
Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

 – 225 –

End-to-End Multi-Level Encoding Methods of
Visual Data Compression for Robust Monocular
Visual ORB-SLAM

Omar M. Salih1,2, József Vásárhelyi2
1 Institute of Automation and Info-communicatio, University of Miskolc,
Egyetemváros, 3515 Miskolc, Hungary
2 Department of Computer Engineering, Northern Technical University,
Al-Minassa Street, 41003 Mosul, Iraq

{omar.salih, jozsef.vasarhelyi}@uni-miskolc.hu

Abstract: Simultaneous localization and mapping (SLAM) has been highly studied in the
last decade. It allows the estimation of the camera pose of a mobile device and the creation
of a map of the surrounding environment concurrently. Recently, Visual SLAM (VSLAM)
has become the most widely used state-of-the-art technique to implement SLAM tasks due
to its reduced cost, lower size, and affordability. However, the intensive computation of
VSLAM systems does not fit in a wide range of limited resources and energy mobile
devices. A possible solution is to split its functionality between mobile devices and the edge
cloud. This solution showed the necessity for efficient visual data compression methods to
be integrated within VSLAM systems. This work proposes a multi-level encoding method
for visual data frame compression integrated within the monocular Oriented FAST and
Rotated BRIEF-SLAM (ORB-SLAM) system. The performance results of the proposed
system are compared to corresponding ORB-SLAM systems adopting the most popular
classical still image compression standards; the Joint Photographic Experts Group (JPEG)
and the advanced version, the JPEG 2000, in terms of reconstruction quality, robot’s
trajectory estimation, and computational complexity.

Keywords: ORB-SLAM; data compression; JPEG; pose estimation; visual perception;
localization and mapping, cloud computing

1 Introduction

In recent years, SLAM (Simultaneous Localization and Mapping) has earned great
attention in research and industry due to the expansion of robotics applications.
SLAM aims to create a map of an anonymous environment while concurrently
determining the mobile device’s trajectory and position [1]. It can also helpreduce

O. M. Salih et al. End-to-End Multi-Level Encoding Methods of Visual Data
 Compression for Robust Monocular Visual ORB-SLAM

 – 226 –

estimation errors when the robot is in a previously mapped area. The mobile
device can be an indoor robot [2], an Autonomous Vehicle (AV) [3], an
Unmanned Autonomous Vehicle (UAV) [4], or an Unmanned Ground Vehicle
(UGV) [5]. The SLAM algorithm performs map construction and robot
localization based on data obtained from different sensors, such as Light Detection
and Ranging (LiDAR) [6], radio signals [7], or visual sensors [8]. The camera-
based SLAM system, commonly known as Visual SLAM (VSLAM), is interesting
nowadays due to its low cost, rich information gathering, more straightforward
object detection and tracking, and compact size. VSLAM obtains environmental
information from a single camera in monocular VSLAM [9], multiple cameras
(stereo VSLAM [10]), or Red, Green, and Blue with Depth (RGB-D) [11] cameras
for mapping and localization tasks. VSLAM is traditionally deployed onboard the
robot and directly interfaced with a camera that captures non-compressed video
frames. However, VSLAM algorithms demand intensive computational resources,
which has been a significant challenge in the last decade. Tracking and mapping
are the two general tasks to be executed in parallel, which requires high
computational costs. Such demanding computing requirements need powerful
onboard resources, making them less suitable for mobile devices with severe
hardware constraints that decrease their range and usage time. Recent studies have
been conducted to provide solutions to reduce weight, save energy, and keep
mobile device sizes small by offloading these computationally intensive
processing tasks to edge servers and cloud platforms [12, 13]. This practical
solution exhibits the need for efficient encoding methods to compress the image
data before transmission to decrease bandwidth when performing VSLAM at the
edge or in the cloud. Therefore, data compression is necessary to manage and
transmit visual information and preserve as much information as possible,
especially in high-latency communication environments. While image
compression provides the clear advantages of reducing data load and minimizing
bandwidth requirements, it introduces challenges for VSLAM, such as
degradation of feature quality, mismatched feature descriptors, and increased
computational complexity [14].

Image compression is the technique of reducing the image and video volumes by
representing the spatial pixels in different compressed domains using fewer bits
while maintaining visual information to a certain extent. In general, image
compression approaches can be classified into two major categories: lossless and
lossy compression. Lossy compression methods involve reducing the size of an
image and perceiving every detail of the original image by eliminating statistical
redundancy only [15]. The counterpart method is lossy compression, which aims
to achieve high compression ratios by discarding some of the less significant
image information for perception. Lossy compression is popular in machine vision
tasks as it provides more data reduction capabilities [16]. However, it may
influence image quality adversely, making features more intricate to detect and
track during visual SLAM operation and affecting localization accuracy
negatively. There are two different approaches in the literature regarding cloud-

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

 – 227 –

based machine vision applications. The first transmits the image-extracted features
of pre-processed raw data on the mobile device. This approach is referred to as
Analyze then Compress (ATC). The second is compressing the raw data directly
and transmitting it to the server cloud, which is referred to as Compress then
Analyze (CTA). These approaches differ in the order of steps, the amount of data
to be transmitted, and the end-to-end latency from the moment of visual data
capturing to the destination [14].

