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Abstract: Motion planning is widely used for analyzing and controlling nonlinear systems,
such as mobile robot navigation and robotic automation. When a mathematical model of the
system is available, motion planning allows for system analysis and control without the need
for sampling or physical intervention, thereby avoiding any disturbance to the behavior of
the system. This study explores the application of motion planning methods to chemical reac-
tion systems. Specifically, it demonstrates how to define desired trajectories for consecutive
reactions using the parametrized function class method. The planning assumes isothermal
conditions, which are modeled by setting the temperature as a constant time function. Under
this assumption, the system describing consecutive reactions becomes linear. Starting from
the kinetic model, we derive the time-dependent behavior of the state variables. Based on
these results, a controller is designed for a two-step consecutive reaction. The state of the
system can be determined at any time from the computed time functions, and the future be-
havior of the system can be accurately predicted. This approach helps prevent accidents and
undesired outcomes by ensuring the reaction proceeds along the planned trajectory.

Keywords: chemical reaction; motion planning; temperature control; strong reachability;
controllability

1 Introduction
The purpose of motion planning is to specify the intermediate states of the system
when it moves from the initial to the final state. This can be used to estimate the
internal variables without explicitly measuring them or to control the system on the
desired trajectory. Internal limitations and external obstacles must be considered.
The trajectories are specified from the mathematical model during the planning.
The time functions of the trajectories can be used to determine where the system is
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at any time, and they can help to predict when it is necessary to intervene.

Motion planning is widely used for mechatronic systems [1–5]. In the case of
mechatronic systems, the trajectory means the path of the movement. The goal
is to drive the robot to the desired place while avoiding obstacles. Often, the task
is to determine the shortest path or a route that touches fixed points. For planning
the desired trajectories, several methods and algorithms are known (e.g., genetic
algorithm, particle swarm optimization algorithm [6]). Sampling-based algorithms
are investigated in [7], where new algorithms are introduced and the asymptotic be-
havior of the cost of the solution is analyzed. The Iterative Structured Orientation
is suggested as a coverage path planning strategy in [8]. Motion planning using
movement primitives are presented in [9]. Mobile robots represent a special class
of mechatronic systems [10–14]. They are controlled mechanical systems designed
to change their position autonomously or in response to control inputs. The most
commonly used motion planning methods for mobile robots are collected in [15].
A cost function-based algorithm is presented in [16], which allows using combina-
tions of different planning strategies. A Risk-based Dual-Tree Rapidly Exploring
Random Tree (DTRRT) algorithm is shown in [17]. The task is to find an opti-
mized trajectory for the robots in dynamic environments with pedestrians. Another
method for motion planning in dynamic environments is presented in [18]. Here, a
first-order method is used, i.e., it is unnecessary to integrate velocities to determine
the positions as time functions.

Motion planning methods can also be applied to chemical systems [19–21]. In this
case, the system gets to a final concentration composition from an initial concen-
tration composition; the trajectory means the concentration values that can be mea-
sured each time. The motion planning problem is determining the time functions
that can specify the instantaneous concentration composition at any time. During
the planning, limitations of the system (e.g., in the case of explosive reactions, the
system cannot be heated above a specific temperature) and the external ”obstacles”
(e.g., fixed tank volume, pressure tolerance) must be considered. It is an understud-
ied area; however, chemical aspects appear in the research. A survey on motion
planning algorithms applied to molecular modeling is presented in [22]. It gives an
overview of extensions to sampling-based motion planning methods. Motion plan-
ning for a DOC (Diesel Oxidation Catalyst) outlet temperature is shown in [23]. The
method for determining the shortest collision-free path with the help of a chemical
processor is investigated in [24]. This method is based on a color change during the
formation of a precipitate. Robotic applications in chemical experiments are studied
in [25].

We will deal with motion planning for chemical systems. For the planning, the
parametrized function class method will be used [38]. The method will be presented
in Section 2. The temperature is a well-changeable parameter; therefore, the rate of
change of the temperature will be considered as the input of the system [26, 27].

