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Abstract: The Traveling Salesman Problem (TSP) is one of the most often studied NP-hard 
graph search problems. There have been numerous publications in the literature that applied 
various approaches to find the optimum or semi optimum solution. Although the problem is 
computationally intractable, but the Time Dependent Traveling Salesman Problem (TD TSP) 
is one of the most realistic extensions of the original TSP problem. In the TD TSP, the costs 
of edges between nodes vary, namely, they are assigned higher costs if they crossed a 
predefined oblong shaped area (to represent the jam region in the city center). Realizing that 
the jam regions and the rush hours costs on a tour are uncertain and can never be accurately 
represented by concrete numbers, we introduced the novel 3FTD TSP (Triple Fuzzy Time 
Dependent Traveling Salesman Problem); a fully fuzzified model of the original TD TSP.  
The 3FTD TSP utilizes fuzzy values for determining the costs between any two nodes within 
the traffic jam regions and during the rush hours periods more precisely. In this paper, we 
extend the 3FTD TSP further and apply it on the biggest universal instances in the literature 
in pursuit of testing the generality and applicability of the 3FTD TSP on real-life scenarios. 
To support the claim of the model’s efficiency, we propose the application of the DBMEA 
(Discrete Bacterial Memetic Evolutionary Algorithm), as a meta-heuristic and the classic 
GA (Genetic Algorithm) enabling the reader to compare the accuracy and the speed of 
(quasi-) optimum solutions convergence 

Keywords: Fuzzy Sets; Time Dependent Traveling Salesman Problem; jam region; rush hour 
period; discrete bacterial memetic evolutionary algorithm 
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1 Introduction 

The Traveling Salesman Problem (TSP) originally attempts to find the minimal 
overall cost of a route departing from a starting point for a journey and then 
returning to the starting point, with each location (node) visited only once [1]. In 
the language of graph theory, it means finding the shortest Hamiltonian cycle. In 
fact, this problem models many real-life application areas in logistics and 
transportation route optimization. In the literature, there have been numerous 
proposed extensions and variations of the original TSP to simulate traffic 
conditions’ added costs (such as traffic regions and rush hours’ delays that occur 
during the day). Those models assigned costs to the edges connecting the nodes 
(cities) based on Euclidean Distances. However, those costs are constant, which is 
an obvious limitation when applied to actual cases. Because the traffic 
circumstances are intangible factors. Moving one step towards a more realistic 
model, the TD TSP introduced a viable refinement for costs calculation, yet not 
efficient enough, since it is still a deterministic solution [2]. In fact, the TD TSP 
assigns a fixed part of the graph to represent the “traffic jam region” in a time 
dependent form, namely, each graph edge is assigned given costs in the non-rush 
hour periods, and higher costs during the rush hour times [2]. Afterwards, those 
crisp numbers are multiplied with the length of the corresponding edge between the 
nodes in the given rush hour times, to quantify the traffic jam factor’s (extra delays 
caused by traffic such as conjunctions, accidents or rush hours during the day) 
effects on the respective costs [2]. Despite the TD TSP’s ability to achieve good 
results in determining the overall cost, one main drawback is the use of concrete 
numbers for representing the proportional traffic jam factors and the simplified 
representation of the traffic jam region (city center). After the classical TD TSP, 
there have been many other attempts by researchers to quantify the rush hours and 
the traffic jam regions effects on the trip’s overall cost. In 2015, Hurkała proposed 
a new algorithm for the TD TSP with multiple time windows and compared it with 
three well-known and often efficient heuristic methods (simulated annealing, list-
based threshold accepting algorithm, and variable neighborhood search) [3].  
The main drawback of these results is that the methods mentioned were tested on 
small instances, up to 23 nodes only. In 2016, Taş et al. proposed a variant of the 
Traveling Salesman Problem with time-dependent service times [4].  
The mathematical formulation of the model was extended with sub-tour elimination 
constraints and was solved by using IBM ILOG CPLEX 12.5. The tests were carried 
out only on smaller instances up to 45 nodes. The tests were carried out only on 
smaller instances up to 45 nodes. Even for these relatively small graphs, in quite 
many cases the optimal solutions were not found within the time limit set by the 
authors (7200 s). In 2019, Vu et al. presented an integer programming formulation 
for solving the TD TSP with time windows. However, this approach was again only 
able to solve small instances, up to 40 nodes [5]. In 2018, our team [6] also 
published a novel (non-fuzzy) approach, where a parameter-adapted version of the 
rather generally applicable (say, “universal”), efficient, and efficacious method 
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called the Discrete Bacterial Memetic Evolutionary Algorithm (DBMEA), was 
applied for solving the problem, first, for the reason of possible comparison, on 
Schneider’s instances. The proposed meta-heuristics clearly outperformed previous 
attempts for the solution of this problem, and, by adding several new, larger 
instances, it was also shown that DBMEA did not have restrictions concerning the 
size of the graph (rather, when knowing the size, a good prediction of obtaining a 
good approximate solution could be obtained). 

In 2019, Ban proposed a two-phase meta-heuristic algorithm [7] for Schneider’s 
version of the Time-Dependent Traveling Salesman Problem, but it did not 
outperform the earlier published DBMEA approach [2]. Moreover, some models 
used Ant Colony optimization to predict traffic for the TD TSP, where the traveled 
time between cities changes with time [9]. Others used a mixed approach, where 
they incorporated integer programming model to calculate the traveled time, then 
integrated both Ant Colony System (ACS) and Tabu Search (TS) algorithms [10] 
to calculate the overall cost. Other authors used linear constrains formulation 
techniques to present the traffic jam factors’ effect on any trip [11]. Also, dynamic 
programming algorithm is proposed to solve the TD TSP [2]. Looking closely, there 
is one common aspect in all the previously proposed approaches, that is, using crisp 
numbers to simulate those uncertain and imprecise road conditions, indeed, this is 
an insufficient formulation [11] [12]. Conversely, there was one attempt to apply 
fuzzy sets on the TSP in 2017; the fuzzy based solution to the travelling salesman 
problem introduced [13], this model was applied on 5 nodes (cities) and used 
triangular membership functions to represent all traffic conditions as added costs to 
the overall edges’ length. The drawback of this representation is obvious, the 
model’s efficiency, practicality or applicability was never proven or tested on large 
scale instances. In fact, it would be closer to reality to use fuzzy numbers to capture 
the uncertainties associated with road conditions (traffic jam factors and rush hours) 
while simulating actual cases for courier trips. Consequently, we introduced three 
novel fuzzy-based novel approaches (3FTD TSP, IFTD TSP, IVIFTD TSP) which 
offered for the very first time a tangible and realistic formulations for the jam 
regions and the rush hours periods costs. 

