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Abstract: Paper focuses on a novel automated rail inspection system, incorporating 
advanced technologies such as GPS for precise location tracking and GSM/GPRS modules 
for efficient data transmission. The system uses deep learning to analyze vibration data 
collected during train transitions, enabling predictive maintenance and enhancing rail safety 
within urban smart city frameworks. This system represents a significant step forward in 
intelligent transportation systems by automating and improving the efficiency and accuracy 
of rail inspections. The use of deep learning for data analysis underscores the potential of AI 
in infrastructure maintenance, potentially setting a new standard for rail safety protocols. 
The paper discusses the technical design of the sensor node, the integration of GPS and 
GSM/GPRS modules, the application of deep learning algorithms, and the analysis of the 
system's performance through testing and validation. The implications of such a system for 
smart city infrastructure and urban planning, as well as potential future enhancements and 
applications of the technology. 
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1 Introduction 
The projections, which are based on the rapid advancement of industrialization and 
the urbanization of human civilization, indicate that by the year 2050, 85 percent of 
the world's population would be living in urban regions. In a world where the 
population is always growing, these regions are responsible for most of the 
appropriate resource use and environmental problems that occur. A growing 
number of people all around the globe are becoming interested in the idea of a smart 
city, also known as an intelligent city, digital city, e-city, or smart community, as it 
is described in many pieces of literature. Using cutting-edge technology, the notion 
of a smart city may facilitate the provision of solutions to these problems as well as 
suitable services for the purpose of enhancing the quality of life in urban areas. 

Infrastructure that is both intelligent and sustainable, which is accomplished via the 
use of modern technical solutions, is one of the primary features of a smart city. 
Providing a living space that is pleasant, economically efficient, environmentally 
friendly, and convenient is the fundamental goal of a smart city. This is 
accomplished via the use of real-time technology that automate certain chores. 
Using monitoring systems and communication technologies, the notion of a smart 
city represents a more effective method for optimizing the utilization of resources 
and other services. One of the most important aspects of smart cities is the use of 
cutting-edge technology that may enhance and automate activities inside 
metropolitan areas, therefore, making these environments greener and more 
sustainable. There has been a significant influence on the development of these 
systems brought about by the fast growth of digitalization and communication 
technologies, as well as sensors and actuators [1-3]. 

The implementation of integrated sensor systems is the first stage in the process of 
developing smart cities. Sensors are devices that can detect and measure physical 
characteristics, as well as give real-time data that is required for observation, 
control, and decision making. Because of this, sensors are crucial components for 
building smart cities [4-6]. The structure that is known as a sensor node is created 
by a single sensor or many sensors, together with a power source and a device for 
data transmission. A network, also known as a wireless sensor network (WSN), is 
formed by all sensor nodes that have a central node (sink) to which they send data. 
The signals that are obtained by sensors can be interpreted by humans or integrated 
electronic circuits that process acquired data. This eliminates the need for manual 
inspection, which in turn reduces the cost and energy consumption. Additionally, it 
provides an autonomous control and monitoring of various parts in smart city 
structures. 

A crucial component of smart cities is the implementation of intelligent 
transportation and mobility systems, which are based on Intelligent Transportation 
Systems (ITS). The objectives of these systems is to improve energy conservation 
and emission reduction [7], improve efficiency of decision making algorithms [8], 
detect energy losses [9], improve safety [10], etc. Several mobile and permanent 
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sensors are included into the Intelligent Transport System (ITS) to provide adaptive 
vehicle navigation, intelligent fleet management and traffic monitoring, detection 
of road incidents, avoidance of congestion, and other similar functions. 
Environmental factors, such as temperature and humidity, chemical parameters, 
such as oxidation and corrosion, and mechanical characteristics, such as strain, 
stress, and deformation, are used to describe the conditions of all traffic 
infrastructures [11]. The visual examination that is carried out manually is often 
insufficient since it is possible that irregularities will still go unnoticed during the 
process. In the field of intelligent transportation systems (ITS), sensors are used in 
public infrastructures like roads, bridges, and railroads to offer awareness that allow 
for more effective utilization of resources and minimize the need for human 
inspection. 