Many studies have researched the offloading of VSLAM architecture on edge
devices and cloud platforms to perform trajectory mapping and localization of
mobile reboots. Riazuelo et al. [17] proposed and implemented a cloud framework
for Cooperative Tracking and Mapping (C2TAM). The proposed architecture
involves implementing a centralized map on the cloud server while tracking is still
running on mobile devices. In this manner, the mobile devices send the detected
keyframes to the cloud server in a non-compressed format of 640×480 Red,
Green, and Blue (RGB) images. That means an average throughput of 1 MBs is
required for transmission. Despite the study not evaluating the transmission rate of
keyframes, transmitting all raw-sized keyframes demands significant bandwidth.
In [18], the Portable Network Graphic (PNG) standard was used to compress the
extracted keyframes in collaborative 3D dense visual odometry assisted by the
cloud. The cloud integrates the received keyframes, m erging them with maps
constructed from other robots, then optimizes the pose and relays it to the mobile
device. Fabrizio et al. [19] analyzed the influence of lossy data compression on the
data size and accuracy. The H264 video codec is adapted to reduce the size of
depth data captured by a Kinect camera and 3D LiDAR on a mobile robot.
The study aimed to solve the problem of transmitting range data streams over low
bandwidth networks. The proposed method proved that highly compressed depth
images can still be used in dense mapping algorithms. In contrast, Jingao et al.
presented a real-time VSLAM for edge agents. The proposed architecture
integrates lossy compression for raw data encoding. It demonstrated that the lower
bit rates introduced by lossy compression have a negative effect on the feature
extraction quality [20]. In the literature, many compression standards are
introduced. These methods can be categorized as classical methods and learn-
based methods. Classical methods use predefined mathematical techniques such as
transforms and entropy encoding. In contrast, learn-based image compression
methods use machine learning techniques to compress data to higher compression
ratios. However, classical methods are still a reasonable choice for mobile device
implementation due to their lower computational complexity compared to the
massive computational demands of learned methods [21, 22, 23].

The main contribution of this article is to present novel multi-encoding visual data
compression methods used to compress input frames to high compression ratios
while preserving the information quality. It examines the feasibility of integrating
within the CTA and ATC frameworks of ORB-VSLAM. The proposed method is
compared to corresponding VSLAM architectures using the JPEG standard and

O. M. Salih et al. End-to-End Multi-Level Encoding Methods of Visual Data
 Compression for Robust Monocular Visual ORB-SLAM

 – 228 –

the more advanced version, the JPEG 2000 standard. The JPEG is the typical and
widely used traditional lossy compression standard, while the JPEG 2000 is a
more efficient lossy compression standard employing multiresolution capabilities
based on the Discrete Wavelet Transform (DWT) [24]. Inherently, this work also
demonstrates the effect of using lossy compression on the system performance in
terms of data size, execution time, and trajectory estimation accuracy.
The subsequent sections of this article are outlined as follows: Section 2 provides
an in-depth explanation of the ORB-VSLAM architecture and operational
mechanism. Section 3 presents the proposed end-to-end multi-encoding method in
detail, while Section 4 demonstrates the experimental results achieved from the
implementation of the proposed methods, with a comparative analysis against the
JPEG and JPEG 2000 standards. Finally, the conclusion section encapsulates the
key findings of the study and indicates further future directions.

2 Monocular ORB-SLAM

Visual SLAM estimates the pose and reconstructs a map of the surrounding
environment using data collected from visual sensors. It continuously updates the
global map to decrease drifts, allowing localization and loop-closing detection.
Generally, VSLAM methods are divided in to direct and indirect (feature-based)
categories. Direct methods work directly on raw pixel data for pose estimation and
reduce photo-metric errors, while indirect methods extract feature points (key
points) and match them with subsequent ones. There are various feature detection
algorithms, including Oriented FAST and Rotated BRIEF (ORB) [25], Speeded
Up Robust Features (SURF) [26], Scale-Invariant Feature Transform (SIFT) [27],
and Features from Accelerated Segment Test (FAST) [28].

A popular VSLAM framework is the ORB-SLAM proposed by [29]. It leverages
ORB features for robust and efficient feature detection, extraction, and matching.
Figure 1 illustrates the typical architecture of VSLAM [1]. The operation starts
with map initialization, where two consecutive frames are used to construct 3D
map points by extracting and matching the corresponding features. After the map
is initialized successfully, the tracking extracts and matches features of the input
frames to the map to localize the camera with each frame. Then, local mapping
manages and optimizes the map by performing bundle adjustment of the current
location in the environment. Finally, the loop closure distinguishes large loops and
corrects camera trajectory drifts with the aid of a Bag of Words (BoW). The BoW
is a technique that detects previously visited areas and loops by comparing the
current pose with the previously mapped ones. Successful loop closing detection
enhances the accuracy of the map and the camera trajectory, emphasizing the
robustness and reliability of VSLAM [30].