First model: The Triple Fuzzy Time Dependent Travelling Salesman Problem 
(3FTD TSP) model [14]. It is called triple fuzzy as it has three aspects of uncertainty 
that are represented by type-1 fuzzy sets (characterized by two-dimensional 
membership functions). In the 3FTD TSP, the costs between the nodes are 
expressed by fuzzy sets, which best suited for non-deterministic factors, such as 
unexpected accidents, road constructions, weather conditions, etc. Here, the fuzzy 
values represent the vagueness and imprecision of the traffic factors which result in 
additional costs on the tour. In the example of the paper [14], the rush hours times 
were represented as bimodal piecewise linear normal fuzzy sets. On the other hand, 
the jam areas were represented by fuzzy trapezoidal “oblong shaped” sets of the 
affected areas. This model calculated the overall tour length (cost) more efficiently. 
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Second model: The Intuitionistic Fuzzy Time Dependent Travelling Salesman 
Problem (IFTD TSP) model [15]. An even more general model that allowed road 
uncertainties representation to become more flexible. This model employs type-2 
Intuitionistic fuzzy sets (IFSs) which are characterized by three-dimensional 
membership functions. The IFSs was introduced by Atanassov [16] [17] which is 
the core of this model. IFSs involve the so-called hesitation and the non-
membership part between the membership functions. IFSs theory has been applied 
in different areas that have to do with decision making under high hesitation and 
vagueness degrees and it proved being more adequate [18] [19] than the classic crisp 
representations. Thus, the use of intuitionistic fuzzy sets in the IFTD TSP model 
indeed ensured successful representation for higher degrees of association and the 
lower degrees of non-association for the traffic jam factors and the rush hours and 
lower degrees of hesitation to edges’ costs in any proposed tour, that resulted in a 
more accurate overall cost estimation for any given tour. 

Third model: In pursuit of considering the accumulative average costs of multiple 
factors affecting a single edge simultaneously; we proposed the interval-valued 
intuitionistic fuzzy Time Dependent Travelling Salesman Problem model (IVIFTD 
TSP) [20]. This model also uses the interval-valued intuitionistic fuzzy sets (type-
2). The improvement we achieved in this model was employing the aggregation 
concept of all the costs rather than using the max-min composition of the fuzzy 
factors [15] (as in the IFTD TSP). Since in an actual tour, any edge can be affected 
by several factors simultaneously, and thus, by taking in consideration all the 
external traffic factors affecting any edge collectively at any given time, less 
information loss was guaranteed [20]. Indeed, this formulation led to an even more 
adequate model. 

All three models [21] were tested on small instances and proven efficient, 
continuing our work, in this paper we extended the 3FTD TSP on bier127, eil51, 
eil76, eil101, bier127 and our own instances which consist of 250 nodes (s250_1, 
s250_2); those universal instances are the largest extended TSP benchmark in the 
literature. Our aim is proving the 3FTD TSP’s efficiency, generality and practicality 
on real-life scenarios. 

Generally, Memetic algorithms have been applied in various fields and they have 
been proven efficient [22]. Calculating the modified tour costs is more complex and 
time consuming. It requires even more operational power, hence, the GA (Genetic 
Algorithm) and DBMEA (Discrete Bacterial Memetic Evolutionary Algorithm) 
[23] [24] were used to optimize the (quasi-) optimum or semi optimum solution to 
achieve best possible convergent speed. 
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2 Formulation of the Classic TSP Solution 

The original TSP was first formulated in 1930 [1], it involves a salesman who starts 
the journey from the company headquarters, visits all planned destination (cities or 
shops) exactly once, and then returns to the original starting point with the minimum 
overall travelled distance. TSP can be defined as a graph search problem with edge 
weights (costs) as in Eqs. (1, 2, 3 and 4). To formulate the symmetric case with n 
nodes (cities). Let 𝑐𝑐𝑖𝑖𝑖𝑖 =  𝑐𝑐𝑗𝑗𝑗𝑗represents the cost of going from city (vertex) 𝑖𝑖 to city 
𝑗𝑗. 𝐺𝐺𝑇𝑇𝑇𝑇𝑇𝑇 is the graph on hand, then, 𝐶𝐶 is called cost (time) matrix, and can be 
expressed as: 

𝐶𝐶 = �𝑐𝑐𝑖𝑖𝑖𝑖�                                                              (1) 

𝐺𝐺𝑇𝑇𝑇𝑇𝑇𝑇  graphisa combination of a list of vertices and edges such that 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐is the set 
of all vertices between the cities. 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the set of all edges in the graph, and 𝑣𝑣1is 
the starting vertex. Then: 

𝐺𝐺𝑇𝑇𝑇𝑇𝑇𝑇 = 〈𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐〉                                                   (2) 

thus𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can be expressed as: 

Vcities = v1  ∪ {v2, … vi … . , vn}, 𝑖𝑖 =  (2 … ,𝑛𝑛)                              (3) 

and 

𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⊆ ��𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗��𝑖𝑖 ≠ 𝑗𝑗�,i, j =  (1 … , n)                                    (4) 

The cost matrix 𝐶𝐶 is the mapping of all subscripts of the vertices, can be expressed 
as: 

𝐶𝐶: 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 → 𝑅𝑅+                                          (5) 

𝑅𝑅+is the range of the costs from the set of edges to the positive real lines. The initial 
set of vertices in any tour is {1, 𝑘𝑘2, … 𝑘𝑘𝑖𝑖 … . , 𝑘𝑘𝑛𝑛} where 𝑘𝑘1 = 1 the starting 
subscript, 𝑖𝑖 =  (2 … ,𝑛𝑛). The goal is to find the path of edges that minimizes the sum 
of the costs (𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠) by traveling through the vertices exactly once. 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 calculated 
in Eq. (6) and should be minimized as in Eq. (7). Here 𝑐𝑐1,𝑘𝑘2  is the cost of traveling 
the starting edge, and 𝑐𝑐𝑘𝑘𝑛𝑛−1,1 is the cost of returning to the first vertex (traveling the 
last edge). 

