphical Processing Units (GPUs) as accelerators due to their 
direct compatibility with the computations involved, i.e., matrix multiplications, is 
possibly the most relevant milestone [17]. Without the support of modern HPC 
hardware, building and deploying the sophisticated models currently used 
becomes infeasible [3]. This need for cutting-edge hardware resources makes 
Cloud services, such as Google Colab [8], a cost-effective and flexible solution 
[11]. However, many professionals and researchers opt for private clusters from 
universities and companies, especially when they deal with confidential data. 
These clusters serve multiple users concurrently and provide access too many 
CPU and GPU cores. Thus, they generally feature resource managers and queuing 
systems, such as the widespread Slurm [12, 20]. 

At the same time, as a consequence of the broad space of design mentioned, the 
standard workflow for designing ANNs involves trying multiple architectures and 
configurations [17, 20, 25]. Accordingly, the experts in charge of building models 
based on ANNs must plan numerous executions in shared HPC environments. 
This situation involves extensive use of scripting and general-purpose queuing 
systems, such as the aforementioned Slurm, which is potentially tedious. Besides, 
since the popularity of ANNs has brought different professional profiles to this 
field [6], some may find it difficult to collaborate. For example, the recent work in 
[9] deals with the relevance of building descriptive and easy-to-use dashboards for 
using machine learning models on the side of medical users. Similarly, not all 
developers have a background in Computer Engineering [6]. Hence, scripting and 
system administration tools can burden their work. Therefore, different tools have 
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been proposed to simplify the management of software execution relying on the 
industry standards for ANN building and deployment, such as the referred 
TensorFlow, in HPC environments [3, 20]. 

The use of Jupyter Notebooks is arguably the simplest option to provide non-
expert users with a kind of development environment to try different approaches, 
and to record and plot results. However, they lack advanced asynchronous features 
to plan and manage multiple executions in HPC environments. Therefore, more 
advanced tools exist for this purpose. For example, the work in [3] focuses on the 
resources required for using built models, known as inference. The solution built, 
called ROMA, is an open-source TensorFlow extension equipped with scheduling 
heuristics and control-theory ideas [2]. It relies on containers and manages the 
execution of different models in a heterogeneous platform combining multiple 
CPUs and GPUs while trying to meet user-defined constraints on the execution 
time. 

Nevertheless, most works focus on training rather than inference, i.e., building 
ANN models by tuning their parameters, as it is significantly more 
computationally demanding. For example, the proposal in [17] designs an open-
source service that manages GPUs and CPUs while building ANNs. Cleverly, 
instead of redefining a queuing system, it exploits an underlying Slurm 
installation. Unfortunately, the scope of that work is on automating the design of 
ANNs, considering different architectures. The requests made are controlled by an 
optimization algorithm, and it cannot be directly used by human experts. 
Conversely, our focus is on human users, and several relevant tools exist for this 
purpose. 

One of them is the open-source tool proposed in [20], TensorHive, which targets 
human users interested in managing machine learning workloads. It allows them 
to reserve and monitor resources. It also lets them run jobs in a rich web interface 
that supports interactive work and leading ANN environments, i.e., TensorFlow 
and PyTorch. Another one is Auto-Keras [13], which simplifies the automation of 
model selection and training. However, it does not support distributed 
environments, making it unsuitable for high-performance computing scenarios. 
There also exists H2O.ai [16], which provides extensive preprocessing and model 
optimization capabilities but relies heavily on specific distributed 
implementations. This approach can reduce flexibility and adaptability in diverse 
computing setups. Another option is Google Cloud AutoML [4]. It is a proprietary 
solution that offers cloud-based scalability and ease of use. However, its 
dependency on Google’s infrastructure and lack of offline usability limits its 
application in environments where open-source or on-premises solutions are 
preferred. Finally, distributed frameworks such as Horovod [21] and Ray [19], 
while powerful, aim at highly technical users and lack the intuitive interfaces 
necessary for broader accessibility. 