Deep Learning, which is a technique that is based on Artificial Intelligence and 
Block Chain, is being implemented to increase the accuracy, efficacy, and 
intelligence of various smart city management systems [12]. To increase the 
accuracy and real-time performance of abnormal behavior detection smart video 
monitoring, the intelligent video technology, which is based on convolutional 
neural network (CNN) deep learning has been developed [13]. 

Deep learning is used in the Intelligent Transportation System (ITS) for several 
areas of traffic management and the monitoring of traffic structures. The precise 
forecast of passenger flow is of enormous value in the operation and administration 
of subways. It enables operators to create decision support systems for subway 
operations that are more accurate, which is particularly crucial for major events 
[14]. The application of Artificial Neural Networks (ANNs) in decision support 
systems allows for the estimation of the hourly passenger populations at bus stops, 
as well as the formulation of certain suggestions for the management of bus lines 
[15]. The reduction of the number of accidents that occur on the roads is an essential 
component of traffic, and this may be accomplished using predictions derived from 
CNN [16]. It is possible for faults in the fasteners to be responsible for the vertical 
displacement of the rail and vibrations that occur during the transition of the train. 
This is because of the friction that occurs between the train wheel and the rail. 
Manual rail control has become obsolete because of the proliferation of high-speed 
rail lines. This is since it is time-consuming, requires the expertise of specialists, 
and inspections are only performed when the line is empty. This procedure may be 
replaced by the visual method for locating faults in rail fasteners by using a hybrid 
approach that is based on deep learning [17]. 

This paper describes the sensor node equipped by accelerator adequate for 
automated inspection of the rail by measuring the vibrations during the train 
transition. System is integrated with GPS module to determine the position of the 
train (place of measurement on the rail), and GSM/GPRS modules to send the real-
time data. The obtained data are analyzed using the deep learning technology which 
provide the prediction about the future state of the rail. The paper is organized as 
follow: Section 2 describes the hardware of sensor node in detail. Section 3 shows 
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the applied deep learning technology used for analyzing the obtained data. Section 
4 presents the results followed by the conclusion and ideas for further research. 

2 Hardware Design of the Sensor Node 
The used device was developed around Microchip microcontroller PIC18F46K22 
[17]. This microcontroller was chosen because of well-known architecture and 
stable hardware characteristics. Simplified block diagram of the sensor node are 
shown on Figure 1. 

 
Figure 1 

Simplified block diagram of the sensor node 

The power supply of the sensor node is 24 V, what makes it suitable for industrial 
standard and application. This voltage is reduced to 4.2 V for supplying the 
GSM/GPRS module using the buck power supply, a further adjusted to 3.3 V for 
the microcontroller and the sensor, and 3.0 V for GPS module’s power supply, using 
the regulators shown in Figure 2. 

 
Figure 2 

The power supply regulators for microcontroller, sensor and GPS module power supply 
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For GSM/GPRS module, Ublox LEON module was chosen for the same reason. 
Microcontroller relates to GSM/GPRS module through its first UART. 
Communication between microcontroller and GSM module is established via AT 
commands. Figure 3 and Figure 4 show part of circuit with microcontroller and 
GSM/GPRS module. 

 
Figure 3 

The electronic circuit of the GSM/GPRS module 

 
Figure 4 

The power supply regulators for microcontroller, sensor and GPS module power supply 

The GPS module, which electronic circuit is shown in Figure 5. Ublox Neo6 with 
low power consumption was selected. GPS module communicates with 
GSM/GPRS module through I2C interface. 
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Figure 5 

The electronic circuit of the GPS module 

Vibrations are measured using the three axes digital accelerometer ADXL345 
(Figure 6). This sensor has a low-power consumption, and provides accurate 
measurement. Digital output data are accessible through the I2C or SPI interface 
that was chosen because of higher data transmission rate. 