Thus, 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 can be written as: 

𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐1,𝑘𝑘2 + � 𝑐𝑐𝑘𝑘𝑗𝑗,𝑘𝑘𝑗𝑗+1

𝑛𝑛

𝑗𝑗=2
 , (𝑗𝑗 = 2, … ,𝑛𝑛 − 1) 

, 𝑐𝑐𝑘𝑘𝑗𝑗,𝑘𝑘𝑗𝑗+1𝜖𝜖 �𝑐𝑐𝑖𝑖𝑖𝑖�,𝑘𝑘2, 𝑘𝑘𝑛𝑛𝜖𝜖 {2, … ,𝑛𝑛}                                        (6) 

Then to minimizes the sum of the costs: 

    Minimize 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠                                          (7) 
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A valid permutation for vertices (the subscripts) is: 

�𝑣𝑣1, 𝑣𝑣𝑘𝑘2 , … 𝑣𝑣𝑘𝑘𝑖𝑖 … . , 𝑣𝑣𝑘𝑘𝑛𝑛�                                                 (8) 

where   𝑖𝑖 =  (2 … ,𝑛𝑛).𝑣𝑣1is the starting vertex. 

Let {𝑘𝑘1, … . 𝑘𝑘𝑛𝑛}be a permutation of {1 … ,𝑛𝑛}, then a valid sequence of edges that 
forms a path that goes through all vertices (exactly once and goes back to the first 
one) can be expressed in the form: 

𝑒𝑒1,𝑘𝑘2 , 𝑒𝑒𝑘𝑘2,𝑘𝑘3 , … . 𝑒𝑒𝑘𝑘𝑖𝑖,𝑘𝑘𝑗𝑗 … … 𝑒𝑒𝑘𝑘𝑛𝑛−1,1 , 𝑖𝑖, 𝑗𝑗 𝜖𝜖 {2 … ,𝑛𝑛}                      (9) 

where the first edge is 𝑒𝑒1𝑘𝑘2 , 𝑘𝑘𝑖𝑖 ≠ 𝑘𝑘𝑗𝑗so that 𝑖𝑖 ≠ 𝑗𝑗. 

 

 

 

 

 

 

 

Considering an actual trip (for simplicity we will consider small sized tour Fig. 1), 
clearly, it is subjected not only to the topography of the given route, but also to the 
unexpected circumstances and road conditions, which affect the overall timing 
(cost) of the tour. Naturally, in the city centers and during the rush hours periods, 
trips between nodes (vertices) take longer. Thus, those two factors must be looked 
at as vague or uncertain (non-deterministic but not in a random sense) values, and 
the relevant estimated costs for any tour traveled between two nodes are not 
constant themselves. Hence, it is more appropriate to represent those imprecise 
(uncertain) costs using fuzzy numbers. This was my main motivation for 
introducing the novel 3FTD TSP model, which is a more adequate and realistic 
version of the classic TD TSP (the crisp version fuzzy-based from multiple aspects). 

3 The Triple Fuzzy Time Dependent Traveling 
Salesman Problem (3FTD TSP) 

The 3FTD TSP is so far the only fully extended and published fuzzy version of the 
classic TD TSP using type-1 fuzzy sets [25]. In the 3FTD TSP model, three 
“modifying parameters” of the edge costs were represented using fuzzy sets. Each 
cost in the trip has its own membership function, namely, the fuzzy time (cost) 
needed for crossing edge(𝑣𝑣𝑖𝑖  , 𝑣𝑣𝑗𝑗)is denoted by: 

Figure1 
Tour for a Simple Example 

 



Acta Polytechnica Hungarica Vol. 22, No. 5, 2025 

‒ 77 ‒ 

𝑐𝑐�𝑣𝑣𝑖𝑖  , 𝑣𝑣𝑗𝑗� = 𝑐̃𝑐𝑖𝑖𝑖𝑖                                                    (10) 

The fuzzy jam region influenced cost with membership function 𝜇𝜇𝐽𝐽(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) and the 
fuzzy rush hours cost with membership function 𝜇𝜇𝑅𝑅𝑅𝑅(ℎ) (See Fig. 2 and Fig. 3). 
Hence, according to the degree of belonging to the specified jam region or if the 
edge was being crossed during the fuzzy rush hours; the original fuzzified time of 
the related edge(s) will be influenced accordingly. It is worth mentioning that, in 
our fuzzy formulation, the cost of crossing the edges is defined by the time needed 
to cross them. The cost between edges is expressed by time, thus, from here on we 
will refer to time as cost. Moreover, cost here is a fuzzy set of the universe of the 
potential costs between two vertices (the universe of potential travelling time). 

Let 𝑐𝑐𝑖𝑖𝑖𝑖  be the cost of traveling between vertices𝑣𝑣𝑖𝑖and𝑣𝑣𝑗𝑗, 𝐶̃𝐶 is the fuzzy cost matrix, 
which can be defined as: 

𝐶̃𝐶 = �𝑐̃𝑐𝑖𝑖𝑖𝑖�                                                          (11) 

where 𝑐̃𝑐𝑖𝑖𝑖𝑖:𝑇𝑇 →  [0, 1].𝑖𝑖 ≠ 𝑗𝑗, and  𝑖𝑖, 𝑗𝑗 ∈  {1, … .𝑛𝑛} 

𝑇𝑇 is the universe of the costs [0, max{𝑇𝑇}], such that (max{𝑇𝑇}) is the highest cost in 
the trip under study. 