M. Lupión et al. A Lightweight Execution Manager for Training TensorFlow Models  
 under the Slurm Queuing System  

 – 66 – 

This work also presents an open-source tool, S-TFManager, aimed at human users 
sharing a cluster for building ANNs. Nevertheless, it differentiates itself from the 
previous works by providing a mid-term solution between offering a rich set of 
features at the expense of difficulty of use and modification (TensorHive, Ray, 
H2O.ai), limited options (Auto-Keras, Horovod), and the lack of accessibility 
linked to closed-source tools (Google Cloud AutoML). Our proposal follows a 
“Less is more approach” (LIMA) design philosophy [18] that replaces generality 
and redundant use cases with a context simpler to deploy, encompass, and extend. 
More specifically, it offers a self-contained and minimalist web interface that 
provides users with a convenient environment for launching ANN training jobs 
using TensorFlow. Resource management is directly outsourced by an existing 
Slurm installation, and no overlapping with standard monitoring tools, such as 
Munin [5], occurs either. In return, the proposal includes built-in visualization and 
systematic hyperparameter exploration capabilities. 

The rest of this paper is structured as follows: Section 2 describes the technical 
design of the proposed execution manager and provides the reader with a link to 
the source code. Section 3 shows several practical cases where the developed tool 
exhibits its capabilities and supports the user. Finally, the last section contains the 
conclusions and states the future work. 

2 Developed Solution 

This section describes the core components of the proposed tool. First, Section 2.1 
contains an overview of its technical requirements. Then, Section 2.2 explains the 
general architecture of the solution and how its components interact. After that, 
the main components, i.e., the database (Section 2.3), the interaction between the 
S-TFManager and Slurm (Section 2.4), and the monitoring script (Section 2.5), are 
described. Finally, Section 2.6 covers the deployment of the tool, including a basic 
troubleshooting guideline. 

2.1 Technical Overview 

2.1.1 License and Distribution 

The software package is publicly available under the Creative Commons 
Attribution-Noncommercial 4.0. Accordingly, it can be freely used, distributed, 
and modified by anyone without commercial purposes and referring to this source. 

Specifically, the tool can be found at the following code repository: 
https://gitlab.hpca.ual.es/marcoslupion/s-tfmanager. In addition to the source code, 
the repository contains a detailed explanation of the main features of the tool with 

https://gitlab.hpca.ual.es/marcoslupion/s-tfmanager
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graphical examples, installation and execution instructions, and contact 
information. However, the most relevant aspects are summarized later in this 
section. 

It is noteworthy that, as usual with open-source projects, even though the tool is 
well intentioned and has been successfully tested, it has no warranty of stability or 
correctness. This statement makes the authors not liable for any problem caused 
by unexpected malfunctioning. 

2.1.2 Requirements 

S-TFManager consists of Python and shell scripts with HTML parts and JSON 
files. Thus, the main requirement for running it is having a Python installation in a 
Linux-like environment. Among the necessary libraries, Flask1 has the highest 
requirements by expecting Python 3.8 or higher, so it defines the minimum 
version supported. Also, the tool uses Slurm to submit jobs. Since its --gres option 
is necessary, the Slurm version must be either 2.6 or higher. Other requirements 
result from needing a TensorFlow installation, including the appropriate cuDNN, 
cudatoolkit, keras, and jinja. The interested reader can check the requirements.txt 
file in the code repository for further information. 

2.1.3 Supported Platforms 

The platform where the tool has been tested uses OpenHPC 2, based on CentOS 8. 
It should be equivalent to Ubuntu 20.04 or similar. However, as detailed above, 
any Linux-like system with the appropriate versions of Slurm, TensorFlow, and 
Python should be compatible. The same occurs with the referred software 
packages and libraries. Although we have listed in the repository the specific 
versions for which S-TFManager has been developed and tested, similar versions, 
especially newer ones, should be valid as long as they keep backward 
compatibility. Regardless, the preferred installation process relies on creating a 
virtual environment, which allows staying with the checked versions. More 
information about this process is provided in Section 2.6. The interested reader 
can also check the repository for further details. 