 
Figure 6 

The electronic circuit of ADXL345 accelerometer 

The measured value of acceleration and coordinates are transmitted to the server 
through implementing the Message Queuing Telemetry Transport (MQTT) 
protocol. MQTT is a Client Server (Broker) publish/subscribe protocol in 
application layer of TCP/IP. Server accepts messages from clients or send messages 
to clients. There are two types of clients, publishers and subscribers. The publisher 
sends message on a specific topic to the server. Following the server's receipt of the 
published message from the publisher, the payload of the message is sent to each 
client that has subscribed to that particular subject. As can be observed, the MQTT 
protocol was developed for asynchronous communication, which is characterized 
by the simultaneous occurrence of subscriptions or publishing to or from many 
entities. While other protocols, such as HTTP, have a much larger footprint, the 
MQTT protocol has a far lower footprint. As was said before, this makes MQTT 
significantly more suited for situations that have limited resources. Despite the fact 
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that the MQTT protocol offers a multitude of benefits, not all brokers that are based 
on MQTT possess the capabilities to authenticate entities or encrypt data [18]. On 
the other hand, size of packet in MQTT protocol allows to send previously 
encrypted data, which size is 64 bits [19]. In that case, broker forward encrypted 
message to subscriber which perform decryption of the message. 

The complete sensor node realized on printed circuit board is shown in Figure 7. 

 
Figure 7 

Top view of the printed circuit board of the sensor node 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) [20] was used to evaluate 
how time-lagged variables affect urban railway track lateral and vertical 
acceleration predictions. The learning and reasoning capabilities of artificial neural 
networks and fuzzy logic make ANFIS ideal for nonlinear and complicated time-
series data. This research used a basic measuring technique that measured 
accelerations [21, 22, 23]. 

Both lateral and vertical accelerations were recorded on a test track under real-world 
situations. Measurements were taken in both directions along the track to obtain 
data from all relevant track sections to study. This method identified dynamic 
behaviours and the effects of temporal fluctuations on accelerations, allowing 
ANFIS to accurately predict acceleration patterns from time-lagged data. 

This measuring technology was used with ANFIS to create a strong prediction 
model to improve track dynamics knowledge and urban railway system 
maintenance plans [24, 25, 26]. 
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3 Methodology and Materials 

3.1 Measuring Methodology 
Running safety and ride quality were assessed using the EN 14363 standard, which 
offers a thorough framework for assessing railway cars under diverse operating 
scenarios. The technique in EN 14363 parts 5.2.2.1 and 5.2.2.2 emphasises 
acceleration measurements to simplify evaluation. This technique precisely 
captures essential train dynamic behaviours, simplifying conventional testing. 
According to Article 5.4.5 of EN 14363, all relevant test track sections were 
assessed in both travel directions to account for directional performance 
implications. A diesel-powered motor train with two passenger motor units linked 
by an inter-car clutch and bypass system was used for the test. Each motor unit has 
two two-axle bogies: a steering bogie for driving and a clutch bogie for non-
steering. The train also has four turntables for stability and orientation. The train 
carried 18 passengers during testing. Based on intercity travel rules, the train 
weighed 89,103 kg, assuming 80 kg each passenger, including baggage. The train 
wheels have UIC-ORE-compliant rolling surfaces. The train had travelled 1500 km 
before testing. Therefore, the wheel rolling surfaces showed minimal wear, which 
was considered during analysis. In Figure 8, the experimental setup was created to 
correctly quantify running safety and driving quality. This arrangement permitted 
precision acceleration data gathering across track conditions and revealed train 
operating dynamics under common passenger loads and track layouts [27]. 
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Figure 8 

Experimental measuring setup 

3.2 ANFIS Methodology 
The fuzzy inference system underpins the architecture of the Adaptive Neuro-Fuzzy 
Inference System (ANFIS). Layer 1 receives input variables. These inputs are 
transformed into fuzzy values. Membership functions, mathematical constructions 
that convert each point in the input space to a membership value between 0 and 1, 
simplify this translation. 