Thus, 
𝑐̃𝑐�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� = 𝑐̃𝑐𝑖𝑖𝑖𝑖                                                               (12) 

𝑐̃𝑐𝑖𝑖𝑖𝑖 = 〈𝑇𝑇,𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡):𝑇𝑇 →  [0, 1]〉, such that 𝑡𝑡 ∈  𝑇𝑇                                         (13) 

In our illustrative example, 𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡) defines 𝑐̃𝑐𝑖𝑖𝑖𝑖  over 𝑇𝑇 (the traveling time between 
vertices 𝑣𝑣𝑖𝑖and𝑣𝑣𝑗𝑗). 𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡) is a triangular membership function between vertices 
𝑣𝑣𝑖𝑖and𝑣𝑣𝑗𝑗. 𝑥𝑥,𝑦𝑦, and 𝑧𝑧 represent the break points of 〈𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)〉 in Eq.(14): 

𝑐̃𝑐�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� = 〈𝑇𝑇, 𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)〉                              (14) 

𝜇𝜇𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)= 

⎩
⎪
⎨

⎪
⎧

0 (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) ≤  𝑥𝑥
(𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗)−𝑥𝑥

𝑦𝑦−𝑥𝑥
𝑥𝑥 ≤ (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) ≤  𝑦𝑦

𝑧𝑧−(𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗)

𝑧𝑧−𝑦𝑦
𝑦𝑦 ≤ (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) ≤  𝑧𝑧

0 𝑧𝑧 ≤ (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗)

 

= max �min �
(𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗)−𝑥𝑥

𝑦𝑦−𝑥𝑥
,
𝑧𝑧−(𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗)

𝑧𝑧−𝑦𝑦
� , 0�                                          (15) 

To calculate the modified cost due to crossing the jam region, we assume (in the 
presented example) there is a center point at the city center, and the jam region has 
a truncated conic shaped membership function 𝜇𝜇𝐽𝐽(𝑣𝑣). Where the membership 
degree depends on the distance measured from the center point. Since we assume a 
truncated conic type membership function for the jam region 〈𝑥𝑥, 𝑦𝑦; 𝑟𝑟1, 𝑟𝑟2〉, there are 
two radiuses (𝑟𝑟1 and 𝑟𝑟2); one that of the conical kernel (𝑟𝑟1) and the other is that of 
the support (𝑟𝑟2). To calculate the modified cost that affects edge (𝑣𝑣𝑖𝑖,𝑣𝑣𝑗𝑗) due to 
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crossing the jam region, we must first find the membership degree 𝜇𝜇𝐽𝐽 of each vertex. 
Let 𝑉𝑉 be set of vertices that is 𝑉𝑉 =  𝑣𝑣1  ∪ {𝑣𝑣2, … 𝑣𝑣𝑖𝑖 … . , 𝑣𝑣𝑛𝑛}, 𝑣𝑣1 is the starting vertex. 
𝑖𝑖 = (2, … 𝑛𝑛). 𝐽𝐽 denotes the fuzzy set of the jam region. 

𝐽𝐽 = 〈𝑉𝑉, 𝜇𝜇𝐽𝐽(𝑣𝑣):→   [0, 1]〉        ,∀ 𝑣𝑣 ∈ 𝑉𝑉                        (16) 

Then, to calculate the cost modified by being (partially) in the jam region for edge 
(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗), we apply Eq. (17): 

𝜇𝜇𝐶𝐶𝐶𝐶�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� =
𝜇𝜇𝐽𝐽(𝑣𝑣𝑖𝑖)+𝜇𝜇𝐽𝐽�𝑣𝑣𝑗𝑗�

2
                                                   (17) 

 

 
Fig. 2 shows a graphic example cut of the jam region membership function in two 
dimensions, having a trapezoidal shape with break point values of [0, 0, 4000, 
5000]. We use Eq. (18), which defines a trapezoidal membership function 
(𝑣𝑣; 𝑎̇𝑎, 𝑏̇𝑏, 𝑐̇𝑐, 𝑑̇𝑑), with 𝑎̇𝑎, 𝑏̇𝑏, 𝑐̇𝑐 and 𝑑̇𝑑 representing the break points. Where, 𝑎̇𝑎 = 𝑏̇𝑏 = 𝑐̇𝑐 (in 
our example). 

𝜇𝜇𝐽𝐽�𝑣𝑣; 𝑎̇𝑎, 𝑏̇𝑏, 𝑐̇𝑐� = �
1 𝑣𝑣 ≤  𝑐̇𝑐
𝑑̇𝑑−𝑣𝑣
𝑑̇𝑑−𝑐𝑐̇

𝑐̇𝑐 ≤ 𝑣𝑣 ≤  𝑑̇𝑑

0 𝑑̇𝑑 ≤ 𝑣𝑣

                                     (18) 

This formulation eliminates (to some extent) one of Schneider’s model 
inaccuracies, which ignores the intersections of the jam regions and the fact that 
such modified cost builds up gradually (which is better captured using fuzzy sets as 
we have shown). 

To show the effect of the modified fuzzy cost that might affect a trip is the rush hour 
periods. We propose a double trapezoidal membership function for the traffic rush 
hour periods during the day (in our simple illustrative example, see Fig. 3). It has 
the break point values {5 ,7.5, 10, 12.5, 12.5, 15, 17.5, 20}, and its membership 
values are: {0, 1, 1, 0, 0, 1, 1, 0, 0}. 𝜇𝜇𝑅𝑅𝑅𝑅(ℎ) was represented with two main rush 
hour periods during the day (with membership values equal to 1) the peaks are from 
7.5 a.m. to 10 a.m. and from 3 p.m. to 5.5 p.m. Between the two periods the traffic 

Figure 2 
One dimensional cut of (𝝁𝝁𝑱𝑱) 

Figure 3 
Traffic rush hours’ for (𝜇𝜇𝑅𝑅𝑅𝑅) 
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intensity is lower but not zero. Let 𝐻𝐻 be the hours’ time line (24 hours of the day), 
ℎ the elements of the time line such as ℎ ∈ 𝐻𝐻. 

