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Abstract: Many studies evaluating the performance of various optimization methods for 
training Artificial Neural Networks (ANNs) have produced conflicting results. This 
discrepancy often arises due to the limited application of these methods across a narrow 
spectrum of ANN architectures and training parameter values. In response to this gap, our 
study introduces an enhanced Particle Swarm Optimization (PSO) technique, denoted as 
Reverse Direction Supported Particle Swarm Optimization (RDS-PSO), specifically 
designed for ANN training. RDS-PSO incorporates two novel parameters, namely alpha 
and beta, allowing the creation of four distinct RDS-PSO types including the original PSO. 
Unlike many existing studies, we comprehensively evaluate the performance of these four 
RDS-PSO types across a diverse set of criteria. These criteria include the architectural 
space of ANN, training depths for ANN, inertia weight direction for RDS-PSO, and 
adaptation approaches for the two novel parameters of RDS-PSO. Through 100 iterations 
for each training case, we conduct an extensive and intricate analysis of ANN training 
performance on three medical datasets. Our experimental findings reveal that RDS-PSO_3, 
featuring decreasing inertia weight and cosine adaptation, consistently outperforms other 
RDS-PSO types. Furthermore, RDS-PSO_3 demonstrates greater reliability, as evidenced 
by lower standard deviation values, across most ANN architectures. 

Keywords: neural network training; global searching; particle swarm optimization; 
improved particle swarm optimization 

1 Introduction 

Artificial Neural Networks (ANNs) are based on emulating neuron functions 
within the human nervous system through mathematical representations. To 
manage the abilities related to some learning tasks, ANNs have been designed 
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over many neurons connected to other neurons in determined orders [1]. Such an 
order between neurons is constructed over the structures called as layer. General 
performance of ANNs is dependent on following three main settings regardless of 
which application is implemented [2]: 

1-Preferred network architecture (model) for ANN: Number of layers, number 
of neurons at each layer, direction and sparseness of connections between layers 
are critical factors for an ANN network design. Number of layers is determined as 
at least 3 (including one hidden layer) while there is no mathematical procedure to 
determine the number of neurons at each layer. Both fully connected and sparsely 
connected models may be preferred while an ANN model is constructed. 

2-Preferred training algorithm, training parameter setting and training 
depth for ANN: Algorithms used for ANN training may be divided into two main 
groups called as global and local searching techniques [3]. Global searching 
techniques which are based on machine learning algorithms can search whole 
space although they do not guarantee the global optimal solution exactly. 
Dependency to initial training parameter values in global techniques is less than 
those of the local ones. On the other hand, local searching techniques contain 
gradient descent based solutions [4]. Contrary to global ones, these techniques 
guarantee only the local optimal. Finally, training depth is a parameter indicating 
limit of the iteration number in training algorithm to be executed. 

3-Dataset: Some properties such as form of input and output spaces, and number 
of samples create the stylemark of a data set. Stylemarks of the datasets directly 
affects both training and test classification performances of ANN. 
The study [5] claimed that generalization ability of ANNs could be enhanced by 
using Generalized Operational Perceptrons with modified back propagation.  
The study [6] used the Teaching Learning-Based Optimization for training the 
hybrid Functional Fuzzy Wavelet Neural Network and tested it on five medical 
datasets. The mussels wandering optimization was improved and applied to 
training of ANNs and comparable results were obtained on real-world data in the 
study of [7]. The study [8] suggested the Delta Associative Memory using social 
networking and collaborative learning to diagnose diseases. However, Multi-
Layer Perceptron (MLP) with Back Propagation (BP) has been mostly used 
version of ANN in medical applications because of its effectiveness [9], and also 
PSO has been one of the mostly used optimization techniques in different areas. 

PSO indicating global searching characteristics is proposed for optimization 
problems as a member of Swarm Intelligence methods [10]. PSO has been used 
for solution of many problems from different areas including training of ANNs 
due to its flexible and uncomplicated algorithm compared to a number of other 
global searching techniques [11-13]. 