In our work, we will study general structural consecutive reactions. In Subsec-
tion 3.1, we will specify the time functions of the state variables and the input func-
tion. As parametrized function class, we choose the time function of the temperature
in parametrized form. The motion planning results can be applied for modeling. As
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an example, we will model a consecutive reaction in Subsection 3.2. Based on the
given results, we will design a closed-loop control [31–33] and compare it with the
state feedback method.

The temperature dependence of the reaction rate coefficients causes nonlinearity in
every chemical reaction. Moreover, the temperature depends on the internal states
of the reaction, as well as the environmental temperature. As a result, by control-
ling the temperature, we can affect the reaction rate coefficient values, e.g., we can
ensure that these are constants, making the system linear in Section 3.

2 Models and methods
In the following, we present the general model of chemical reactions and provide the
sufficient condition of strong reachability. We interpret the trajectory for chemical
systems and show a method for motion planning of chemical reactions.

2.1 General model of chemical reactions
Using conventional notations from chemistry, we present the applied mathemati-
cal model and describe the used notations. Consider a chemical system in general
form [30], i.e.,

M

∑
m=1

α(m,r)Xm
kr−−→

M

∑
m=1

β (m,r)Xm, r = 1,2, . . . ,R, (1)

where the number of the reaction steps is denoted by R > 0, and the number of the
species is denoted by M > 0. The notation kr is used for the reaction rate coefficient
in rth reaction step, and Xm denotes the mth species. The species on the left-hand
side are called reactants, and the species on the right-hand side are called products.
The coefficients α(m,r) and β (m,r) are the corresponding elements of the reactant
complex vector α(:,r) and the product complex vector β (:,r), i.e.,

α(:,r) = (α(1,r),α(2,r), . . . ,α(m,r))⊤, (2)

β (:,r) = (β (1,r),β (2,r), . . . ,β (m,r))⊤. (3)

In order to investigate the dynamics of the system, the differential equations of the
system must be known [34–36]. Considering mass action kinetics in the reaction and
using the heat balance of (1), the differential equations of the system are described
as

ẋm(t) =
R

∑
r=1

γ(m,r)kr(T (t))x(t)α(·,r), m = 1,2, . . . ,M, (4)

Ṫ (t) =
R

∑
r=1

1
βr,0

kr(T (t))x(t)α(·,r)+u(t), (5)

– 261 –
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where xm(t) denotes the concentration of X(m), and T (t) is the temperature at time
instant t ≥ 0. The coefficient γ(m,r) is the corresponding element from the stoi-
chiometric matrix γ , whose columns can be calculated as

γ(:,r) = β (:,r)−α(:,r). (6)

The reaction rate coefficient kr(T (t)) is specified in the form

kr(T (t)) = kr,0e
− Er

R0T (t) , (7)

where kr,0 is the preexponential factor, Er is the activation energy and R0 is the uni-
versal gas constant (kr,0,Er,R0 ∈ R+). The expression x(t)α(·,r) denotes the product
of the corresponding concentrations,

x(t)α(·,r) =
M

∏
p=1

xm(t)α(m,r). (8)

The variable u(t) is the single input of the investigated system. In our analysis, it is
chosen as the temperature changing Ṫ (t). In the example in Subsection 3.1 we will
also use the inflow of a species as control input after the system is linearized with
input Ṫ .

2.2 Controllability and strong reachability
During the reaction process (or the movement), the investigated system achieves
from an initial to a final state. For planning the trajectories, the system must be
controllable, i.e., a control input u(t) must exist that generates the trajectories ξ (t).
More concepts of controllability are known (e.g., strong reachability, small-time
local controllability, local controllability, and global controllability). In the follow-
ing, we present some of them. Throughout the paper, we will give variables and
functions at time instant t ≥ 0 in order to emphasize the dependencies. The only
exceptions are at the definitions of functions.