The membership function for the rush hours is: 

𝑅𝑅𝑅𝑅 = {𝐻𝐻, 𝜇𝜇𝑅𝑅𝑅𝑅(ℎ)}, 𝜇𝜇𝑅𝑅𝑅𝑅(ℎ):𝐻𝐻 →  [0, 1], ℎ ∈ 𝐻𝐻                                 (19) 

𝜇𝜇𝑅𝑅𝑅𝑅(ℎ)is the degree of membership of belonging to the rush hour periods (whether 
the edge was crossed during rush hours periods). Here 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 and 𝑑𝑑 represent the 
break points, then the a trapezoidal (ℎ;  𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑) membership function for the rush 
hours periods (in the morning or the evening in our example) can be written as in 
Eq. (20): 

𝜇𝜇𝑅𝑅𝑅𝑅(ℎ) = 

⎩
⎪
⎨

⎪
⎧

0 ℎ ≤ 𝑎𝑎
ℎ−𝑎𝑎
𝑏𝑏−𝑎𝑎

𝑎𝑎 ≤ ℎ ≤ 𝑏𝑏
1 𝑏𝑏 ≤ ℎ ≤  𝑐𝑐

𝑑𝑑−ℎ
𝑑𝑑−𝑐𝑐

𝑐𝑐 ≤ ℎ ≤  𝑑𝑑
0 𝑑𝑑 ≤ ℎ

                                            (20) 

𝜇𝜇𝑅𝑅𝑅𝑅(ℎ) = max �min �ℎ−𝑎𝑎
𝑏𝑏−𝑎𝑎

, 1, 𝑑𝑑−ℎ
𝑑𝑑−𝑐𝑐

� , 0� 

Finally, to calculate the resulting fuzzy cost that can possibility affect a trip (all 
edges in a trip), we must first sum the resulting fuzzy costs on each edge (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗), 
then on the whole trip. Hence, for calculating the resulting fuzzy cost 𝐶̃𝐶𝑠𝑠𝑠𝑠𝑠𝑠 between 
vertex 𝑣𝑣𝑖𝑖  and 𝑣𝑣𝑗𝑗 we apply Eq. (21). 

𝐶̃𝐶𝑠𝑠𝑠𝑠𝑠𝑠�𝑣𝑣𝑖𝑖  , 𝑣𝑣𝑗𝑗� = �𝑐̃𝑐�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗�� ∗ [1 + 𝜇𝜇𝑅𝑅𝑅𝑅(ℎ)] ∗  �1 +
𝜇𝜇𝐽𝐽(𝑣𝑣𝑖𝑖)+𝜇𝜇𝐽𝐽�𝑣𝑣𝑗𝑗�

2
�          (21) 

Let {𝑘𝑘1, … . 𝑘𝑘𝑛𝑛}be a permutation of {1 … ,𝑛𝑛}, then a valid sequence of edges that 
forms a path that goes through all vertices (exactly once and goes back to the first 
one) can be expressed in the form: 

𝑝𝑝 = 𝑒𝑒1, 𝑒𝑒𝑘𝑘2,𝑘𝑘3 , … . 𝑒𝑒𝑘𝑘𝑖𝑖,𝑘𝑘𝑗𝑗 … … , 𝑒𝑒1 , 𝑖𝑖 ≠ 𝑗𝑗 so that𝑘𝑘𝑖𝑖 ≠ 𝑘𝑘𝑗𝑗and 𝑖𝑖, 𝑗𝑗 𝜖𝜖 {1 … ,𝑛𝑛} (22) 

where the first edge is 𝑒𝑒1. 

To calculate the cumulative modified fuzzy cost for the first two edges 𝑒𝑒1(with 
membership break points 𝑎𝑎, 𝑏𝑏, 𝑐𝑐) and 𝑒𝑒𝑘𝑘2,𝑘𝑘3  (with membership break points 𝑝𝑝, 𝑞𝑞, 𝑟𝑟) 
whose triangular membership functions are shown in Eq. (13), we apply Eq. (23) 
[87]: 

𝑪𝑪�𝒔𝒔𝒔𝒔𝒔𝒔�𝒆𝒆𝟏𝟏 + 𝒆𝒆𝒌𝒌𝟐𝟐,𝒌𝒌𝟑𝟑� = 𝝁𝝁𝒆𝒆𝟏𝟏+𝒆𝒆𝒌𝒌𝟐𝟐,𝒌𝒌𝟑𝟑(𝒕𝒕) 

=  �

𝒕𝒕−(𝒂𝒂+𝒑𝒑)
(𝒃𝒃+𝒒𝒒)−(𝒂𝒂+𝒑𝒑)

, (𝒂𝒂 + 𝒑𝒑) ≤  𝒕𝒕 ≤ (𝒃𝒃 + 𝒒𝒒)
(𝒄𝒄+𝒓𝒓)−𝒕𝒕

(𝒄𝒄+𝒓𝒓)−(𝒃𝒃+𝒒𝒒)
, (𝒃𝒃 + 𝒒𝒒) ≤ 𝒕𝒕 ≤  (𝒄𝒄 + 𝒓𝒓)

                                     (23) 

We apply Eq. (24) to all edges of the path (𝑝𝑝) to find 𝐶𝐶𝑠̿𝑠𝑠𝑠𝑠𝑠(𝑝𝑝). 
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𝑪𝑪�𝒔𝒔𝒔𝒔𝒔𝒔(𝒑𝒑) =  �

𝒕𝒕−(∑ 𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊∈𝒏𝒏 )
(∑ 𝒃𝒃𝒊𝒊𝒊𝒊)𝒊𝒊𝒊𝒊∈𝒏𝒏 −(∑ 𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊∈𝒏𝒏 )

, (∑ 𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊∈𝒏𝒏 ) ≤ 𝒕𝒕 ≤ �∑ 𝒃𝒃𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊∈𝒏𝒏 �
(∑ 𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊∈𝒏𝒏 )−𝒕𝒕