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

 – 229 –

Figure 1
ORB-SLAM Architecture

3 Methodology

This section demonstrates the end-to-end multi-level encoding methods tailored
for the ORB-SLAM system. The proposed methods aim to optimize image
compression while preserving essential visual information presented in video
frames as features.

3.1 Proposed Encoding Method

The encoding algorithm is implemented on the mobile device, which receives the
raw frame input data directly from the attached camera. It can be used in both
CTA and ATC frameworks. In CTA, the mobile device compresses each input
frame and transmits the encoded data to the cloud. The cloud decodes the received
encoded data and processes the ORB-SLAM tasks. Regarding the ATC
framework, the mobile device deploys both the proposed image encoding
algorithm along with the tracking module to maintain instant real-time operation.
In this case, the tracking is accomplished on the raw-sized data while the encoded
frames are transmitted to the cloud for map reconstruction and loop-closing
operation. These framework options are selected depending on the application at
hand and the computational power of the mobile device itself. Figure 2 illustrates
the proposed encoding method’s pipeline. The proposed method develops the
basic JPEG compression standard for more efficient ORB-SLAM performance.
The method starts by subdividing the input frame matrix into 8×8 sub-frames
followed by Discrete Cosine Transform (DCT) to convert the frame to its
frequency domain. For every sub-frame, 64 frequency components are produced,

O. M. Salih et al. End-to-End Multi-Level Encoding Methods of Visual Data
 Compression for Robust Monocular Visual ORB-SLAM

 – 230 –

one as a DC component and the other 63 as AC components. The DC component
(average intensity) holds the most significant energy of the frame, while the AC
components represent the variant frequency details. The DCT coefficients are then
quantized using matrix and scalar quantization. The JPEG quantization table is
updated by replacing the value of the DC component with 1 as well as the values
of its five nearest AC components. The process of excluding the DC and the
nearest five AC components from quantization is to increase the quality of the
compressed frame by preserving image details. However, this process will
decrease the compression ratio since it increases compressed frame quality.
A multi-level encoding method is proposed to provide a high compression ratio
for the encoded frames and perceive their quality as high. The quantized
coefficients are converted into a 1D array by applying a zigzag scan, then a novel
multi-level encoding algorithm is applied to reduce the 1D array size by a
"number of levels" factor based on the user selection. Figures 3 and 4 demonstrate
the multi-level encoding concept with two case study examples, a single-level and
two-level encoding, respectively.

Figure 2

The proposed image compression pipeline

Figure 3

A single-level encoding implementation

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

 – 231 –

The multi-level encoding method encodes data based on randomly generated keys
in the range of 0 to 1, which can be generated automatically or simply set
manually. In every encoding level, the data is encoded based on the multiplying
and summation operations of the selected keys with corresponding coefficient data
based on the same number of keys selected in that level. The encoded information
is stored as a table, which includes the original data probabilities as a header, as
well as the encoded data without any duplication, and then it is further encoded
later using arithmetic coding. Finally, the compressed data of the frame (in the
CTA framework) or keyframe (in the ATC framework) is sent to the cloud server
for tracking, mapping, and loop-closing operations.

Figure 4

A two-level encoding implementation

3.2 Proposed Decoding Method

The decoding pipeline is identical to the compression steps but in the opposite
order. The proposed decompression block diagram is illustrated in Figure 5.
The decompression algorithm is deployed on the cloud server. The received data
stream is first arithmetically decoded to retrieve the header and the encoded data
by the proposed encoding algorithm in the compression phase. After this step, the
data can be decoded using two possible methods. The first one is to use the header
data to reconstruct the original data. In this method, the data can be decoded
instantly without any extra computations. The other method involves discarding
the header data during the compression phase and estimating the original data
using a fast sequential search with the aid of the same encoding keys adopted
during compression, as can be demonstrated in Figure 6. This means we need to
implement the same encoding module that was used previously in compression.
This will increase the compression ratio since it just keeps the compressed data
and discards the extra header data. However, the reconstruction time will be

O. M. Salih et al. End-to-End Multi-Level Encoding Methods of Visual Data
 Compression for Robust Monocular Visual ORB-SLAM

 – 232 –

significantly increased due to the massive estimation iterations needed. This could
be less problematic if we take into consideration harnessing the great cloud
computing capabilities. For the scope of this work, the second method is
considered to achieve a high compression ratio.