In literature, some studies have been suggested to compare ANN performances 
based on various global and local searching techniques in different ways.  
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The study [14] evaluated PSO and BP methods in terms of computational 
complexity when both methods had the same Mean Square Error (MSE) over 
nonlinear function approximation. PSO based MLP results overrode BP one.  
The study [15] trained an ANN with single hidden layer by means of BP and PSO 
for imbalanced medical datasets. Results showed that BP based classifier 
produced better classification accuracy than that of PSO based one. The study [16] 
introduced a hybrid algorithm based on PSO with time-varying parameter and BP 
algorithm to train ANNs. They compared their algorithm with some other popular 
algorithms and obtained reasonable results on eight datasets from UCI medical 
datasets [17]. The study [18] trained an MLP by an improved PSO, i.e. Centripetal 
Accelerated Particle Swarm Optimization (CAPSO). They indicated superior 
success of this classifier on nine standard medical datasets. The study [19] reduced 
computational cost of the Polynomial Neural Network (PNN) by using PSO and 
gradient descent algorithms. There was no significant difference between PSO and 
gradient descent algorithms according to these results. The study [20] developed a 
novel algorithm, which was called as Action Dependent Heuristic Dynamic 
Programming (ADHDP), in order to discriminate the symbols and text 
automatically in medical images. They compared their experimental results with 
BP-ANN, PSO-ANN, GA-ANN, K Nearest Neighbor (KNN) and Support Vector 
Machine (SVM). Their algorithm provided a small improvement in Receiver 
Operating Characteristic (ROC) curve and Area Under Curve (AUC) values of 
ROC. The study [21] used a modified gravitational search algorithm optimized 
MLP to separate benign and malicious internet traffic. They claimed that their 
algorithm was superior to PSO and error back propagation optimized MLP.  
The study [22] proposed PSO, Differential Evolution and back propagation based 
hybrid optimization methods to train ANN for classifying clinical datasets. 
Differential Evolution with back propagation indicated the best results. [23] 
introduced Vortex Search optimization algorithm to set weights and biases of an 
MLP. They conducted their learning system on six different datasets including 
few medical datasets and obtained competitive results. The study [3] proposed an 
extended evaluation approach to compare the performances of BP and PSO 
algorithms in MLP training. 

Given the existing discrepancies in prior literature studies, this paper advocates for 
a rigorous and thorough analysis to attain a robust and well-founded judgment on 
the subject. The study in [3] was also proposed to address these discrepancies. 
However, it employed only original PSO for training of ANN. In this work, we 
employ RDS-PSO for training ANN. RDS-PSO is  an enhanced and generalized 
version of original PSO and it was introduced by us as a function optimizer. RDS-
PSO includes total of four PSO versions, three of them are new PSO versions and 
one of them is original PSO. Thus in this study, BP and four PSO algorithms were 
compared with the study in [3] for MLP training on the same medical datasets. As 
it is explained in above paragraphs, general performance of ANN depends on its 
network architecture (model), training algorithm/parameters/depth, and the 
dataset. The same model providing accurate and in-depth evaluation in the study 
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of [3] was preferred again in this study for a reliable comparison. The preferred 
model was constructed on an architecture space containing 41 configurations from 
the simplest one to the most complex one. Another factor affecting the general 
performance is the training algorithm. Generalization on PSO algorithm was 
provided by an improved PSO and an extended comparison among PSO and 
improved three PSO algorithms was introduced in this study. In tests, MSE metric 
for training and Classification Error (CE) metric were measured over 41 ANN 
models as in [3]. Iteration limits namely training depth for our searching 
algorithms were selected as 200 and 2000 in this study as in [3] where they were 
called shallow and deep respectively. The final factor is the dataset. To compare 
this study with [3], the same three medical datasets were used in our experiments. 

Remaining of this paper is organized as follows. The experimental methods are 
detailed in Section 2, while Section 3 elucidates the setup and outcomes of the 
conducted experiments. The conclusions are then assessed in Section 4. 

2 Methods 

2.1 The Original PSO 

PSO is a technique simulating biological populations in terms of sociological 
perspective for solving multidimensional and nonlinear problems [10]. Thus, a 
population formed by N particles is set and each particle is designed by D 
numerical values. By a mathematical way, xi = (xi1, xi2, … , xiD) indicates the ith 
particle and vi = (vi1, vi2, … , viD) indicates its  velocity vector. Two types of 
memory are operated in PSO. The first one of them is the best visited position of 
ith particle indicated mathematically by pi = (pi1, pi2, … , piD) and called as the 
personal best. The second type is the best visited position of all particles (i.e. 
swarm) or local neighbors of Pi indicated mathematically by pg = (pg1, pg2, … , 
pgD) and called as the global best. PSO changes the velocities and indirectly 
positions of the particles iteratively by using equations (1) and (2). 

)iDx-gD(p*) rand2(*2c )iDx-iD(p * ) rand1(*
1iDv*w=iDv ++ c  (1) 

iDv+iDx=iDx        (2) 

Where c1 and c2 are coefficients affecting personal and global best parts of the 
equation (1), respectively. The other coefficients of these parts are rand1 and 
rand2 functions generating random numbers in [0, 1]. D and i indicate dimension 
and index of the particles, respectively. W is a coefficient used for balancing 
between personal and global converging. Finally; piD, pgD, xiD and viD represent the 
personal best, global best, current position and velocity of particles, respectively. 
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2.2 Reverse Direction Supported PSO (RDS-PSO) Algorithms 

Although PSO has some superior aspects in optimization problems, it has some 
shortcomings as well. Two shortcomings of PSO can be summarized; the first one 
is parameter settings which may result in large performance deviations, and the 
second one is extremely large losses in diversity at final iterations because of 
guiding with respect to only personal and global best particles. 

The velocities of particles in PSO are updated with respect to only two references, 
namely personal best and global best vectors. Such an updating causes 
degradation of diversity among particles, premature convergence and local 
optimum problem especially in nonlinear problems with many local optimal 
points [24]. As a result of this way of updating, although in the first iterations a 
quick convergence is observed, improving in convergence to optimal point is 
inadequate especially in the last iterations of PSO. 