(∑ 𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊∈𝒏𝒏 )−(∑ 𝒃𝒃𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊∈𝒏𝒏 )
, (∑ 𝒃𝒃𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊∈𝒏𝒏 ) ≤ 𝒕𝒕 ≤  (∑ 𝒄𝒄𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊∈𝒏𝒏 )

          (24) 

In Fig. 2 and Fig. 3, the following three elements are described by fuzzy 
membership functions [zero values here mean the normal traffic, away from the city 
center and not during rush hours]: 

a) Triangular fuzzy costs (time) between the edges;𝜇𝜇𝑖𝑖𝑖𝑖(𝑡𝑡) 

b) Membership function of the fuzzy jam region; 𝜇𝜇𝐶𝐶𝐶𝐶�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� 

c) Membership function(s) of the traffic rush hour time period(s) 𝜇𝜇𝑅𝑅𝑅𝑅(ℎ) 

4 The Defuzzification in the 3FTD TSP 

Defuzzification is the process of obtaining a single number from the output of the 
aggregated fuzzy set. It is used to transfer fuzzy inference results into a crisp output 
[26]. We used the center of gravity (COG) [27], which is one of the most commonly 
used defuzzification methods (other defuzzification methods are; mean of 
maximum (MOM) [28-30], and center average methods, the center of area method 
(COA) [27]). Furthermore, the weighted average method [29] [30] for finding the 
crisp output value, 𝑦𝑦∗ is computed by taking the sum of the multiplication of each 
weighting function𝜇𝜇𝑦𝑦, with the maximum value of its respective membership value 
𝑦𝑦�, and dividing it by the sum of the weighting functions. This representation was 
chosen when I implemented the 3FTD TSP C++ modules due to computational 
complexity (calculation of COA and weighted average method show very close 
results). This concept is presented in Eq.(25): 

𝑦𝑦∗ =
∑ �𝜇𝜇𝑦𝑦(𝑦𝑦�)×𝑦𝑦��𝑛𝑛−1
𝑖𝑖=1
∑ 𝜇𝜇𝑦𝑦(𝑦𝑦�)𝑛𝑛−1
𝑖𝑖=1

                                           (25) 

Finally, these crisp numbers 𝑦𝑦∗are summed up providing the total distance of the 
tour. 

4.1 The Fuzzy Inference Rules for the 3FTD TSP 

The fuzzy rules and output membership functions for our model are shown in Fig. 
4. The fuzzy rules in the 3FTD TSP are implemented as below: 

1) IF JamRegion is Average AND Rush is Morning THEN Signal is HCost 
2) IF JamRegion is Average AND Rush is Evening THEN Signal is MCost 
3) IF JamRegion NOT Average AND Rush is Morning THEN Signal is LCost 
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4) IF JamRegion NOT Average AND Rush is Evening THEN Signal is LCost 
5) IF JamRegion is Average AND Rush NOT Morning THEN Signal is MCost 
6) IF JamRegion is Average AND Rush NOT Evening THEN Signal is MCost 

5 The Genetic Algorithm and the DBMEA 

Genetic Algorithms (GA) are the archetypical evolutionary search and optimization 
algorithms that are based on concepts of natural selection and natural genetics.  
The original GA algorithm was developed to simulate some of the processes 
observed in natural evolution, a process that operates on chromosomes. It searches 
among a population (of points) and uses objective function information without any 
gradient information [31] [32]. The transition scheme of the GAs is used as general-
purpose optimization algorithm. GAs are also efficient to search in irregular spaces, 
and thus, are applied to a variety of function optimizations and parameters 
estimation problems [31]. On the other hand, the DBMEA is a memetic meta-
heuristic algorithm, it is an extension of the original Bacterial Evolutionary 
Algorithm (BEA), which was proposed as a further development of the GA [32]. 
The Memetic algorithms [33] get their efficiency from the fact that they combine 
both global search and a local search, the first being slower but gives a guarantee of 
finding the quasi-optimum, while the second being very fast and precise but may 
not find the real optimum [33-35]. The DBMEA is based on the BEA method 
proposed by Nawa and Furuhashi [23], combined with local search techniques 
which combination eliminates the disadvantages of both methods. This formulation 
significantly improved the performance of the classical evolutionary algorithms, so 
the memetic algorithms can be considered as efficient tools for solving the TD TSP 
and many other NP- hard optimization problems [1]. In the 3FTD TSP, in every 
iteration, a local search 2-opt step is applied for the tour, and it is stopped when the 
tour stops improving. Afterwards, the 3-opt step is applied on the so-far best tour, 
until there is no further enhancement plausible [35]. 

6 Computational Results 

Since we first introduced the 3FTD TSP, we were eager to test it on the extensions 
of the largest universal TD TSP benchmarks, to prove its efficiency and compare it 
with state-of-the-art solutions in the literature. Thus, we have developed the 3FTD 
TSP model using C++ to be able to represent the jam regions and rush hours’ fuzzy 
extensions [27] [28] and integrate it with the DBMEA and so far, one other 
optimization algorithm (GA) for comparison purposes. The benchmarks we used 
are: eil51, bier127, eil76, eil101 s250_1 and s250_2. Each instance’s name reflects 
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the number of cities (nodes) under study. To illustrate, Eil51 has a total of 51 cities 
that a salesman must visit. The coordinates of all the cities have been downloaded 
from the library TSP-Lib12. We also used our own instances (s250_1 and s250_2) 
which consist of 250 cities (each). In addition, we have successfully applied the 
DBMEA algorithm and the GA on our proposed model for optimization to allow 
the reader to compare the results from different aspects, the speed, the efficiency 
and generality. Table 1. and Table 2. show different run results for the Bier127 
benchmark problem applied on the extended 3FTD TSP, with different traffic jam 
factors. This original TSP benchmark is modelling the locations of the Bier127 
gardens in Augsburg (Germany). The traffic jam region was defined with a circle 
of radius 5000m and with center (10540, 11945). Velocity v is 6000 m/h in each 
test. The middle point of the fuzzy triangular cost for each edge is the Euclidean 
distance between the endpoints, namely, the left-side and right-side points were 
determined randomly (0-50% lower and higher than the middle point) in this test. 
Our algorithm was tested on an Intel Core i7-7500U 2.7 GHz, 8GB of RAM 
memory workstation under Linux Mint 18. The results were calculated by averaging 
five test runs (Table 1). The Table contains the total time in hours required to visit 
each location with different jam regions and rush hours costs [26-28]. 