Figure 5

The proposed image decoding pipeline

Figure 6
Mechanism of coefficient estimating using sequential search

4 Experimental Results and Discussion

The proposed method was implemented using MATLAB R2022a, running on an
Intel Core i7-12700H processor, NVIDIA GeForce RTX3070 Graphical
Processing Unit (GPU) with 8 GB of memory, and 32 GB of RAM (Random
Access Memory). The TUM dataset [31] is used to evaluate the implementation
results and to compare the performance of the proposed methods with the
traditional JPEG and JPEG 2000 standards. It is a widely used dataset for
evaluating the performance of VSLAM systems providing RGB images, depth

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

 – 233 –

maps, and the camera trajectory’s ground truth [32]. The RGB images and ground
truth of the sequence “freiburg3 long office household” are used in this work. It is
an indoor dataset captured using the Asus Xtion sensor containing 2585 frames
recorded at a frame rate of 30 fps. The trajectory diameter of the dataset is 5.12 m
×4.89 m×0.54 m, and its duration is 87.09 s with a resolution of 640×480 pixels.
The ending of the trajectory overlaps well with the beginning to reveal loop
closure.

Firstly, the traditional ORB-SLAM is implemented when using full-sized raw
visual data. The resulting estimated trajectory graph performance of this
implementation is illustrated in Figure 7, which shows three trajectory graphs: the
actual trajectory, the ORB-SLAM estimated trajectory, and the optimized
trajectory. The map points are always corrected and updated according to the
optimized pose trajectory graph, which is calculated from the actual trajectory and
the estimated trajectory. The Root Mean Square Error (RMSE) is provided to
evaluate the accuracy of the trajectory at each step of the simulation. The RMSE
measures the absolute deviation between the estimated and ground truth
trajectories. The initial coordinate starts at (0,0,0), and according to the dataset
used in this work, the robot moves in the clockwise direction as indicated in
Figure 7 and for the subsequent figures.

Figure 7

Standard ORB-SLAM trajectory estimation performance (RMSE=0.22114)

Secondly, the ORB-SLAM system is implemented by integrating the JPEG
standard to encode the input data frames. The process of decoding, tracking,
mapping, and loop closing is deployed as a single module emulating the cloud
processing. The cloud module receives the encoded data, decodes it, and performs
the trajectory estimation. This cloud-based ORB-SLAM architecture will be also
applied to both the JPEG 2000-based system and the proposed system. In general,
the purpose of using lossy image compression is to provide high compression
ratios by quantizing the coefficients obtained from the discrete transformation.
Therefore, additional different scalar Quantization Factors (QFs) are applied to

O. M. Salih et al. End-to-End Multi-Level Encoding Methods of Visual Data
 Compression for Robust Monocular Visual ORB-SLAM

 – 234 –

increase the compression ratio. Furthermore, this will demonstrate the trade-off
between visual data quality and trajectory estimation accuracy. Figure 8 displays
the trajectory estimation performance of the ORB-SLAM utilizing the JPEG
standard as an end-to-end encoding and decoding framework. It illustrates the
trajectory estimation among different QFs in the range of 5 to 20 with a step value
of 5. It can be deduced from Figure 8 that JPEG compression guaranteed robust
ORB-SLAM function among QF up to 15, and the loop closure in these cases has
been detected accurately. However, when the quantization is increased up to 20,
the trajectory drifts, and the system cannot continue mapping the remaining
environment because not enough features are detected in this area. The reason
behind this failure is that JPEG compression adds compression noise introduced as
artifacts in the reconstructed frame, thereby negatively affecting the process of
detecting and matching ORB features. Table 1 summarizes the ORB-SLAM
performance metrics that adopted the JPEG compression. It previews the
compression ratio, Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM), and execution time against different quantization values.

Thirdly, the ORB-SLAM is implemented by integrating the JPEG 2000 standard
within the ORB-SLAM architecture to encode and decode data frames.

Figure 8

ORB-SLAM trajectory estimation performance adopting JPEG compression

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

 – 235 –

The same procedure of splitting the cloud-based ORB-SLAM tasks between the
mobile device and the cloud demonstrated in JPEG-based system implementation
is applied. Unlike the JPEG standard, JPEG 2000 compresses the input frames
according to a desired Compression Ratio (CR) parameter rather than specifying a
quantization parameter. Figure 9 shows the trajectory estimation performance of
the ORB-SLAM system employing the JPEG 2000 as an end-to-end encoding and
decoding framework across different CRs. Examining Figure 9, the JPEG 2000
maintained a robust trajectory estimation up to a CR value of 97%, while at a
higher value (CR= 98%) the system didn’t detect loop closure. Table 2 displays
the encoding and decoding performance metrics of the JPEG 2000-based system.

Table 1
Encoding performance metrics of the ORB-SLAM integrated JPEG compression

Sample
frame

Nr.

Original
size

[KB]
QF Compressed

size [KB]
PSNR
[dB] SSIM CR

[%]
Exe. time [s]

Enc. Dec.

1132 472

5 153 34.8052 0.9579 68 0.3457 0.5991
10 144 33.2016 0.9330 69 0.2341 0.5305
15 141 32.3478 0.9148 70 0.2279 0.5279
20 140 29.5512 0.8842 71 0.2217 0.5071

2398 505

5 166 34.8084 0.9414 67 0.2283 0.5394
10 164 33.2872 0.9354 68 0.2205 0.5162
15 163 32.4000 0.9167 68 0.2195 0.5139
20 162 30.7533 0.8874 70 0.2306 0.5212

Table 2
Encoding performance metrics of the ORB-SLAM integrated JPEG 2000 compression

Sample
frame Nr.