To interpret the controllability, we consider the following nonlinear dynamical sys-
tem, given by the differential equation

ξ̇ (t) = f (ξ (t))+g(ξ (t))u(t), ξ (0) = ξ
∗ ∈ Rn, (9)

where f ,g ∈ C∞(Rn,Rn) are smooth vector fields and u(t) ∈ R is the control input.
The vector fields f and g are called drift and control vector fields, respectively. For
the sake of completeness, let us now revisit some definitions that are used in the
sequel [27–29].

Definition 1 (Reachability sets). Consider the system given by (9). Define the fol-
lowing sets:

(i) R(ξ ∗, t f ) = {ξ (t f )| the state of the system at time t f with all allowed control
u when ξ (0) = ξ ∗ and 0 < t f < ∞},
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(ii) R(ξ ∗) =
⋃

t≥0
R(ξ ∗, t).

Definition 2 (Controllability and reachability). System (9) is called

(i) strongly reachable from the point ξ ∗, if the set R(ξ ∗, t) has an interior point
for all t > 0,

(ii) locally controllable from the point ξ ∗, if the point ξ ∗ is an interior point of
R(ξ ∗),

(iii) globally controllable from the point ξ ∗, if R(ξ ∗) = Rn.

In this work, chemical reactions are investigated. The state vector can be writ-
ten in form ξ (t) = (x1(t),x2(t), . . . ,xm(t),T (t))⊤, and the dynamics of the system
are described by (4)–(5). For chemical reactions, the simple sufficient condition is
available for strong reachability [27]:

Theorem 1. Consider a reaction with M species and R reaction steps. Suppose the
activation energies E1,E2, . . . ,ER of the reaction steps are all different and strictly
positive. Then, the reaction dynamics is strongly reachable with temperature change
input Ṫ (t) if the concentrations of all reactant species are positive.

A special characteristic of chemical systems is the positivity [37]. Those compounds
whose initial concentration is positive are present in the system during the entire re-
action process. Mathematically, their amount cannot decrease to zero at any step.
In Theorem 1, we supposed that the concentration of reactant species must be posi-
tive. We note that it would be enough to assume that the concentrations of reactant
species are initially positive. Then, it already follows that the reactant concentra-
tions cannot decrease to 0 due to the positivity of chemical systems.

2.3 Motion planning
Knowing the trajectories makes it easier to investigate the behavior of a system since
they can describe the state of the system at every moment. In the case of chemical
reactions, the trajectories mean the concentration and temperature values that can be
measured during the reaction. With the help of motion planning, we can determine
the trajectories of the investigated system. We can also specify how to choose the
values of the input parameters or their time functions to achieve the desired target
product [38].

Consider the following nonlinear system,

ξ̇ (t) = h(ξ (t),u(t)), (10)

where ξ (t) ∈ X ⊆ Rn, u(t) ∈ RJ and t ∈ R+
0 . Suppose we plan a path connecting

initial point ξ0 = ξ (t0) ∈ X and final point ξ f = ξ (t f ) ∈ X in time t f − t0 > 0. We
are looking for the trajectory t 7→ (ξ (t),u(t)) that satisfies the initial conditions

ξ0 := ξ (t0), u0 := u(t0), (11)
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in t0 ≥ 0, the final conditions

ξ f := ξ (t f ), u f := u(t f ) (12)

in t f ≥ t0, and satisfies (10) for all t ∈ [t0, t f ]. Solving the motion planning problem
is complicated; numerical methods, which are iterative methods, are often used.
With numerical methods, the solution is approximated; however, generally, the exact
solution cannot be given in a closed form.

An often-used method for trajectory planning of nonlinear systems is to choose a
parameterized function class for the time function of a variable and to solve the dif-
ferential equation of the system based on these functions. This solution method can
only be used in some cases because a general method for choosing the appropriate
parameterized function class is not known.