In this work, the membership function is critical for system performance, 
particularly with nonlinear data. The study uses bell-shaped membership functions. 
The bell-shaped curve of these functions is smooth and continuous. This approach 
was made because the bell-shaped function excels in nonlinear data regression. 

I like the bell-shaped membership function for various reasons. First, its smooth and 
flexible structure enables for more nuanced and accurate fuzzy set representation, 
which is vital for capturing real-world data variability and uncertainty. Second, the 
function's parameters may be readily altered to help the ANFIS network properly 
respond to incoming data and improve regression. 

The bell-shaped membership function helps the ANFIS network simulate 
complicated, nonlinear input-output interactions. The ANFIS network is useful for 
regression analysis and prediction in many disciplines since it can handle nonlinear 
data. 

Bell-shaped membership function is defined as follows: 
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where { }, ,i i ia b c  is the parameters set and x  is input. 
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In the first layer, fuzzy inputs are processed and multiplied in the second layer to 
determine the rule firing strength. The third layer normalizes the outputs from the 
second layer, ensuring consistency across rule activations. In the fourth layer, the 
system applies the inference mechanism, where the fuzzy rules are evaluated and 
the results are transformed into crisp values. Finally, the output layer aggregates the 
signals from the previous layers and produces the final crisp output, representing 
the system's decision or prediction. 

4 Results 

4.1 Experimental Data Measurements 
In the study, the lateral and vertical accelerations were measured to assess the height 
of the axes of the two outer axle assemblies on the frames of two rotating stands—
one drive and one free bogie per turntable—and the car body at floor level above 
the central bolts of one bogie’s wheels. These measurements were obtained using 
acceleration data. Additionally, motorcycles with toilets, designated as car 1, were 
equipped with measurement instruments, aided by a pulse encoder that tracked both 
distance and speed. A total of six acceleration values were considered for analysis 
(Figure 9). The pulse encoder was mounted on the shaft assembly housing to 
monitor speed and distance, which were used as control quantities. 

The measured signals were filtered in accordance with point 7 of the testing 
program to generate the assessment parameters. These parameters comprised 16 in 
total: six for safety evaluation and ten for dynamic driving performance.  
The analysis divided the test sections into segments of 250 m, 100 m, and 70 m, 
depending on the test area and program specifics. Statistical processing was 
performed on these segments, either on N or 2 N members of the statistical set, 
where N represents the number of sections within a particular curve region. 

The value of each parameter for a given test section was determined by the 
cumulative curve of the observed parameter distribution. This distribution was 
based on specific percentages of frequency of occurrence, which allowed the 
generation of a histogram of parameter distribution by test area. These processed 
parameters were then used to evaluate the running safety and dynamic driving style 
of the vehicle during the tests. 
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Figure 9 

Lateral (X) and vertical (Y) acceleration 
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4.2 ANFIS Data Clustering 
The ANFIS methodology was employed to perform data clustering based on the 
prediction of acceleration using time-lagged data. The time-lagged data was 
generated through the following process: 

x(t−18), x(t−12), x(t−6), x(t). 

Thus, the procedure involves four input variables, and the output is predicted as 
x(t+6). The selection of relevant inputs is crucial for clustering, as it allows the 
removal of inputs with minimal influence on the prediction accuracy. The dataset 
was divided into two subsets: a training set consisting of odd-indexed samples, and 
a checking set consisting of even-indexed samples. Six data samples were used, 
corresponding to six measurements in total. 

Four distinct ANFIS models were created, each using one input selected from the 
four possible candidates. The results for each of the six measurements were 
obtained based on this approach, providing insights into the predictive accuracy and 
clustering effectiveness for the given time-lagged acceleration data. 