Original
size [KB]

CR
[%]

Compressed
size [KB]

PSNR
[dB] SSIM Exe. time [s]

Enc. Dec.

1132 472

73 134 44.03 0.9823 0.110 0.440
82 89.8 41.43 0.9721 0.136 0.412
85 72 40.09 0.9647 0.112 0.444
91 41 37.49 0.9483 0.195 0.532
97 15 34.82 0.9279 0.192 0.492
98 8.9 29.53 0.8647 0.212 0.417

2398 505

73 137.7 44.69 0.9819 0.112 0.432
82 90 42.11 0.9708 0.121 0.403
85 71.9 40.99 0.9460 0.115 0.515
91 40.9 38.65 0.9485 0.109 0.636
97 14.3 36.28 0.9303 0.181 0.636
98 9 29.53 0.8835 0.162 0.512

Finally, ORB-SLAM is implemented by adopting the proposed multi-level
encoding algorithm as an end-to-end visual data encoding and decoding.
The trajectory estimation plots of the corresponding quantization and compression
ratio conditions in both the adopted JPEG and the JPEG 2000 methods are

O. M. Salih et al. End-to-End Multi-Level Encoding Methods of Visual Data
 Compression for Robust Monocular Visual ORB-SLAM

 – 236 –

applied. The obtained simulation results of the trajectory estimation performance
are presented in Figure 10 and Figure 11, while Table 3 summarizes the
compression performance metrics of two implementations: a single-level and a
two-level encoding scheme.

Figure 9

Trajectory estimation performance of ORB-SLAM system adopting JPEG 2000

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

 – 237 –

The PSNR and SSIM metrics presented in Table 3 for both methods are the same
since they achieved the same decompression quality. The reason behind the
equivalent quality of the two schemes is that the multi-level encoding is lossless
and does not add additional lossy compression to the encoded data.

Comparing the results of the proposed system to the JPEG-based system, at all QF
cases (5 to 20), the proposed method showed robust pose estimation, and the loop
closure was detected successfully as shown clearly in Figure 10. Higher values of
QFs are further applied beyond the quantization values used in the JPEG-based
ORB-SLAM method to evaluate the proposed method’s performance under severe
quantization. The proposed method showed robust trajectory estimation up to a
QF value of 75. However, at higher quantization (QF=100) the proposed system
failed to detect loop closure, these cases can be shown in Figure 11. Given the
encoding metrics in Tables 1 and 2, it can be demonstrated that the ORB-SLAM
integrated with the proposed system overcomes the equivalent JPEG-based system
in terms of compression ratio, PSNR, and SSIM. This clear superiority is
attributed to the multi-encoding module added to the compression system.
However, this addition increased the execution time, which can be seen clearly in
low QF values.

Figure 10

Multi-level based-ORB-SLAM trajectory estimation performance at lower QFs and CRs

O. M. Salih et al. End-to-End Multi-Level Encoding Methods of Visual Data
 Compression for Robust Monocular Visual ORB-SLAM

 – 238 –

As the QF increased, more duplicated values and zeros were present in the data,
yielding faster processing, low header and encoded data size, and higher
compression ratios. Nevertheless, this higher execution time does not affect real-
time operation if we consider the transmission latency, which is beyond the scope
of this work; transmitting smaller data sizes could compensate for the difference
in execution time.

Figure 11

Multi-level based-ORB-SLAM trajectory estimation performance at higher QFs and CRs

Comparing the results of the proposed system to the JPEG 2000-based system, the
two systems exhibited close behaviors, with the JPEG 2000-based system
demonstrating slightly better performance in decoding frame quality and
execution time. Nevertheless, this slight encoding metrics advantage did not
significantly enhance the overall ORB-SLAM system’s performance.
The proposed multi-level encoding system successfully estimated the path at a
compression ratio of 96%, while the JPEG 2000-based system successfully
estimated the path at a compression ratio of up to 97%. This minor difference
came at the expense of increased computational complexity. The three
implemented systems adopting the JPEG, the JPEG 2000, and the multi-level
encoding are analyzed according to the computational complexity by calculating

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

 – 239 –

the total basic operations: Multiplications (Mults.), Additions (Adds.), bit
operations (Bit ops.), comparisons (Comps.), shifts, Memory Reads (M/R), and
Memory Writes (M/W) for each stage. Tables 4, 5, and 6 show the computational
complexity metrics for the three implemented systems processing a single input
frame, while Figure 12 visualizes these complexity metrics.

Table 3
Encoding performance metrics of the ORB-SLAM integrating the proposed multi-level method

QF PSNR
[dB] SSIM

Single level implementation Two levels implementation
size

[KB]
CR
[%]

Exe. time [s] size
[KB]

CR
[%]

Exe. time [s]
Enc. Dec. Enc. Dec.