 
Table 3 shows different run results for the Eil51 benchmark problem applied using 
the fuzzified version (3FTD TSP), with different jam regions and rush hours’ 
values. Table 4. shows different run results for the Eil76 benchmark problem 
applied using the 3FTD TSP with different jam regions and rush hours’ values. 
Table 5. show different run results for the Eil101 benchmark problem applied using 
3FTD TSP with different jam regions and rush hours’ values. Table 6. shows 
different run results for the s250 benchmark problem applied using the 3FTD TSP 
with different jam regions and rush hours’ values. Table 7. shows different run 
results for the s250 benchmark problem applied using the 3FTD TSP with different 
jam regions and rush hours’ values. 
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Figure 4 
Output costs membership function 

Figure 5 
Best elapsed time in hours for 

different benchmarks with DBMEA 
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Table 1 
computational results for 3FTD TSP with DBMEA 

Testing 
Instance Best elapsed time 

Best 
elapsed 

time 

Average 
elapsed 

time 

Average 
runtime 

[s] 
bier127 20.5317273 20.58075 20.52149 20.52149 20.54466 5.698 
s250_1 21.08152503 20.71037 20.64352 20.64352 20.8118 27.493 
s250_2 19.75256584 19.67563 19.64307 19.64307 19.69042 27.383 

Testing our algorithm on standard TD TSP benchmarks and achieving promising 
results (Tables 1 to 10, Figs. 7 and 8) only proves that our new model is general 
enough to be applied for the extended problem, and we also want to show that it 
converges with a (quasi-)optimal solution in all cases. Indeed, the DBMEA (Figs. 
5 and 6) was able to find high quality solutions for the 3FTD TSP problem, with 
different membership functions J and R, even with large rush hours and jam regions 
values. 

In fact, this proves that the 3FTD TSP, namely, our extension of the TD TSP with 
fuzzy sets gives realistic run times and a timely conversion speed which proves the 
applicability of the model. In addition, it indicates that the 3FTD TSP is a closer, 
more general and robust solution to simulating real life scenarios than the original 
TD TSP is, the former offering more realistic representation of the rush hours and 
jam regions with high adequacy. It is worth mentioning here that having close 
conversion times (for both the best and average times in Figs. 5, 6, 7, 8) only proves 
that the DBMEA was consistent in its performance in finding the (quasi-)optimal 
solution repeatedly, thus, the novel proposed model can (to some extent) safely be 
generalized. 

The obtained results are validated in the context of the known optimum solution for 
the original TSP, and Schneider’s [2] solution for the TD TSP. Similar results were 
obtained in our previous work [7] (Table 1) for smaller instances. When the loss 
aversion approach was applied and the supports rather than the cores or the whole 
membership functions of the fuzzy cost factors were taken into account (e.g., with 
traffic jam factor = 5.0) the average elapsed time was 22.286 hours, the average 
support value of the output triangular fuzzy numbers was 10.76 hours when the loss 
aversion was taken into account (without loss aversion, these values were 22.196 
hours and 10.92 hours). 

Table 2 
Bier127 computational results for 3FTD TSP with DBMEA 

 Elapsed time Best Average 
elapsed time 

bier127 20.5317273 20.5807 20.5215 20.5215 20.54465592 
bier127 20.098 20.399 20.24915 20.098 20.249 
s250_1 21.08152503 20.71037 20.64352 20.64352184 20.81180495 
s250_2 19.75256584 19.67563 19.64307 19.64307403 19.69042 
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Table 3 
Eil51 computational results for 3FTD TSP with DBMEA 

Eil51 elapsed time best time Average 
time 

 15.7147 15.7573 15.7147 20.5215 15.7289 
51-city problem (Christofides/Eilon) TYPE: TSP 

Table 4 
Eil76 computational results for 3FTD TSP with DBMEA 

Eil76-
hours elapsed time elapsed 

time 
average elapsed 

times 
 21.4841 21.5433 21.7321 20.5215 21.5865 

eil76.tsp - 76-city problem (Christofides/Eilon) 

Table 5 
Eil101 computational results for 3FTD TSP with DBMEA 

Eil101 
-hours 

elapsed time best 
average  
elapsed  

time 
 23.6234 23.5858 23.5537 20.5215 23.5876 

101-city problem (Christofides/Eilon) 

Table 6 
s250_1 computational results for 3FTD TSP with DBMEA 

s250_1 
-hours 

elapsed time best average elapsed time 

 21.08152503 20.7104 20.6435 20.6435 20.8118 
250-city 

Table 7 
s250_2 computational results for 3FTD TSP with DBMEA 

s250_02 -
hours elapsed time best 

time 
average elapsed 

time 
 19.75256584 19.6756 19.6431 19.6431 19.6904 

250-city 
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Table 8 
bier127 computational results for 3FTD TSP with DBMEA 

 
 
 
 
 
 
 
 

 

 

 

 

 
Table 9 

100 Generation comparison of results with DBMEA and Genetic Algorithm for the 3 FTD TSP 

 DBMEA Genetic Algorithm 
Benchmark best value average value best value average value 
eil51 15.715 15.729 15.744 15.918 
eil76 21.484 21.587 21.553 21.919 
eil101 23.554 23.588 23.580 23.832 
bier127 20.048 20.296 20.611 21.189 
s250_1 20.644 20.812 21.487 21.587 
s250_2 19.643 19.690 20.132 20.177 

We have run both algorithms on 300 generations. The Genetic Algorithm was faster 
than DBMEA after 100 generations. However, what makes DBMEA generally 
outperform the GA is the fact that, to some surprise, the GA gets stuck in a local 
optimum and seems unable to significantly improve the solution between 100 and 