2.2 General Architecture 

S-TFManager consists of several open-source software components that make it 
easy to integrate into Slurm-managed clusters. Figure 1 depicts how users and the 
different elements of the tool interact. The core element of the tool is a REST API 
developed in Flask. It is in charge of providing the web dashboard and launching 
the Slurm jobs in the cluster. Users can interact with the API through the web 

 
1  https://flask.palletsprojects.com/en/3.0.x 
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dashboard, which allows uploading the training scripts, defining the 
hyperparameters to consider, and monitoring their performance in real-time. 
Nonetheless, the API can be directly accessed, which makes it accessible 
programmatically. 

The API manages the system database, which consists of raw JSON files, and 
interacts with the Slurm queuing system. Depending on the availability of GPU 
nodes, the training requests may be executed or enqueued. For the same user and 
configuration of tasks, the user perceives them to run in FIFO order. However, the 
queuing strategy depends on the system’s configuration. By default, Slurm 
follows its backfill2 scheduling paradigm. According to it, Slurm tries to 
maximize the system’s throughput by prioritizing jobs and considering variables 
such as the possibility of job preemption and the availability of resources. The 
interested reader can check the documentation of Slurm for further information. 

Concurrently, an auxiliary thread tracks the execution of scripts and provides 
information about their status and performance metrics. Thus, this element 
represents the keystone of the claimed integrated monitoring support. Along with 
the API, it runs in a CPU-only node so as not to interfere with the computational 
resources aimed at ANN training. 

 
Figure 1 

Architecture of the tool 

 
2  https://slurm.schedmd.com/sched_config.html#backfill 
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2.3 Structure of the Database 

As mentioned, the API relies on a database of JSON files to track pending, 
running, and failed executions. The standard approach might have been using 
SQLite instead. However, the direct use of JSON files was considered easier to 
integrate, as it avoids a relational database management system and its related 
queries. 

The database contains two kinds of data types: jobs and tasks. A job stores the 
information of the training name, description, and the associated training script. 
The task is the particular training that is sent as a Slurm task. It references the job 
and also stores the information of the hyperparameters (batch size, learning rate, 
number of epochs, early stopping) of the execution. Furthermore, the status of the 
task is stored, as well as the submission, start, and finalization date and time. 

2.4 Slurm Management 

The proposed solution mainly focuses on simplifying the interaction of users with 
the Slurm queuing system for training ANNs. The latter procedure may involve 
trying multiple parameters, such as batch sizes and learning rates. Hence, when 
the API receives a list of potential values for variables, it automatically creates 
their combinations with the rest. Each permutation will result in a new training 
task. The API also generates the appropriate launch command and submits it to 
Slurm using the Process Python module. 

Slurm commands include the parameters shown in Code 1. The --partition 
parameter specifies the nodes where the training can run, as they feature GPUs. 

The --gres3 parameter states that the task requires one GPU to be executed. The --
ntasks-per-node parameter indicates that the script will launch a single task in the 
assigned node. For example, in the cluster used for experimentation, the gpu_volta 
partition has two nodes, each containing two GPUs. The script in Code 1 will 
result in up to four processes running concurrently, two at each node, and one for 
each GPU. 

Code 1 
Slurm launching script 

1. # SBATCH --partition=gpu_volta 
2. # SBATCH --gres=gpu:1 
3. # SBATCH --ntasks-per-node=1 

 
3  https://slurm.schedmd.com/gres.htm 
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2.5 Monitoring Script 

Since the API ultimately delegates task managing to Slurm asynchronously, the 
tool needs an extra component to track the requests made. For this purpose, as 
mentioned, it is equipped with a monitoring script as well. This script contains an 
infinite loop checking the different tasks every minute. When a task is initialized, 
it creates a file called START, which indicates that the task started. When it 
finishes, it creates another file called END. The monitoring script registers the 
initialization and finalization times, as well as the current status in the database. 
Besides, while every training occurs, the monitoring script creates and maintains a 
figure that shows its evolution. It also registers the lowest loss value and the epoch 
when it takes place, which is valuable information for the users. 