Frame sequence 1132, Frame size 472 KB
5 35.2333 0.9515 87 82 0.7773 0.7201 86 82 0.8800 0.8307
10 33.5493 0.9398 68 86 0.6951 0.6093 67 86 0.7252 0.6966
15 32.6696 0.9328 59 88 0.6274 0.5198 58 88 0.7370 0.6451
20 32.2144 0.9271 54 89 0.5139 0.4351 50 89 0.6045 0.6160
50 31.0675 0.8961 38 92 0.4203 0.3960 30 94 0.4826 0.4378
75 30.1511 0.8721 32 93 0.3831 0.3106 22 95 0.4163 0.3926

100 29.2537 0.8501 27 94 0.3013 0.2877 17 96 0.3937 0.3616
Frame sequence 2398, Frame size 505 KB

5 35.3702 0.9517 104 79 0.7932 0.7213 102 80 1.0329 0.9067
10 33.7746 0.9410 81 83 0.6231 0.6134 79 84 0.8411 0.7957
15 33.0977 0.9345 69 86 0.5932 0.4929 67 87 0.7535 0.6757
20 32.6712 0.9291 64 87 0.4982 0.4036 60 89 0.6904 0.6510
50 32.2985 0.8945 42 92 0.3864 0.3289 37 93 0.5370 0.4647
75 30.2647 0.8662 32 94 0.3225 0.2854 28 94 0.4656 0.4186

100 29.2861 0.8439 29 94 0.3019 0.2978 23 95 0.4337 0.3908

Table 4
Complexity analysis metrics of JPEG encoding (processing frame sequence 1132)

Stage Mults. Adds. Bit ops. Comps. Shifts M/R M/W Total ops.
Compression Metrics

DC shift 0 307200 0 0 0 307200 307200 921600
DCT 307200 537600 0 0 0 307200 307200 1459200

Quantization 307200 0 307200 0 307200 307200 307200 1536000
Huffman cod. 0 0 399360 337920 61440 307200 61440 1167360

Total ops. 614400 844800 706560 337920 368640 1228800 983040 5084160
Decompression Metrics

Huffman dec. 0 0 92160 61440 61440 61440 307200 583680
Dequantization 307200 0 307200 0 307200 307200 307200 1536000

IDCT 307200 537600 0 0 0 307200 307200 1459200
Inv. DC shift 0 307200 0 0 0 307200 307200 921600

Total ops. 614400 844800 399360 61440 368640 983040 1228800 4500480

Table 5
Complexity analysis metrics of JPEG 2000 (processing frame sequence 1132)

O. M. Salih et al. End-to-End Multi-Level Encoding Methods of Visual Data
 Compression for Robust Monocular Visual ORB-SLAM

 – 240 –

Stage Mults. Adds. Bit ops. Comps. Shifts M/R M/W Total ops.
Compression Metrics

DC shift 0 307200 0 0 0 307200 307200 921600
DWT 8184000 6547200 0 0 3273600 3273600 1636800 22915200

Quantization 307200 0 0 307200 307200 307200 307200 1536000
Tier1 coding 0 0 3932160 2949120 0 1310720 655360 8847360
Tier2 coding 614400 614400 3072000 0 0 614400 307200 5222400

Total ops. 9105600 7468800 7004160 3256320 3580800 5813120 3213760 39442560
Decompression Metrics

Tier2 decoding 0 307200 1843200 0 0 307200 307200 2764800
Tier1 decoding 0 0 2621440 983040 0 655360 327680 4587520
Dequantization 307200 0 0 0 307200 307200 307200 1228800

IDWT 6547200 4910400 0 0 1636800 1636800 1636800 16368000
Inv. DC shift 0 307200 0 0 0 307200 307200 921600

Total ops. 6854400 5524800 4464640 983040 1944000 3213760 2886080 25870720

Table 6
Complexity analysis metrics of the proposed method using a single-level encoding (processing frame

sequence 1132)

Stage Mults. Adds. Bit ops. Comps Shifts M/R M/W Total ops.

Compression Metrics
DCT 307200 268800 307200 4800 0 307200 307200 1502400

Quantization 307200 0 307200 0 0 307264 307200 1228864
Minimization 307200 204800 102400 307200 0 307200 102400 1331200

Arithmetic
coding 0 102400 819200 102400 819200 102400 102400 2048000

Total ops. 921600 576000 1536000 414400 819200 1024064 819200 6110464
Decompression Metrics

Arithmetic
decoding 0 102400 819200 102400 819200 102400 102400 2048000

Sequential
search 1536000 1536000 307200 1536000 0 1536000 307200 6758400

Dequantization 307200 0 307200 4800 0 307264 307200 1233664
IDCT 307200 268800 38400 4800 0 307200 307200 1233600

Total ops. 2150400 1907200 1472000 1648000 819200 2252864 1024000 11273664

Examining the results presented in Tables 4, 5, 6, and Figure 12, the proposed
method exhibited a clear advantage in terms of the computational complexity of
both encoding and decoding modules compared to JPEG 2000. This obvious
advantage comes with relatively equivalent trajectory estimation efficiency. On
the other hand, the JPEG system shows slightly less complexity than the proposed
system. However, the JPEG system showed much worse performance compared
to the JPEG 2000 and the proposed systems. This makes the proposed system a
reasonable compromise between the three implemented systems to be used in
mobile robots. Another outcome of this work is to study the impact of lossy data
compression on the reliability of ORB-SLAMs. The encoding performance results

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

 – 241 –

presented in Tables 1, 2, and 3 demonstrated that ORB-SLAM is less robust when
PSNR values go below 30 and SSIM values below 0.87.