The results of the ANFIS-based prediction models for time-lagged data are 
presented across six measurements, where both training (trn) and checking (chk) 
errors are analyzed for each lag. For each measurement, four different time-lagged 
inputs (x(t−18)x(t–18)x(t−18), x(t−12)x(t–12)x(t−12), x(t−6)x(t–6)x(t−6), and x(t)x(t)x(t)) were 
used to predict the output x(t+6)x(t+6)x(t+6). Similarly, the same analysis was 
performed for the lateral acceleration (X) and vertical acceleration (Y) data, with the 
following observations: 

Measurement 1 (X Data) 

• For x(t−18)x(t–18)x(t−18), the training error is 0.0252 and the checking error 
is 0.0242. 

• For x(t−12)x(t–12)x(t−12), the training error remains the same at 0.0252, but 
the checking error slightly increases to 0.0243. 

• The training and checking errors for x(t−6)x(t–6)x(t−6) are 0.0250 and 
0.0245, respectively. 

• x(t)x(t)x(t) shows a higher training error of 0.0255 and a checking error of 
0.0246. 

Measurement 2 (X Data) 

• There is a noticeable increase in errors compared to Measurement 1. 
• x(t−18)x(t–18)x(t–18) shows a training error of 0.0703 and a checking error 

of 0.1108. 
• Errors decrease as the lag decreases, with x(t)x(t)x(t) achieving the lowest 

training (0.0538) and checking (0.0958) errors. 
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Measurement 3 (X Data) 

• All lags show relatively high errors. 
• x(t−18)x(t–18)x(t−18) has a training error of 0.1615 and a checking error of 

0.1130, while the other lags yield similar results with minimal variations 
in training and checking errors. 

Measurement 4 (X Data) 

• This measurement shows the highest overall errors. 
• x(t−18)x(t–18)x(t−18) has a training error of 0.4920 and a checking error of 

0.5612. 
• The errors for other lags follow a similar trend, with the x(t)x(t)x(t) input 

yielding a slightly lower training error (0.4784) but maintaining a similar 
checking error. 

Measurement 1 (Y Data) 

• The Y data (vertical acceleration) shows smaller errors compared to the X 
data in Measurement 1. 

• y(t−18)y(t–18)y(t−18) yields a training error of 0.0437 and a checking error of 
0.0416, which remain consistent across all lags, indicating stable 
predictions. 

Measurement 2 (Y Data) 

• Similar to X data, the errors increase for the Y data in Measurement 2. 
• y(t−18)y(t–18)y(t−18) shows a training error of 0.0766 and a checking error of 

0.1169, with errors decreasing slightly as the lag decreases, reaching 
0.0725 for training and 0.1208 for checking. 

Measurement 3 (Y Data) 

• Errors are significantly higher in this measurement. 
• y(t−18)y(t–18)y(t−18) has a training error of 0.2221 and a checking error of 

0.1606. 
• The errors for other lags are comparable, showing minimal variations. 

Measurement 4 (Y Data) 

• This measurement exhibits the highest errors for Y data, similar to X data. 
• y(t−18)y(t–18)y(t−18) yields a training error of 1.0376 and a checking error of 

1.3411. 
• Other lags show slightly lower training errors, but the checking errors 

remain high, with y(t)y(t)y(t) resulting in 1.0398 for training and 1.3304 
for checking. 
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Measurement 5 (X Data) 

• Errors for this measurement follow a similar pattern to Measurement 4. 
• x(t−18)x(t–18)x(t−18) shows a training error of 0.4920 and a checking error of 

0.5612, with minor variations across the other lags. 

Measurement 6 (X Data) 

• The errors decrease slightly compared to previous measurements. 
• x(t−18)x(t–18)x(t−18) yields a training error of 0.4599 and a checking error of 

0.4817. 
• The errors across other lags are comparable, with minimal variations. 