2.6 Tool Installation, Initialization, and Troubleshooting 

The installation process for S-TFManager has been designed to be as 
straightforward as possible while ensuring compatibility with the necessary 
dependencies and configurations. 

The installation procedure should start by checking the requirements previously 
summarized and detailed in the code repository. It will also be necessary to clone 
the repository or download it as a zip file to a preferred directory. 

Then, the next step is to create an isolated virtual environment4. This approach is 
widespread as users are not generally allowed to install software packages 
globally in a shared cluster. Accordingly, it will allow the user to install the 
dependencies listed in the above-mentioned requirements.txt file. These include 
Flask, TensorFlow, and other auxiliary libraries needed for execution. Code 2 
contains the commands for creating a virtual environment (first line) and 
launching the installation of the software packages listed in the requirements.txt 
file (second line). 

Code 2 
Commands for virtual environment creation and installation of packages in requirements.txt 

1. python -m venv {path} 
2. pip -r install requirements.txt 

After that, the user must ensure that the configuration files, such as the JSON 
settings, are correctly updated to reflect the system's specifics (e.g., paths to Slurm 
and TensorFlow installations, job submission parameters, etc.). Once installed and 
configured, the tool can be executed directly by running the appropriate scripts. 

 
4  https://docs.python.org/3/library/venv.html 
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The main script is script.sh, which initializes the API in a CPU node. The number 
of threads can be defined with the SBATCH --cpus-pertask parameter. The more 
threads, the more concurrent queries the system can handle flawlessly. Another 
script, process_results_tasks.sh, sets up the monitoring component in a similar 
way. The other relevant script, models/model_script.sh, is used to launch the 
model training to the SLURM queuing system. 

After deploying the API and the monitoring scripts, the tool can be accessed at the 
IP of the installation node (port 54322 by default). Due to standard safety policies, 
the API is not expected to be available outside the cluster network. To cope with 
this situation, users must open an SSH tunnel. It provides a secure channel 
between local and remote machines. 

Code 3 shows an example of building an appropriate SSH tunnel. The -L 
parameter defines the port forwarding. Accordingly, any accessing 
http://localhost: is redirected to its instance of the application running in the 
cluster. 

Code 3 
SSH tunneling command 

1. ssh -N -L < local port >:<node name>:<API 
port(default:54322)><username>@<cluster ip>   

Although unlikely, the user may encounter problems with the installation and use 
of S-TFManager. If troubles arise, the first aspect to check is that dependencies 
are provided. Then, it is necessary to ensure the correct versions are installed as 
specified in the requirements and check the repository's documentation for further 
details. If the tool fails to interact with Slurm, the user should verify that the `--
gres` option is enabled. It is also advisable to revise the configuration files to 
ensure the paths and parameters are correctly set. If TensorFlow cannot access the 
GPU or reports CUDA/cuDNN mismatches, ensure the correct versions of these 
libraries are installed and properly configured. In this regard, it is critical to 
remember to execute the tool under the virtual environment created. Finally, if the 
problems persist or S-TFManager presents unexpected problems, the users can ask 
for further support through the contact details provided in the repository. 

3 Features and Use Cases 

This section exhibits the functionality of the tool with the aid of examples and 
figures. It starts with the form designed for submitting models to train. It ends by 
showing the visualization dashboard of models being trained. 
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3.1 Submission of Training Tasks 

Users can submit new training tasks to the underlying Slurm system by 
completing the web form shown in Figure 2. As can be seen, it has four main 
parts: i) the training information, i.e., name and description; ii) the Python script 
defining the model and its training; iii) the script parameters and callback; and iv) 
the hyperparameters to try. The default training options are the ones shown, i.e., 
batch size, early stopping, number of epochs, and learning rate. Since users must 
parameterize the submitted script accordingly, the form warns about this 
requirement below the file input. They must also include an appropriate CSV 
callback in their model so that the tool can offer its visualization capabilities. 
Notice that the fields “batch size” and “learning rate” can contain several values 
separated by commas. This way, users indicate that there will be one configuration 
for each value in the list. Regardless, the simplicity of our tool allows for 
including new parameters and options to consider. 