3 Motion planning results for consecutive reactions

In the next subsections, we show how the trajectories for chemical reactions can
be planned with the help of the interpreted method. We give the trajectories for
consecutive reactions and use the results to design a temperature control.

3.1 Motion planning for consecutive reactions

We discuss a motion planning method for consecutive reactions. Consider a consec-
utive reaction with R reaction steps. The stoichiometric equations in general form
are

X1
k1−−→ X2

k2−−→ . . .
kR−−→ XR+1. (13)

Mathematical analysis requires differential equations describing the dynamics of the
process. The system of differential equations for the consecutive reaction consider-
ing mass action kinetics reads

ẋ1(t) =− k1,0e
− E1

R0T (t) x1(t) (14)

ẋ2(t) =k1,0e
− E1

R0T (t) x1(t)− k2,0e
− E2

R0T (t) x2(t) (15)
...

ẋR(t) =kR−1,0e
− ER−1

R0T (t) xR−1(t)− kR,0e
− ER

R0T (t) xR(t) (16)

ẋR+1(t) =kR,0e
− ER

R0T (t) xR(t) (17)
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Ṫ (t) =
k1,0e

− E1
R0T (t)

β1
x1(t)+

k2,0e
− E2

R0T (t)

β2
x2(t)+ · · ·+

kR,0e
− ER

R0T (t)

βR
xR(t)+u(t). (18)

Suppose that the reactant concentrations x1(t),x2(t), . . . ,xR(t) are strictly positive,
and the activation energies for each reaction step are all different. Then, according
to Theorem 1, (14)–(18) is strongly reachable; i.e., there is a control u(t), which
generates the trajectory ξ (t) = (x1(t),x2(t), . . . , xR+1(t),T (t)).

For motion planning, we apply the parameterized function class method. Suppose
that the desired trajectories satisfy the initial conditions

xr(0) = xr,0, r = 1,2, . . . ,R+1,
T (0) = T0,

(19)

and the differential equations (14)–(18) for all t ∈ R+
0 . We consider the reaction

isothermal. We choose the constant temperature function as the parametrized func-
tion class,

T (t) := const., (20)

and solve the remaining part of (14)–(18) with the help of it. Since the trajectories
must satisfy the initial conditions (19), the time function of the temperature can be
given in the form

T (t) = T0. (21)

In the case of isothermal reactions, the reaction rate coefficients are time-independent
constants; therefore, the system of the differential equations (14)–(18) have a sim-
plified form. It can be written as

ẋ1(t) =− k1x1(t) (22)
ẋ2(t) =k1x1(t)− k2x2(t) (23)

...
ẋR(t) =kR−1xR−1(t)− kRxR(t) (24)

ẋR+1(t) =kRxR(t) (25)

0 =
k1

β1
x1(t)+

k2

β2
x2(t)+ · · ·+ kR

βR
xR(t)+uT (t), (26)

where the reaction rate coefficients are kr = kr,0e−
Er

R0T0 for all r ∈ {1,2, . . . ,R}.

The time function x1(t) is given as the solution of the differential equation (22). It
has the form

x1(t) =C1e−k1t , (27)

where C1 is a constant parameter that can be determined from the initial conditions.
Writing this for time t = 0 and considering the initial conditions (19), the coefficient

– 265 –
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C1 is given as

C1 = x1,0. (28)

Substituting (28) into (27), x1(t) can be calculated as

x1(t) = x1,0e−k1t , (29)

To determine the time functions x2(t),x3(t), . . . ,xR+1(t) and uT (t), we solve (22)–
(26). For this, we consider that x1(t) can be calculated according to (27). In the first
step, we give the calculation method for the time functions of the concentrations
x2,x3, . . . ,xR.