To avoid degradation of diversity in PSO, RDS-PSO algorithms were suggested in 
our earlier work[25] as a function optimizer. As distinct from PSO, both the global 
worst and the personal worst vectors were considered to compute updated velocity 
values of particles in RDS-PSO. Two new constants, namely alpha and beta in [0, 
1] interval, were added to the original PSO to design RDS-PSO. These constants 
provide a trade-off between the personal-global best particles and the personal-
global worst particles. When the alpha closes to 0, effect of the global worst on the 
velocity update equation increases. Due to similar reason, the beta parameter is 
added to this equation to increase or decrease effect of the personal worst against 
the personal best vector. When both the alpha and the beta are assigned by 1 in 
RDS-PSO, a traditional PSO can be derived. Thus, four type of RDS-PSO can be 
derived as follows: 

RDS-PSO_1: In this version, alpha = beta = 1 and it presents the same solution 
with original PSO. 

RDS-PSO_2: This RDS-PSO uses the global worst as a supporting information to 
the global best by regulating alpha Є [0, 1] while it doesn’t use the personal worst 
(always beta = 1). 

RDS-PSO_3: This RDS-PSO uses the personal worst as supporting information to 
the personal best by regulating beta Є [0, 1] while it doesn’t use the global worst 
(always alpha = 1). 

RDS-PSO_4: This RDS-PSO type uses both the global worst and the personal 
worst as supporting information to the global best and the personal best, 
respectively. 

For example, in RDS-PSO_4 both the global and the personal worst particles are 
inserted into the velocity updating equation as follows. 
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)gwDp-iD(x*) rand2(*2c*alpha) - (1

... )iDx-gDp (*) rand2(*2c*alpha)iwDp-iD(x*) rand1(*

...1c*beta) - (1 +)iDx-iDp ( * ) rand1(*1c*betaiDv*w=iDv

++

+

  (3) 

Equation (3) substitutes equation (1) used in PSO for velocity updating. Equation 
(3) represents general case of velocity updating for RDS-PSO. For example, when 
we write 1 for alpha in this equation, RDS-PSO_3 can be obtained. 

3 Experimental Setup 

As it has been mentioned in the introduction part of this study, each methods’ 
performances should not be compared on only one or a few MLP architecture. 
Thus, an MLP architecture space that was proposed in [3] for a reliable 
comparison was preferred in this study too. They presented minimum and 
maximum neuron numbers by Rmin and Rmax terms. As it was implemented in 
study [3], Rmin was set to one for both the first and the second hidden layers while 
Rmax was set to eight and four for the first and the second hidden layers, 
respectively. Thus, totally 41 variations of model for MLP architecture space 
came to exist as in [3]. The first and the last numbers, for instance nine and two 
depend on dataset. We executed four types of RDS-PSO algorithms on 41 
different ANN architecture indexes for three medical datasets. 

Table 1 
Parameter values for all RDS-PSO types 

Parameter Value 
Population size 40 
Maximal iteration 200/2000 
Maximal inertia weight value 1.2 
Minimal inertia weight value 0.1 
C1 2.0 
C2 2.0 
Dimension Depended on problem and NN index 
Error goal 1*10-6 
Alpha Depended on RDS-PSO type 
Beta Depended on RDS-PSO type 
Step Size 0.05 
Threshold 0.05 

Two groups of evaluations were conducted together over different NN and PSO 
structures in this study. The first group was inspired by study[3] and contains 
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maximal iteration number (200 iterations for shallow and 2000 iterations for deep 
training), MLP architecture space and medical datasets. The second group was set 
with respect to RDS-PSO algorithm and contains changing of inertia weight 
(increasing or decreasing value) and adaptation approach for alpha and/or beta 
parameter (max-min or cosine) selection in order to expand analysis. Thus; RDS-
PSO_2, RDS-PSO_3 and RDS-PSO_4 executed eight times over each data sets 
and  MLP model while RDS-PSO_1 executed four times over the same data sets 
and MLP model in order to conduct these evaluations. Totally, we got 28 results 
by four RDS-PSO types for all architectures of each data set. We also 100 times 
executed each algorithm with different random initial values for all RDS-PSO 
types as in the reference study [3]. Parameter values for all RDS-PSO types 
related to these executions are indicated in Table 1. Alpha, Beta, Step Size and 
Threshold parameters are only available in RDS-PSO algorithms. Alpha and Beta 
parameters are added to equation of PSO to set a balance between 
individual/social best and worst values for particles. Step Size and Threshold 
parameters adjust changing of Alpha and/or Beta parameters’ values. For instance, 
value of Beta is always 1 in RDS-PSO_2 while value of Alpha parameter must be 
changed adaptively. Cosine or Max-Min approach controls this adaptation 
automatically by changing value of Alpha parameter. Values of Alpha and Beta 
parameters are determined adaptively by RDS-PSO algorithm. Step size and 
Threshold parameters determines how often the values of Alpha and Beta are 
changed adaptively. Their values were optimized as 0.05 with respect to 
experimental studies in our previous work [25]. When we set the values lower 
than 0.05, the computational cost will increase. Conversely, when the values are 
set higher than 0.05, the computed Alpha and Beta values deteriorate. Other 
parameters without Alpha, Beta, Step Size, Threshold and Maximal iteration in 
Table 1 were determined based on the general use in literature. 