Measurement 5 (Y Data) 

• Y data shows consistent high errors for this measurement. 
• y(t−18)y(t–18)y(t−18) has a training error of 1.0376 and a checking error of 

1.3411, with the other lags following a similar trend. 

Measurement 6 (Y Data) 

• The errors in Measurement 6 are slightly lower than in Measurement 5. 
• y(t−18)y(t–18)y(t−18) yields a training error of 1.1411 and a checking error of 

1.0627, with y(t)y(t)y(t) achieving the lowest errors (1.1542 for training 
and 1.0162 for checking). 

the results across all six measurements demonstrate varying levels of prediction 
accuracy. Lower errors are observed for the initial measurements, while the later 
ones exhibit higher discrepancies between training and checking sets, particularly 
in Y data for Measurements 4 through 6. The differences in performance across time 
lags and between lateral and vertical acceleration data suggest that the choice of 
time-lagged inputs plays a critical role in the accuracy of the ANFIS model 
predictions. 

The analysis of the results after grouping the most influential inputs reveals distinct 
patterns in the predictive significance of each input. The findings are as follows: 

• X(t−18) and)Y(t−18) have no influence on the future predictions, as indicated 
by a score of 0. 

• X(t−12) is selected once, while Y(t−12) is selected three times, indicating that 
Y(t–12) plays a more significant role in the prediction of Y(t+6). 

• X(t−6) is selected twice, whereas Y(t−6) is selected once, suggesting 
moderate relevance of X(t−6) in predicting future X(t+6) values. 

• X(t) is the most frequently selected input for the prediction of X(t+6), with 
a frequency of three, indicating that the current value X(t) has the strongest 
influence on future acceleration predictions in the X direction. 
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• Similarly, Y(t) is selected once, but Y(t−12) remains the most frequently 
chosen input for predicting future Y(t+6), highlighting the importance of a 
prior time step for vertical acceleration predictions. 

In conclusion, X(t) emerges as the most influential input for the prediction of future 
X(t+6) values, while Y(t−12) plays a critical role in predicting future Y(t+6) values. 
The inputs from the earliest time step X(t−18) and Y(t−18)) are determined to have no 
significant influence on the predictions, suggesting that more recent data points are 
more relevant for accurate forecasting. This demonstrates the effectiveness of 
clustering in isolating the most impactful inputs for ANFIS-based time-series 
predictions. 

Conclusions 

The integration of GPS and GSM/GPRS modules is highlighted for its capability to 
enable real-time data transmission, significantly enhancing the system's efficiency 
in providing timely and accurate assessments of rail conditions. The deployment of 
deep learning technology for data analysis is emphasized as a key factor in 
augmenting the system's predictive capabilities, thus fostering a proactive approach 
to rail maintenance and safety. 

The system's innovative ability to measure vibrations during train transitions and 
analyze this data in real-time is underscored as a considerable advancement in 
intelligent transport systems (ITS) within the context of smart city frameworks. By 
automating the inspection process and leveraging advanced data analysis 
techniques, the system presents a more efficient, accurate, and cost-effective 
solution in contrast to traditional manual inspection methods. 

A focus on further refining the deep learning models to improve predictive accuracy 
and exploring the integration of additional sensor types. This would provide a more 
comprehensive assessment of rail conditions and expand the system's application to 
other critical infrastructure components within the smart city ecosystem. 
Addressing potential challenges related to data security and privacy, system 
scalability, and interoperability with existing urban infrastructure management 
systems is also identified as crucial for the widespread adoption of this technology. 

The development of this sensor node and its application in automated rail inspection 
highlights the significant potential of integrating advanced technologies into smart 
city infrastructure. This integration is poised to improve urban living conditions, 
enhance public safety, and contribute to the sustainable development of urban areas, 
marking a substantial step forward in the evolution of smart cities. 
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