Lemma 1. Consider a consecutive reaction given by (22)–(26). Suppose that the
time function of the concentration x1 is chosen as (27). Then the concentration xr(t)
can be written in the form

xr(t) =Cre−krt +
r−1

∑
i=1

(
Cie−kit ·

r−1

∏
j=i

(
k j

k j+1 − ki

))
,

Cr = xr,0 −
r−1

∑
i=1

(
Ci ·

r−1

∏
j=i

(
k j

k j+1 − ki

)) (30)

for all r ∈ {2,3, . . . ,R}.

We prove the lemma by induction. First, we consider case r = 2. The time derivative
of x2(t) can be calculated as

ẋ2(t) =k1x1(t)− k2x2(t) (31)

according to (23). It is a first-order inhomogeneous linear differential equation
whose solution is given as the sum of the homogeneous and the inhomogeneous
particular solutions. The corresponding homogeneous equation reads

ẋ2(t) =−k2x2(t), (32)

whose solution is

x2,h =C2e−k2t , C2 = const. (33)

The particular solution of the inhomogeneous equation can be looked for in the form

x2,p(t) =C2(t)e−k2t , (34)

where C2(t) can be determined with the help of the derivative ẋ2(t). We can give the
derivative ẋ2(t) in two ways. On the one hand, the time derivative of the concentra-
tion x2(t) can be calculated as

ẋ2(t) = Ċ2(t)e−k2t − k2C2(t)e−k2t , (35)
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based on (34). On the other hand, substituting (34) and (27) into (23), the time
derivative of concentration x2(t) has the form

ẋ2(t) = k1C1e−k1t − k2C2(t)e−k2t . (36)

Equated (35) and (36), the derivative Ċ2(t) is given as

Ċ2(t) = k1C1e(k2−k1)t , (37)

and integrating it, the time function C2(t) reads

C2(t) =
k1C1

k2 − k1
e(k2−k1)t . (38)

The particular solution of the inhomogeneous equation can be calculated by substi-
tuting (38) into (34),

x2,p(t) =C2(t)e−k2t =
k1C1

k2 − k1
e(k2−k1)te−k2t =

k1C1

k2 − k1
e−k1t . (39)

The general solution of (23) is given as the sum of the expressions (33) and (39). It
can be written in the form

x2(t) = x2,h(t)+ x2,p(t) =C2e−k2t +
k1C1

k2 − k1
e−k1t , (40)

where the constant C2 is unknown. We can determine it from the initial conditions.
By writing (40) for time t = 0 and taking into account (19), the constant C2 reads

C2 = x2,0 −
k1C1

k2 − k1
. (41)

Equations (40) and (41) correspond to the form according to the lemma, so the
lemma is satisfied for r = 2.

Then suppose that the time function xr−1(t) has the form

xr−1(t) =Cr−1e−kr−1t +
r−2

∑
i=1

(
Cie−kit ·

r−2

∏
j=i

(
k j

k j+1 − ki

))
, (42)

and constant coefficient Cr−1 can be calculated as

Cr−1 = xr−1,0 −
r−2

∑
i=1

(
Ci ·

r−2

∏
j=i

(
k j

k j+1 − ki

))
, (43)

with xr−1,0 = xr−1(0) and r ∈ {3,4, . . . ,R}. We prove that the time function xr(t)
has the same form as the expression in the lemma. According to (22)–(26), the time
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derivative of the concentration xr(t) reads

ẋr(t) = kr−1xr−1(t)− krxr(t), (44)

and the corresponding homogeneous equation has the form

ẋr(t) =−krxr(t). (45)

Then, the homogeneous solution can be written as

xr,h =Cre−krt , Cr = const., (46)

and the particular solution of the inhomogeneous equation can be looked for in the
form

xr(t) =Cr(t)e−krt . (47)

The time derivative of the concentration xr(t) can be specified in two ways. The
derivative ẋr(t) by deriving (47) is

ẋr(t) = Ċr(t)e−krt − krCr(t)e−krt , (48)

and the derivative ẋr(t) determined based on (44) reads

ẋr(t) = kr−1xr−1(t)− krCr(t)e−krt . (49)