To contribute a reliable improvement to the reference study [3], data set was 
separated only two groups; training and testing. By combining training and 
validation group, only one group, i.e. training set was obtained. Besides, ten-fold 
cross validation approach was applied for a fair evaluation. 
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3.1 Datasets and Application Results 

3.1.1 Breast Cancer Dataset and Application Results of It 

 

Figure 1 
The results of shallow RDS-PSO_1 

 

Figure 2 
The results of shallow RDS-PSO_2 

This data set was created by collecting of 699 samples including 458 benign and 
241 malignant types. Important features of breast cancer dataset can be 
summarized as follows: each datum is consisted with nine inputs and two outputs, 
whole dataset has been partitioned into three parts of which 350 data for training, 
175 data for validation and 174 data for testing process. This study prefers the 
same organization for partition. We can assert that, for only the mean training 
results, RDS-PSO_1 shallow with increasing inertia weight is superior to RDS-
PSO_1 with decreasing inertia weight in all indexes (Fig 1). However, for 
minimum training, minimum testing, and mean testing results, it is inconclusive 
whether one inertia weight is superior to the other in all indexes. Additionally, 
RDS-PSO_2 shallow with increasing inertia weight has demonstrated almost 
identical values to those with decreasing inertia weight for minimum training and 
testing results (Fig 2). The similar comparisons have been observed in RDS-
PSO_3 for the minimum training and testing results (Fig 3). In the mean training 
results of RDS-PSO_2, there is no significant difference between increasing and 
decreasing inertia weights. However, RDS-PSO_2, employing the cosine 
adaptation approach, has demonstrated better values than RDS-PSO_2 using the 
max-min adaptation approach in both mean training and testing results. 
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Figure 3 
The results of shallow RDS-PSO_3 

 

Figure 4 
The results of shallow RDS-PSO_4 

The mean testing results of RDS-PSO_2 have indicated that decreasing inertia 
weight is superior to increasing one for both cosine adaptation and max-min 
adaptation in many of indexes. Contrary to RDS-PSO_2, RDS-PSO_3 using 
cosine adaptation approach has indicated worse values than RDS-PSO_3 using 
max-min adaptation one in both the mean training and testing results of RDS-
PSO_3. When we examine the results of RDS-PSO_4 shallow for breast cancer 
data set, there is no significant difference between both increasing and decreasing 
inertia weights, and cosine and max-min adaptations for the minimum training, 
minimum testing and the mean training (Fig 4). However, decreasing one is 
superior to increasing one for the mean testing results. 

 

Figure 5 
The results of deep RDS-PSO_1 
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Figure 6 
The results of deep RDS-PSO_2 

 

Figure 7 
The results of deep RDS-PSO_3 

RDS-PSO_1 deep with increasing inertia weight is superior to decreasing inertia 
weight one in indexes between 0 and 9 for both minimum and mean 
training/testing results while RDS-PSO_1 deep with decreasing inertia weight is 
superior or equal in remaining indexes (Fig. 5). In the indexes where considerable 
fluctuations are available, RDS-PSO_2 with max-min adaptation is superior to 
cosine adaptation one while there is no important difference between them in 
other indexes for deep minimum training values (Fig. 6). In these indexes, RDS-
PSO_4 with increasing inertia weight types is somewhat worse than decreasing 
ones (Fig. 8). A similar situation to RDS-PSO_2 is valid for minimum training 
values of RDS-PSO_3 (Fig. 7). In minimum testing, RDS-PSO_2 with increasing 
inertia weight is somewhat superior to decreasing one for both max-min and 
cosine adaptation. On the contrary, the increasing one is somewhat worse than the 
decreasing one in RDS-PSO_4. In the minimum testing results of RDS-PSO_3, 
increasing inertia weight is superior to the decreasing one for only a few indexes. 

In many of the indexes there is no important difference between increasing inertia 
weight and decreasing inertia weight for both max-min and cosine adaptation. 
RDS-PSO_2 with cosine adaptation is superior to max-min in many of indexes for 
the mean training and mean testing results. Increasing inertia weight with cosine 
adaptation and decreasing inertia weight with cosine adaptation have indicated 
somewhat better results than others for deep mean training and the mean testing 
results of RDS-PSO_3. RDS-PSO_4 with max-min adaptation is superior to the 
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cosine one in the indexes between 0 and 9 while the cosine one is somewhat 
superior to max-min one in other indexes. 