Figure 12

Computational complexity of the three implemented systems

Conclusions

This article presents a novel multi-level image encoding method tailored for
cloud-based ORB-SLAM systems. The proposed method demonstrated
outstanding performance compared to ORB-SLAM architectures employing JPEG
and JPEG 2000 compression standards. The proposed system achieved superior
performance compared to a corresponding JPEG-based system in terms of
decoded frame quality metrics and robot trajectory estimation with only a minimal

O. M. Salih et al. End-to-End Multi-Level Encoding Methods of Visual Data
 Compression for Robust Monocular Visual ORB-SLAM

 – 242 –

increase in computational complexity. In addition, the proposed method
demonstrated comparable performance results to the JPEG 2000-based system. In
contrast, the mathematical operations analysis showed the high efficiency of the
proposed system in terms of computational complexity compared to the JPEG
2000-based system, making it a practical solution for cloud-based ORB-SLAM
systems. A future direction includes neglecting the compressed data header and
harnessing the cloud computing power to directly decode the results without
estimating them, which can significantly increase the compression ratio.
Furthermore, research is needed for efficient hardware implementation using
cutting-edge devices, like Field Programmable Gate Arrays (FPGA), since it is
well suited to deploying the multiply accumulated operation presented in the
proposed method.

References

[1] A. Tourani, H. Bavle, J. L. Sanchez-Lopez, and H. Voos, “Visual SLAM
What are the Current Trends And What To Expect?,” Sensors, Vol. 22, No.
23, p. 9297, 2022

[2] I. Vallivaara, J. Haverinen, A. Kemppainen, and J. Röning, “Magnetic
Field-based SLAM Method for Solving the Localization Problem in Mobile
Robot Floor-cleaning Task,” in 2011 15th International Conference on
Advanced Robotics (ICAR), pp. 198-203, IEEE, 2011

[3] Q. Zou, Q. Sun, L. Chen, B. Nie, and Q. Li, “A Comparative Analysis of
LiDAR SLAM-based Indoor Navigation for Autonomous Vehicles,” IEEE
Transactions on Intelligent Transportation Systems, Vol. 23, No. 7, pp.
6907-6921, 2021

[4] T. Yang, P. Li, H. Zhang, J. Li, and Z. Li, “Monocular Vision SLAM-based
UAV Autonomous Landing in Emergencies and Unknown Environments,”
Electronics, Vol. 7, No. 5, p. 73, 2018

[5] Z. Liu, H. Chen, H. Di, Y. Tao, J. Gong, G. Xiong, and J. Qi, “Real-time
6D LiDAR SLAM in Large Scale Natural Terrains for UGV,” in 2018
IEEE Intelligent Vehicles Symposium (IV), pp. 662-667, IEEE, 2018

[6] G. Lu, H. Yang, J. Li, Z. Kuang, and R. Yang, “A Lightweight Real-time
3D LiDAR SLAM for Autonomous Vehicles in Large-scale Urban
Environment,” IEEE Access, Vol. 11, pp. 12594-12606, 2023

[7] B. Amjad, Q. Z. Ahmed, P. I. Lazaridis, M. Hafeez, F. A. Khan, and Z. D.
Zaharis, “Radio SLAM: A Review on Radio-based Simultaneous
Localization and Mapping,” IEEE Access, Vol. 11, pp. 9260-9278, 2023

[8] A. Macario Barros, M. Michel, Y. Moline, G. Corre, and F. Carrel, “A
Comprehensive Survey of Visual SLAM Algorithms,” Robotics, Vol. 11,
No. 1, p. 24, 2022

Acta Polytechnica Hungarica Vol. 22, No. 5, 2025

 – 243 –

[9] J-C. Trujillo, R. Munguia, S. Urzua, E. Guerra, and A. Grau, “Monocular
Visual SLAM-based on a Cooperative UAV–target System,” Sensors, Vol.
20, No. 12, p. 3531, 2020

[10] J. Mo, M. J. Islam, and J. Sattar, “Fast Direct Stereo Visual SLAM,” IEEE
Robotics and Automation Letters, Vol. 7, No. 2, pp. 778-785, 2021

[11] B. Li, Y. Guo, Z. Mi, Y. Yang, and M. S. Obaidat, “A Novel Data
Compression Technique Incorporated with Computer Offloading in RGB-D
SLAM,” in 2019 International Conference on Computer, Information and
Telecommunication Systems (CITS), pp. 1-5, IEEE, 2019