Equating (48) and (49) and replacing xr−1(t) with the relation according to condi-
tion (42) the form of the derivative function Ċr(t) is

Ċr(t) =kr−1Cr−1e(kr−kr−1)t + kr−1

r−2

∑
i=1

(
Cie(kr−ki)t ·

r−2

∏
j=i

(
k j

k j+1 − ki

))
. (50)

Integrating this, the time function Cr(t) reads

Cr(t) =
kr−1Cr−1

kr − kr−1
e(kr−kr−1)t +

r−2

∑
i=1

(
kr−1

kr − ki
Cie(kr−ki)t

r−2

∏
j=i

(
k j

k j+1 − ki

))
. (51)

It can be written in a simplified form as

Cr(t) =
r−1

∑
i=1

(
Cie(kr−ki)t

r−1

∏
j=i

(
k j

k j+1 − ki

))
. (52)

Substituting (52) into (47) we get the inhomogeneous particular solution of (44),
which reads

xr,p(t) =
r−1

∑
i=1

(
Cie−kit

r−1

∏
j=i

(
k j

k j+1 − ki

))
. (53)

– 268 –



Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

The general solution of (44) is given as the sum of the homogeneous and inhomo-
geneous solutions (46) and (53) as

xr(t) =Cre−krt +
r−1

∑
i=1

(
Cie−kit

r−1

∏
j=i

(
k j

k j+1 − ki

))
, (54)

where the constant parameter Cr can be specified from initial conditions (19),

Cr = xr,0 −
r−1

∑
i=1

(
Ci ·

r−1

∏
j=i

(
k j

k j+1 − ki

))
. (55)

Equations (54) and (55) are the same as the expression of the lemma for all r ∈
{3,4, . . . ,R}, so the lemma is fulfilled.

In the second step, we determine how to calculate the time function of the concen-
tration xR+1(t). Based on (25), the derivative of xR+1(t) can be given as

ẋR+1(t) = kRxR(t), (56)

where the time function xR(t) can be written in the form according to Lemma 1, so

ẋR+1(t) = kRCRe−kRt + kR ·
R−1

∑
i=1

(
Cie−kit

R−1

∏
j=i

(
k j

k j+1 − ki

))
. (57)

The time function xR+1(t) is obtained by integrating (57). It reads

xR+1(t) =−CRe−kRt − kR ·
R−1

∑
i=1

(
Ci

ki
· e−kit

R−1

∏
j=i

(
k j

k j+1 − ki

))
+CR+1, (58)

where the parameter CR+1 can be specified from the initial conditions (19). It has
the form

CR+1 = xR+1,0 +CR + kR ·
R−1

∑
i=1

(
Ci

ki
·

R−1

∏
j=i

(
k j

k j+1 − ki

))
. (59)

Substituting (59) into (58), xR+1(t) can be calculated as

xR+1(t) =CR(1− e−kRt)+ kR ·
R−1

∑
i=1

(
Ci

ki
· (1− e−kit)

R−1

∏
j=i

(
k j

k j+1 − ki

))
+ xR+1,0

(60)
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Table 1
Parameter values for the consecutive two-step reaction

kr,0

[
dm3

mol·s

]
Er
[ J

mol
]

βr

[
mol

K·dm3

]
r = 1 1 100 0.002
r = 2 0.5 200 0.004

Finally, we provide the calculation method for the input function uT (t). The time
function uT can be determined based on (26),

uT (t) =− k1

β1
x1(t)−

k2

β2
x2(t)−·· ·− kR

βR
xR(t). (61)

Thus, the trajectory of the isothermal consecutive reactions can be planned accord-
ing to the equations (21), (29), (30), (60), and (61).