 

Figure 8 
The results of deep RDS-PSO_4 

3.2.2 Diabetes Dataset and Application Results of It 

 

Figure 9 
The results of shallow RDS-PSO_1 

This dataset includes 768 measurements. 268 samples were labeled with diabetes, 
while 500 samples without diabetes. Each datum is represented by 1 x 10 vector of 
which eight values form inputs and two values form outputs. Whole dataset has 
been partitioned into three parts of which 384 data for training, 192 data for 
validation and 192 data for testing process. RDS-PSO_1 shallow with increasing 
inertia weight is generally superior to RDS-PSO_1 with decreasing one without a 
few indexes for minimum training/testing and mean training/testing (Fig. 9). 
Except of few indexes for minimum training/testing results, RDS-PSO_2 with 
cosine adaptation has indicated somewhat better results than max-min adaptation 
one for minimum training/testing and mean training/testing (Fig. 10). RDS-PSO_3 
with max-min adaptation types is superior to cosine adaptation one in nearly all 
indexes for minimum training/testing and mean training/testing (Fig. 11). RDS-
PSO_4 with max-min adaptation is superior to cosine adaptation one except of 
few indexes for minimum training/testing results (Fig. 12). In mean 
training/testing, RDS-PSO_4 with increasing inertia weight is superior to RDS-
PSO_4 with decreasing one. 
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Figure 10 
The results of shallow RDS-PSO_2 

 

Figure 11 
The results of shallow RDS-PSO_3 

 

Figure 12 
The results of shallow RDS-PSO_4 

Except of indexes 3 and 4 of the mean testing results, RDS-PSO_1 deep with 
increasing inertia weight for diabetes is superior than with decreasing inertia 
weight one in indexes between 0 and 9 for both minimum and mean 
training/testing results as in RDS-PSO_1 for breast cancer data set (Fig. 13). In 
other indexes, RDS-PSO_1 with decreasing inertia weight has indicated similar or 
better performance than with increasing inertia weight one again. 
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Figure 13 
The results of deep RDS-PSO_1 

 

Figure 14 
The results of deep RDS-PSO_2 

 

Figure 15 
The results of deep RDS-PSO_3 

RDS-PSO_2 deep with max-min adaptation is superior to cosine adaptation one 
for minimum training and testing results (Fig. 14). For mean training and testing 
results, RDS-PSO_2 with decreasing inertia weight has indicated better values 
than RDS-PSO_2 with increasing inertia weight one. RDS-PSO_3 types with 
decreasing inertia weight have indicated worse values than types with increasing 
inertia weight ones in indexes between 4 and 8 for minimum training and testing 
results (Fig. 15). In other indexes, we cannot say that one RDS-PSO_3 type is 
superior to any other RDS-PSO_3 type. In the indexes between 0 and 8, RDS-
PSO_3 with increasing inertia weight is superior to the one with decreasing inertia 
weight while in indexes between 25 and 40 RDS-PSO_3 with decreasing inertia 
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weight and max-min adaptation is superior to other types for the mean training 
results. In other indexes, we cannot say that one RDS-PSO_3 type is superior to 
any other RDS-PSO_3 type. There is not a considerable difference between RDS-
PSO_3 types in indexes between 0 and 8. On the other hand, RDS-PSO_3 with 
decreasing inertia weight and max-min adaptation is superior to other types in 
other indexes for mean testing results. RDS-PSO_4 with increasing inertia weight 
and max-min adaptation is superior to other types in indexes between 5 and 9 (Fig. 
16). In other indexes, we cannot say that there is a considerable difference 
between one type of RDS-PSO_4 and any other one. 

 

Figure 16 
The results of deep RDS-PSO_4 

3.2.3 Heart Disease Dataset and Application Results of It 

 

Figure 17 
The results of shallow RDS-PSO_1 

Original version of heart disease dataset had been created with 920 samples and 
35 inputs before the second version was produced by some data preprocessing 
techniques. Finally, 297 data were remained with 13 inputs and 2 outputs in it. 
Whole dataset has been partitioned into three parts of which 149 data for training, 
74 data for validation and 74 for testing. In minimum training/testing and mean 
training/testing shallow results of RDS-PSO_1, increasing inertia weight is 
superior to decreasing one in all indexes without only two exceptions (Fig. 17). 
RDS-PSO_2 with increasing inertia weight for mean training/testing results have 
indicated better values than the decreasing inertia weight one however, we cannot 
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say that they are superior to decreasing inertia weight one in all indexes for 
minimum training/testing shallow results (Fig. 18). In indexes between 3 and 9, 
RDS-PSO_3 types with increasing inertia weight is superior to decreasing one. In 
other indexes, max-min adaptation types have indicated better results than the 
cosine adaptation ones for mean training and testing while there is no superiority 
between them for minimum training and testing (Fig. 19). 

 

Figure 18 
The results of shallow RDS-PSO_2 

 

Figure 19 
The results of shallow RDS-PSO_3 

 

Figure 20 
The results of shallow RDS-PSO_4 

RDS-PSO_4 types have indicated that decreasing inertia weight with cosine 
adaptation is worse than other types in indexes between 3 and 9 for minimum 
training and testing while types with increasing inertia weight is superior to 
decreasing ones in the same indexes for mean training and testing (Fig. 20). 
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RDS-PSO_1 deep with increasing inertia weight has less MSE value than the 
decreasing one in all indexes without one exception for the minimum training and 
testing results (Fig. 21). The increasing one is superior to decreasing one in the 
indexes between 0 and 8 for the mean training and testing results while decreasing 
is superior to increasing one in other indexes for the mean training and testing 
results. 