[12] S. Eger, R. Pries, and E. Steinbach, “Evaluation of Different Task
Distributions for Edge Cloud-based Collaborative Visual SLAM,” in 2020
IEEE 22nd International Workshop on Multimedia Signal Processing
(MMSP), pp. 1-6, IEEE, 2020

[13] A. J. Ben Ali, M. Kouroshli, S. Semenova, Z. S. Hashemifar, S. Y. Ko, and
K. Dantu, “Edge-SLAM: Edge-assisted Visual Simultaneous Localization
and Mapping,” ACM Transactions on Embedded Computing Systems, Vol.
22, No. 1, pp. 1-31, 2022

[14] J. Hofer, P. Sossalla, C. L. Vielhaus, J. Rischke, M. Reisslein, and F. H.
Fitzek, “Comparison of Analyze-then-compress Methods in Edge-assisted
Visual SLAM,” IEEE Access, 2023

[15] M. A. Rahman, M. Hamada, and J. Shin, “The Impact of State-of-the-art
Techniques for Lossless Still Image Compression,” Electronics, Vol. 10,
No. 3, p. 360, 2021

[16] A. J. Hussain, A. Al-Fayadh, and N. Radi, “Image Compression
Techniques: A Survey in Lossless and Lossy Algorithms,”
Neurocomputing, Vol. 300, pp. 44-69, 2018

[17] L. Riazuelo, J. Civera, and J. M. Montiel, “C2TAM: A Cloud Framework
for Cooperative Tracking and Mapping,” Robotics and Autonomous
Systems, Vol. 62, No. 4, pp. 401-413, 2014

[18] G. Mohanarajah, V. Usenko, M. Singh, R. D’Andrea, and M. Waibel,
“Cloud-based Collaborative 3D Mapping in Real-time with Low-cost
Robots,” IEEE Transactions on Automation Science and Engineering, Vol.
12, No. 2, pp. 423-431, 2015

[19] F. Nenci, L. Spinello, and C. Stachniss, “Effective Compression of Range
Data Streams for Remote Robot Operations using H.264,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
3794-3799, IEEE, 2014

[20] J. Xu, H. Cao, Z. Yang, L. Shangguan, J. Zhang, X. He, and Y. Liu,
“{SwarmMap}: Scaling up Real-time Collaborative Visual {SLAM} at the

O. M. Salih et al. End-to-End Multi-Level Encoding Methods of Visual Data
 Compression for Robust Monocular Visual ORB-SLAM

 – 244 –

Edge,” in 19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pp. 977-993, 2022

[21] D. Mishra, S. K. Singh, and R. K. Singh, “Deep Architectures for Image
Compression: A Critical Review,” Signal Processing, Vol. 191, p. 108346,
2022

[22] S. Jamil, M. Piran, and M. Rahman, “Learning-driven Lossy Image
Compression; A Comprehensive Survey,” arXiv preprint
arXiv:2201.09240, 2022

[23] M. A. Rahman and M. Hamada, “Lossless Image Compression Techniques:
A State-of-the-art Survey,” Symmetry, Vol. 11, No. 10, p. 1274, 2019

[24] I. A. Urbaniak, “Using Compressed JPEG and JPEG2000 Medical Images
in Deep Learning: A Review,” Applied Sciences 14, No. 22: 10524, 2024

[25] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. “ORB: An Efficient
Alternative to SIFT or SURF,” In 2011 International conference on
computer vision, pp. 2564-2571, IEEE, 2011

[26] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up Robust
Features (SURF),” Computer Vision and Image Understanding, Vol. 110,
No. 3, pp. 346-359, 2008

[27] D. G. Lowe, “Distinctive Image Features from Scale-invariant Keypoints,”
International Journal of Computer Vision, Vol. 60, pp. 91-110, 2004

[28] E. Rosten and T. Drummond, “Machine Learning for High-speed Corner
Detection,” in Computer Vision–ECCV 2006: 9th European Conference on
Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9, pp.
430-443, Springer, 2006

[29] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: A
Versatile and Accurate Monocular SLAM System,” IEEE Transactions on
Robotics, Vol. 31, No. 5, pp. 1147-1163, 2015

[30] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An Open-source SLAM
System for Monocular, Stereo, and RGB-D Cameras,” IEEE Transactions
on Robotics, Vol. 33, no. 5, pp. 1255–1262, 2017

[31] J. Sturm, N. Engelhard, F. Endres, W. Burgard and D. Cremers, "A
Benchmark for the Evaluation of RGB-D SLAM Systems," 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 573-580,
2012

[32] B. Al-Tawil, T. Hempel, A. Abdelrahman, and A. Al-Hamadi. “A review of
visual SLAM for robotics: evolution, properties, and future applications,”
Frontiers in Robotics and AI, Vol. 11, 1347985, 2024

	1 Introduction
	2 Monocular ORB-SLAM
	3 Methodology
	3.1 Proposed Encoding Method
	3.2 Proposed Decoding Method

	4 Experimental Results and Discussion