3.2 Closed-loop control for consecutive reactions
Results obtained during motion planning can be modeled using closed-loop control.
The isothermal behavior can be ensured with the help of temperature control. We
design closed-loop control for the following two-step consecutive reaction:

X1
k1−−→ X2

k2−−→ X3. (62)

The dynamics of the investigated system can be described by differential equations

ẋ1(t) =−k1(T (t))x1(t), (63)
ẋ2(t) =−k2(T (t))x2(t)+ k1(T (t))x1(t), (64)
ẋ3(t) = k2(T (t))x2(t), (65)

Ṫ (t) =
1
β1

k1(T (t))x1(t)+
1
β2

k2(T (t))x2(t)+uT (t), (66)

where uT (t) is the input of the system. The initial concentrations of the reactant
species X1 and X2 are x1,0 = 1 mol

dm3 and x2,0 = 0 mol
dm3 , respectively. The parameters

for the reaction rate coefficients are chosen to be realistic values from [36] and
collected in Table 1.

The structure of the closed-loop control is as follows [39, 40]. The reference values
block generates the reference signals for T (t) and Ṫ (t) and forwards them to the
controller. The values are chosen as

Tre f = 293K, Ṫre f = 0
K
s
. (67)

– 270 –



Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

We demonstrate the utility of motion planning by comparing three control architec-
tures shown in Figures 1– 3. The aim of temperature control is to ensure isothermal
behavior.

Figure 1
Closed-loop model for the consecutive reaction with PI controller

Figure 2
Closed-loop model for the consecutive reaction with PI controller and feedforward term

Figure 3
Closed-loop model for the consecutive reaction with PI controller and feedforward term, using the

motion planning results

In the first architecture in Figure 1, we apply a PI (Proportional Integral) controller.
The chosen control signal is

uT (t) =Ki

t∫
τ=0

(T (τ)−Tre f )dτ +Kp(T (t)−Tre f ), (68)

where Kp and Ki are the controller parameters.

A PI controller and a feedforward term are applied in the second architecture, as
shown in Figure 2. In the feedforward term, we use measurements of the states
x1(t) and x2(t).
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Table 2
Overshoot values [%] of T (t) for Ki =−10 in the case of control architectures shown in Figures 1– 3

PI controller
PI controller and
feedforward term

PI controller and
feedforward term

using motion planning

Kp =−25 5.83 0.23 0.23
Kp =−20 7.02 0.34 0.35
Kp =−15 8.85 0.57 0.57
Kp =−10 12.02 1.08 1.08
Kp =−5 18.75 2.80 2.81

In the third architecture, shown in Figure 3, we also use a PI controller and a feed-
forward term; however, the values of x1(t) and x2(t) are calculated with the help of
the motion planning results, i.e.,

x1(t) = x1,0e−k1t , (69)

x2(t) = x2,0e−k2t + x1,0
k1

k2 − k1

(
e−k1t − e−k2t

)
, (70)

In the latter two architectures, we choose the control signal uT (t) in the form

uT (t) =− 1
β1

k1(T (t))x1(t)−
1
β2

k2(T (t))x2(t)+

Ki

t∫
τ=0

(T (τ)−Tre f )dτ +Kp(T (t)−Tre f ),

(71)

where Kp and Ki denote the controller parameters. Note that since the error at time
t is defined as T (t)− Tre f , and gains Kp and Ki are negative to ensure negative
feedback.

In the consecutive reaction block in Figures 1– 3, the differential equations of the
system (63)-(66) are implemented. The inputs of the plant are the control signal
uT (t), and the outputs of the reaction are the state variables.