 

Figure 21 
The results of deep RDS-PSO_1 

 

Figure 22 
The results of deep RDS-PSO_2 

 

Figure 23 
The results of deep RDS-PSO_3 

In the indexes between 0 and 8, RDS-PSO_2 types with max-min adaptation have 
better results than the types with cosine adaptation one whereas in other indexes 
we cannot say that the max-min adaptation is better than the cosine one (Fig. 22). 
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Except indexes between 3 and 9 of mean training and testing, RDS-PSO_3 with 
decreasing inertia weight and max-min adaptation types have indicated the best 
performance among all deep results of RDS-PSO_3 types (Fig. 23). RDS-PSO_4 
types with increasing inertia weight have indicated better results than the types 
with decreasing ones in indexes between 0 and 8 for the minimum training/testing 
and the mean training/testing results without one index (Fig. 24). 

 

Figure 24 
The results of deep RDS-PSO_4 

Conclusions 

In contrast to most literature studies, the study by [3] compared performances of 
gradient and heuristic-based methods within an ANN configuration space, 
encompassing both deep and shallow training depths. Their findings indicate that 
backpropagation (BP) outperforms particle swarm optimization (PSO) in terms of 
training errors, while PSO excels over BP in terms of testing errors. 

This study presents a comprehensive analysis, evaluating four distinct PSO 
algorithms, including three improved variants, namely the RDS-PSO types, for 
training ANN using medical datasets. We have conducted the extended analysis 
by changing maximal iteration number (200 for shallow and 2000 for deep 
training), the direction of inertia weight value change (increasing and decreasing), 
the adaptation approach for alpha and/or beta parameter (max-min or cosine) and 
the RDS-PSO type (totally four types) criteria. This analysis was repeated 100 
times across 41 different feed-forward and fully connected ANN architectures, 
mirroring the approach taken in the study by [3]. Minimum, average and standard 
deviation results have been calculated with respect to these criteria. Breast Cancer, 
Heart Disease and Diabetes datasets have been chosen as medical data sets from 
Proben1 repository [26]. 

The overall performance of ANNs is contingent upon factors such as the ANN 
architecture, training algorithm/parameters, and the dataset, as detailed in the 
introduction section. Experimental results have proved this idea as indicated in 
Table 2. Standard deviation values of RDS-PSO types generally higher than BPs 
values while their minimum values are generally smaller than BPs values. These 
results have indicated superior searching ability of RDS-PSO types with respect to 
BP and original PSO. 
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Table 2 
Overall Results of Study 

(1:RDS-PSO_1; 2:RDS-PSO_2; 3:RDS-PSO_3; 4:RDS-PSO_4) 

Data Set Training 
method 

Training 
depth 

Min. test CE statistics Mean test CE statistics 
min average sd min average sd 

Breast 
cancer 

BP (Ince et. 
al. 2010) 

Shallow 0 0.0045 0.0024 0.0003 0.0101 0.0024 

 1 inciw  0 0.0002 0.0010 0 0.0074 0.0022 
 1 deciw  0 0.0002 0.0009 0 0.0070 0.0019 
 2inciw_cos  0 0.0002 0.0007 0 0.0109 0.0050 
 2inciw_mm  0 0.0002 0.0011 0 0.0157 0.0066 
 2deciw_cos  0 0.0003 0.0012 0 0.0058 0.0034 
 2deciw_mm  0 0.0003 0.0014 0 0.0087 0.0055 
 3inciw_cos  0 0.0002 0.0008 0 0.0064 0.0021 
 3inciw_mm  0 0.0002 0.0009 0 0.0056 0.0023 
 3deciw_cos  0 0.0002 0.0007 0 0.0064 0.0032 
 3deciw_mm  0 0.0002 0.0007 0 0.0043 0.0024 
 4inciw_cos  0 0.0002 0.0010 0 0.0089 0.0034 
 4inciw_mm  0 0.0003 0.0012 0 0.0111 0.0041 
 4deciw_cos  0 0.0002 0.0008 0 0.0071 0.0038 
 4deciw_mm  0 0.0003 0.0014 0 0.0099 0.0060 
 BP (Ince et. 

al. 2010) 
Deep 0 0.0055 0.0036 0 0.0176 0.0064 

 1 inciw  0 0.0001 0.0002 0 0.0344 0.0177 
 1 deciw  0 0.0003 0.0003 0 0.0323 0.0230 
 2inciw_cos  0 0.0001 0.0002 0 0.0537 0.0876 
 2inciw_mm  0 0.0002 0.0003 0 0.0563 0.0968 
 2deciw_cos  0 0.0003 0.0003 0 0.0311 0.0141 
 2deciw_mm  0 0.0003 0.0004 0 0.0376 0.0200 
 3inciw_cos  0 0.0001 0.0002 0 0.0164 0.0248 
 3inciw_mm  0 0.0001 0.0001 0 0.0231 0.0387 
 3deciw_cos  0 0.0002 0.0002 0 0.0275 0.0184 
 3deciw_mm  0 0.0002 0.0002 0 0.0147 0.0112 
 4inciw_cos  0 0.0001 0.0002 0 0.0326 0.0436 
 4inciw_mm  0 0.0001 0.0003 0 0.0383 0.0440 
 4deciw_cos  0 0.0002 0.0003 0 0.0326 0.0436 
 4deciw_mm  0 0.0003 0.0003 0 0.0283 0.0136 
         