3.2 Training Task Monitoring 

As introduced, when a user submits a job with comma-separated hyperparameters, 
the API creates as many tasks as combinations of them exist. After submitting the 
form correctly, the dashboard page appears. There, the user can see all the 
launched tasks and their status (see Figure 3). At first glance, the name and 
description of each job are shown alongside its state. The possible states are the 
following: 

• Submitted: Task sent to the Slurm queue yet pending of execution. 

• Running: Task already running in a node. 

• Error: The task finished with an error and did not complete. 

• Stopped: The user decided to stop the training process. 

• Finished: The training process completed successfully. 

The user can click on a job to see further details (see Figure 4), i.e., the model's 
name, the number of associated training tasks, and submission time. Besides, if at 
least one of the training procedures has started, the validation loss will be 
automatically displayed in a common per-model graph. This feature aims to 
facilitate users to compare different configurations of their model at a glance.  
The user can also stop and remove the selected job. Any linked task is 
automatically removed in this case. 
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Figure 2 

Form for submitting a new training job 

 
Figure 3 

General view of the dashboard. List of submitted jobs 
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Figure 4 

Job details. Execution evolution of the different configurations defined in training script 

After the graph, the application shows the different training configurations, like 
jobs, indicating their state. The user can see further details by clicking on them 
(see Figure 5). The hyperparameters appear first. After that, the training results are 
summarized, including the current epoch, the best validation loss achieved, and 
when it was achieved. The training and validation loss evolution are plotted as 
well. Running tasks display a progress bar linked to the remaining epochs. Finally, 
the submission, initialization, and finalization times are indicated. If there is an 
error in the execution, the log file of the error is included in the graphical interface 
as well (see Figure 6). It is also relevant to highlight that users can stop pending 
and running tasks. After stopping, the user can restart them from scratch. Jobs that 
are either completed or failed can also be restarted. 

Additionally, notice that the task visualization capabilities of the proposal are 
compatible with other monitoring tools from the command line for expert users 
and system administrators. 
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Figure 5 

Execution details of a concrete ANN configuration 

  

Figure 6 
Error handling on a concrete ANN configuration 
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Conclusions 

ANNs represent a very active research branch of Machine Learning. Alongside 
the conceptual advances in this field, HPC platforms have been critical for 
supporting the implementation of models that have progressively become more 
sophisticated and well-performing. 

In this context, experts working with ANNs have two main options, i.e., cloud 
platforms and institutional clusters. While the former is a cost-effective and 
flexible option, the latter is also widespread, especially when dealing with 
confidential data. However, working in a shared computing cluster involves 
managing multiple users and resources. Besides, given the current activity and 
ubiquity of the field, not every researcher or engineer working with ANNs masters 
traditional command-line and scripting tasks. 

This work has presented and described a lightweight yet powerful Python web app 
(S-TFManager) for working with TensorFlow models in a shared cluster. 
Although other alternatives exist, there are few options, and the proposal offers a 
perfect trade-off between design simplicity, which facilitates its adoption and 
adaptation, and features. It allows users to execute, queue, and track jobs. 

Instead of duplicating components already expected in a standard cluster, the tool 
relies on an existing Slurm system for managing the available resources. Hence, 
users do not need to type the commands required by Slurm for launching tasks. 
The proposed system takes care of this interaction. It also integrates visualization 
capabilities for tracking and comparing the performance of different models. 
Furthermore, as considering multiple model configurations is part of the standard 
workflow in machine learning, the tool includes an option to automate the 
execution of models with different parameter sets. 

For future work, supporting other machine learning frameworks, such as PyTorch 
and Mxnet, will be studied to increase the tool’s compatibility. Moreover, more 
advanced optimization strategies will be incorporated, allowing for a more precise 
and efficient hyperparameter search. Finally, the inclusion of some NAS 
algorithms will also be considered. They should allow users to discover more 
performant architectures than those hand-crafted by them. 
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