The overshoot values of the temperature control are listed in Tables 2–3, while the
2% settling times are presented in Tables 4–5 for the control architectures shown
in Figures 1–3. When a feedforward term is applied, both the overshoot and the
settling time are significantly reduced. Moreover, it can be observed that employing
motion planning results for the feedforward term leads to overshoot and settling time
values that differ only slightly from those obtained with a conventional feedforward
approach. Thus, by utilizing motion planning, similar performance can be achieved
without the need to measure the individual state variables.
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Table 3
Overshoot values [%] of T (t) for Kp =−25 in the case of control architectures shown in Figures 1– 3

PI controller
PI controller and
feedforward term

PI controller and
feedforward term

using motion planning

Ki =−25 5.66 0.51 0.51
Ki =−20 5.68 0.42 0.42
Ki =−15 5.72 0.33 0.33
Ki =−10 5.82 0.23 0.23
Ki =−5 6.04 0.11 0.11

Table 4
2% settling times [s] of T (t) for Ki =−10 in the case of control architectures shown in Figures 1– 3

PI controller
PI controller and
feedforward term

PI controller and
feedforward term

using motion planning

Kp =−25 1.081 0.083 0.083
Kp =−20 1.115 0.101 0.101
Kp =−15 1.118 0.128 0.128
Kp =−10 2.505 0.175 0.175
Kp =−5 2.902 0.995 0.994

Table 5
2% settling times [s] of T (t) for Kp =−25 in the case of control architectures shown in Figures 1– 3

PI controller
PI controller and
feedforward term

PI controller and
feedforward term

using motion planning

Ki =−25 0.708 0.079 0.079
Ki =−20 0.786 0.080 0.080
Ki =−15 0.895 0.081 0.081
Ki =−10 1.081 0.083 0.083
Ki =−5 1.440 0.084 0.084
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The error function of the variable T for the different architectures is presented in
Figures 4– 6. The left sides of Figures 4– 6 show the error functions at fixed Ki and
different Kp values for the PI controller, the PI controller with feedforward using
the measurements of the states, and the PI controller with feedforward term based
on motion planning results. Increasing the value of Kp results in a larger overshoot;
however, the error function of the temperature reaches zero sooner. The figures
show the advantage of the feedforward term since the quality of control is better
when feedforward is used, i.e., the transient has lower overshoot and faster settling
time. The results with the motion planning (the left side of Figure 6) are similar
to the results with the x1 and x2 state measurements (the left side of Figure 5),
demonstrating that the usage of motion planning can increase the quality of the
control without measurements of the states x1 and x2, thus using more simple control
architecture.

The right sides of Figures 4- 6 show the error functions after fixing Kp =−25 (which
gave the best results in the left sides of Figures 4– 6) and varying the Ki values. In
this case, the error function of the temperature reaches zero sooner at smaller Ki
values. The results show that the transient can be further increased by tuning the
controller; however, the PI controller with the feedforward term still outperforms
the simple PI controller. The right sides of Figures 5– 6 are also similar in this case,
demonstrating that the results of the motion planning can be used well instead of
state feedback.

Conclusions

We applied a generic motion planning method to the control problem of chemical
systems. This is suitable for linearizing chemical reactions with certain structures
by guaranteeing isothermal behavior. Thus, it enables simpler control, which can
be used to make production processes more efficient and cheaper. Motion plan-
ning helped to replace the measurements of some states, which makes the control
architecture simpler and the implementation cheaper. Also, there may be practical
cases when the concentration of the species can not be directly measured; in such
cases, motion planning can be applied to enhance the performance of temperature
controllers.

We used the parametrized function class method for consecutive reactions. The
presented method can also be applied to other chemical system classes (e.g., the
parametrized function class method works for parallel reactions), and the given re-
sults can be used for control. Moreover, consecutive reactions are basic components
of general chemical reaction architectures; thus, the results can be generalized for
general chemical reactions in the future. Furthermore, this can help to make reac-
tions more efficient and, in some cases, reduce emissions of harmful products.
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Figure 4
Error functions of T (t) for Ki =−10 and Kp =−25 in the case of PI controller
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Figure 5
Error function of T (t) for Ki =−10 and Kp =−25 in the case of PI controller and feedforward term
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Error function of T (t) for Ki =−10 and Kp =−25 in the case of PI controller and feedforward term,

using the motion planning results
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