Diabetes BP (Ince et. 

al. 2010) 
Shallow 0.1875 0.2002 0.0063 0.2101 0.2175 0.0112 

 1 inciw  0.0240 0.0801 0.1708 0.0354 0.2419 0.4650 
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 1 deciw  0.0239 0.0853 0.1654 0.0353 0.3455 0.6407 
 2inciw_cos  0.0221 0.0729 0.1398 0.0344 0.2286 0.4055 
 2inciw_mm  0.0239 0.0617 0.0984 0.0451 0.2467 0.3502 
 2deciw_cos  0.0235 0.0817 0.1560 0.0298 0.3263 0.5972 
 2deciw_mm  0.0225 0.0920 0.1858 0.0416 0.3920 0.6542 
 3inciw_cos  0.0219 0.0625 0.1221 0.0290 0.2131 0.4066 
 3inciw_mm  0.0225 0.0472 0.0572 0.0304 0.1478 0.2730 
 3deciw_cos  0.0225 0.0818 0.1624 0.0297 0.3157 0.5840 
 3deciw_mm  0.0214 0.0547 0.0926 0.0289 0.2174 0.4652 
 4inciw_cos  0.0237 0.0667 0.1338 0.0373 0.2258 0.3782 
 4inciw_mm  0.0237 0.0574 0.0844 0.0418 0.2205 0.2947 
 4deciw_cos  0.0235 0.0828 0.1625 0.0294 0.3260 0.6009 
 4deciw_mm  0.0222 0.0566 0.0840 0.0439 0.3341 0.5568 
 BP (Ince et. 

al. 2010) 
Deep 0.1719 0.1941 0.0129 0.2135 0.2246 0.0068 

 1 inciw  0.0230 0.0540 0.0822 0.0468 0.3651 0.7470 
 1 deciw  0.0228 0.0553 0.0884 0.0466 0.3325 0.6883 
 2inciw_cos  0.0214 0.0614 0.1270 0.0463 0.4042 0.7679 
 2inciw_mm  0.0218 0.0525 0.0783 0.0480 0.4427 0.8542 
 2deciw_cos  0.0223 0.0936 0.1933 0.0329 0.3134 0.6305 
 2deciw_mm  0.0197 0.0544 0.0863 0.0491 0.3275 0.5942 
 3inciw_cos  0.0217 0.0301 0.0031 0.0341 0.1845 0.2976 
 3inciw_mm  0.0220 0.0300 0.0038 0.0321 0.2343 0.3947 
 3deciw_cos  0.0225 0.0908 0.1820 0.0313 0.3047 0.5950 
 3deciw_mm  0.0204 0.0361 0.0322 0.0271 0.2054 0.4588 
 4inciw_cos  0.0212 0.0485 0.0788 0.0452 0.3243 0.6597 
 4inciw_mm  0.0214 0.0432 0.0495 0.0460 0.3542 0.7226 
 4deciw_cos  0.0239 0.0939 0.1915 0.0306 0.3176 0.6399 
 4deciw_mm  0.0224 0.0530 0.0852 0.0462 0.2942 0.5241 
         
Heart 
disease 

BP (Ince et. 
al. 2010) 

Shallow 0.1757 0.1928 0.0100 0.1893 0.2222 0.0087 

 1 inciw  0.0383 0.1970 0.4374 0.0888 0.6164 1.3091 
 1 deciw  0.0378 0.2092 0.4324 0.0880 1.0614 2.1474 
 2inciw_cos  0.0323 0.1609 0.3478 0.0731 0.6009 1.1773 
 2inciw_mm  0.0332 0.2193 0.4658 0.0905 0.7205 1.2573 
 2deciw_cos  0.0314 0.2306 0.5366 0.0737 0.9616 1.9576 
 2deciw_mm  0.0343 0.2929 0.6638 0.0956 1.1890 2.1769 
 3inciw_cos  0.0316 0.1419 0.2765 0.0650 0.4773 0.9848 
 3inciw_mm  0.0307 0.1268 0.2641 0.0627 0.4060 0.9008 
 3deciw_cos  0.0300 0.2033 0.4971 0.0703 0.8538 1.7167 
 3deciw_mm  0.0304 0.1473 0.3027 0.0630 0.6088 1.3838 
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 4inciw_cos  0.0308 0.1626 0.3594 0.0700 0.5672 1.1036 
 4inciw_mm  0.0337 0.1730 0.3526 0.0879 0.6117 0.9875 
 4deciw_cos  0.0317 0.2517 0.6400 0.0657 0.9525 1.9649 
 4deciw_mm  0.0343 0.1778 0.3977 0.0735 0.9237 1.6094 
 BP (Ince et. 