 DBMEA 3FTD TSP Classic TD TSP 
jam factor best value best value 

1.00 115929.0 118293.5 
1.05 117498.6 119053.2 
1.20 117997.2 119714.1 
1.50 121076.4 120571.7 
2.00 125083.8 121125.2 
3.00 129369.0 121125.2 
5.00 132220.2 121125.2 

10.00 137813.4 121125.2 
20.00 139286.4 121125.2 
50.00 144363.1 121125.2 

100.00 147520.2 121125.2 

0

10

20

30

bier127 eil51 eil76 eil101 s250_1 s250_2

DBMEA Average Elapsed  Time in Hours 
for Different Benchmarks 

Figure 6 
Average elapsed time in hours for different benchmarks with DBMEA 
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300 generations. Of course, there may be some changes after a larger number of 
generations, but this could result in infeasible runtime. In Fig. 7, the results show 
the comparison of the convergence times (best times) for both the GA and DBMEA 
using the 3FTD TSP. It is clear that in most of the runs, DBMEA outperformed the 
GA. In Fig. 8, the graph compares the average runtimes for both algorithms.  
The GA is slightly faster initially, but as the problem size increases, DBMEA shows 
faster convergence, while the GA tends to get stuck in local optima. For instance, 
in the case of the 250-point problems (s250_1 and s250_2), DBMEA performs 
better both in the best value and average value. Specifically, for s250_1, DBMEA 
has a best value of 20.644 and an average value of 20.812, compared to the GA’s 
best value of 21.487 and average value of 21.587. For s250_2, DBMEA achieves a 
best value of 19.643 and an average value of 19.690, while the GA's best value is 
20.132 and the average value is 20.177. These results show DBMEA performing 
approximately 3.9% and 2.6% better than the GA on average for s250_1 and 
s250_2, respectively. 

 
Figure 7 

DBMEA vs. GA, comparison of best tour values of universal benchmarks after 100 iterations 

For the benchmark problem ier127, statistical tests were conducted over 20 runs to 
compare the performance of DBMEA and the Genetic Algorithm (GA). Figure 9 
illustrates the performance comparison between the two algorithms over 100 
iterations. The shaded regions represent the min-max intervals, while the solid lines 
indicate the average performance for each algorithm. It is evident that DBMEA 
consistently outperforms GA throughout the iterations. By the 100th iteration, the 
worst result achieved by DBMEA is approximately equal to the best result of GA, 
highlighting DBMEA's superior convergence and robustness. Moreover, after just 
10 iterations, the average result of DBMEA exceeds the average result of GA after 
100 iterations. The Shapiro-Wilk test for normality showed that both algorithms’ 
results follow a normal distribution, with p-values for both DBMEA and GA being 
above the 0.01 threshold, indicating no significant departure from normality (Table 
10). 
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Figure 8 

DBMEA vs. GA for average runtime comparison of universal benchmarks after 100 iterations 

To determine whether the differences in performance between the two algorithms 
were statistically significant, we conducted Welch’s t-test. The results indicated a 
significant difference, with DBMEA outperforming GA (Table 11). This finding 
underscores the superior performance of DBMEA in comparison to GA for the 
bier127 benchmark, with the difference being statistically significant, at the 1% 
level. 

 
Figure 9 

GA vs. DBMEA performance over Iterations 

Table 10 
Statistical Analysis of Results for the bier127 Benchmark 

Benchmark Algorithm Best 
value 

Average 
value 

Standard 
deviation 

Shapiro-
Wilk 

p-value 

Shapiro-
Wilk 

W 

Hypothesis 
H₀ 

bier127 
DBMEA 20.048 20.296 0.184 0.185 0.934 TRUE 
Genetic 

Algorithm 20.611 21.189 0.285 0.466 0.956 TRUE 
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Table 11 
Results of Welch's t-test (α = 0.01) 

t-value Critical Value (α = 0.01) Hypothesis H₀ (t-test) 
-11.795 2.736 FALSE 

Conclusions 

In this paper, an extension of the novel approach, the Triple Fuzzy Time Dependent 
Traveling Salesman Problem (3FTD TSP) model, was presented. The TD TSP has 
several benchmark instances in the literature (Eil51, Bier127, Eil76, Eil101, s250_1, 
and s250_2). Originally, in the TD TSP model, the costs between the nodes are time 
dependent, and this dependency relates to a predefined oblong-shaped area. In the 
extended 3FTD TSP model, the road conditions are represented by type-1 fuzzy 
sets. The uncertainty associated with the traffic jam areas and the fuzzy occurrence 
of the rush hours’ phenomenon in time depend on several unknown or non-
deterministic factors; thus, the uncertainty was represented by fuzzy sets of the 
respective universes. This way, determining an uncertain overall tour length (cost) 
was more efficient and practical. 

Two meta-heuristic approaches, the Genetic Algorithm (GA) and the Discrete 
Bacterial Memetic Evolutionary Algorithm (DBMEA), were chosen to optimize the 
model due to their former success in similar (although non-fuzzy) problems.  
The simulation results confirm the efficiency (advantageous time and space 
complexity) and the predictability of the Discrete Bacterial Memetic Evolutionary 
Algorithm. Furthermore, it was found that the Discrete Bacterial Memetic 
Evolutionary Algorithm was able to converge in reasonable time for large instances 
with a maximum of 250 cities, without being stuck in a local optimum. By 
implementing a Genetic Algorithm-based approach as well, which was used for 
comparison, both being applied on the 3FTD TSP model, our extended model was 
able to adequately simulate complicated tour graphs and more complex actual cases. 

Statistical tests were conducted on the bier127 benchmark, to validate the 
performance of the DBMEA, compared to the Genetic Algorithm. The results 
confirmed that the DBMEA significantly outperformed the GA in terms of solution 
quality at a 1% significance level. This further demonstrates the robustness of the 
DBMEA approach. 

These findings prove the universality of the Triple Fuzzy Traveling Salesman 
Problem model, its’ generality and applicability. Our future work will focus on 
applying, validating and comparing this novel model, on different transportation 
and various domains, to test the generality and efficiency. 
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