al. 2010) 
Deep 0.1486 0.1773 0.0171 0.2150 0.2340 0.0096 

 1 inciw  0.0608 0.2407 0.7981 0.0861 1.1531 0.9771 
 1 deciw  0.0596 0.4100 1.0333 0.0992 1.7152 3.4742 
 2inciw_cos  0.0577 0.5351 2.0879 0.0804 1.0637 1.5266 
 2inciw_mm  0.0608 0.5117 2.0439 0.0803 1.0311 1.0429 
 2deciw_cos  0.0582 0.3831 0.9495 0.0830 1.4125 2.8136 
 2deciw_mm  0.0623 0.2207 0.2967 0.0921 1.3032 2.3912 
 3inciw_cos  0.0570 0.1160 0.0995 0.0765 0.3303 0.2412 
 3inciw_mm  0.0540 0.1172 0.1183 0.0579 0.5060 0.4205 
 3deciw_cos  0.0556 0.3924 0.9956 0.0761 1.3827 2.7355 
 3deciw_mm  0.0557 0.1072 0.0296 0.0808 0.7781 1.7757 
 4inciw_cos  0.0638 0.5145 2.0913 0.1074 0.9016 1.3963 
 4inciw_mm  0.0684 0.2625 0.7237 0.0866 0.8143 0.7804 
 4deciw_cos  0.0549 0.3884 0.9777 0.0791 1.3820 2.7689 
 4deciw_mm  0.0647 0.1784 0.1648 0.0779 1.3148 2.4645 

RDS-PSO_3 types have indicated the best results on heart disease data set except 
of one obtained by RDS-PSO_4 deep training depth with decreasing inertia weight 
for minimum testing. RDS-PSO_3 with decreasing inertia weight and max-min 
adaptation has indicated better results than other RDS-PSO_3 types for shallow 
training depth while increasing inertia weight and cosine adaptation has better 
than others for deep training depth. RDS-PSO_3 types have also indicated the best 
results on diabetes data set without two exceptional case including RDS-PSO_2 
deep training depth with decreasing inertia weight for minimum testing and RDS-
PSO_4 deep training depth with increasing inertia weight for minimum testing. 
RDS-PSO_3 with decreasing inertia weight and max-min adaptation has the best 
results among all RDS-PSO_3 types. Beside these data sets, RDS-PSO_3 types 
have indicated the best results on breast cancer data set again although 
experimental results of all RDS-PSO types are close each other. In the mean 
testing, RDS-PSO_3 types have indicated superior performance to all remaining 
RDS-PSO types for all data sets. RDS-PSO_3 with decreasing inertia weight is 
superior to increasing one in terms of standard deviation. When we compare the 
development between shallow and deep training depths, RDS-PSO_3 and RDS-
PSO_4 with increasing inertia weight have given the best rates. 

As the index number in the ANN architecture space increases, fluctuations in the 
resulting graphics also increase for ANNs with more than one hidden layer. 
Conversely, there are substantial fluctuations in ANN results with only one hidden 
layer, particularly concerning the neuron number. 
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By combining factors affecting the overall performance of ANNs and extended 
results of this study indicated in Table 2, the key findings can be summarized as in  
Table 3. 

Table 3 
Key findings of the study 

Factor affecting the 
overall performance of 
ANNs 

Relationship with application results 

1-Architecture of ANN While the neuron number in a layer increase for ANNs 
with more than one hidden layer, a slight increase was 
seen in fluctuations of minimum values and a greater 
increase was seen in fluctuations in the mean values. 

2-Datasets used in 
experiments 

Based on the experiments in this study, the distances 
among the results of different algorithms are very close to 
each other in Breast Cancer dataset. These distances are a 
bit farther and much farther in Diabetes and Heart 
Disease datasets, respectively.  

3-Training algorithm and 
its parameters 

Although the distances among the results of different 
algorithms change in different datasets, RDS-PSO_3 
generally indicates better results in all datasets. When we 
compare the results of RDS-PSO_3 versions among 
themselves, max-min adaptation for parameter setting 
generally provides equal or better results than cosine one. 

The study in  [3] has conducted a computational complexity analysis for BP and 
PSO. They have claimed that PSO algorithm has much greater computational cost 
than BP algorithm. We have not conducted a computational complexity analysis 
in this study because there is no considerable difference between computational 
costs of RDS-PSO types and original PSO. 

Researchers have studied on many evolutionary algorithms in literature. As a 
result, they have introduced many original and improved versions of these 
algorithms. As a future work, adapting these algorithms into training of various 
ANN types and architectures will provide both better classification performances 
and the better comparisons than the existing literature studies. In addition, an 
adaptive setting method for Step Size and Threshold parameters  can be proposed. 
Furthermore, an adaptive setting method for Alpha and Beta parameters without 
Step Size and Threshold can be proposed to improve this study. 
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