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Abstract: Recent advancements in the methodology of cognitive assessment and development 
rely on various cognitive models. Determining the underlying abilities tapped by individual 
tasks involves different procedures, which presuppose dependencies on specific subskills, 
considerations of statistical distributions, and a substantial amount of measurement data for 
accurate estimation of latent factors. Addressing these bottlenecks, various deep learning 
(DL) models show promising performance. Despite their initial success, it is evident that DL 
models are hindered by the requirement for significant quantities of annotated and labeled 
data to experiment and refine these models. Synthetic data offer a solution to this challenge 
by being easily generated, error-free, inexhaustible, pre-annotated, and circumventing 
various ethical and practical concerns. The past decade has witnessed remarkable progress 
in data synthesis and domain adaptation techniques, narrowing the statistical gap between 
synthetic and real data. Beyond sustaining the DL revolution, synthetic data will pave the 
way for the next generation of DL models, capable of understanding the physical composition 
of the world and learning continually, multimodally, and interactively. This paper clarifies 
the models emerging from prevalent cognitive models, statistical methodologies, and 
psychometric research regarding the subjects and their subskills, as well as how to model 
the parameter and subskill dependencies of individual tasks independent of the limitations 
posed by current solutions. Building upon these insights, an environment for data synthesis 
and simulation is developed, suitable for validating various analysis solutions. 
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1 Introduction 

In recent years, significant efforts have been made to enhance the abilities of both 
typical and atypical learners, particularly children with learning disorders, through 
the more efficient development of various cognitive and other tasks. The difficulty 
levels of individual developmental tasks are set using various approaches, aiming 
to prevent tasks from being either too easy (leading to boredom) or too difficult 
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(resulting in task abandonment). The most widely accepted procedures are based on 
positive psychology, attempting to set the difficulty of challenges so that individuals 
can solve them with a probability of 60-80%. A successfully calibrated series of 
challenges can keep the individual in a state of flow. 

The goal of the paper is to develop a simulation environment that enables the 
synthesis of cognitive ability datasets by generating various types of examinees and 
parametrized tasks. This environment is designed to facilitate research on cognitive 
modeling, allowing researchers to validate analytical approaches and test machine 
learning-based ability estimation methods without the constraints of real-world data 
scarcity. 

Our motivation for the research stems from the limitations of current cognitive 
assessment methodologies, which require vast amounts of empirical data for 
accurate estimation of latent cognitive traits. Many existing approaches, particularly 
those relying on deep learning, struggle due to the need for extensive annotated 
training data. Synthetic data offers a promising alternative, as it is easily generated, 
error-free, and pre-annotated, allowing for greater flexibility in experimental design 
and validation. 

Recent advancements in the field of cognitive science have seen a notable evolution 
in formal intelligence models since Spearman's groundbreaking revelation 
regarding the positive manifold [7], which signifies the consistent occurrence of 
positive correlations among cognitive test scores. Contemporary approaches have 
departed from conventional reflective latent factor models to introduce diverse 
emergence mechanisms. Among these, prominent models include sampling models 
[8], gene-environment interaction models [9], and network models [10].  
The amalgamation of multifactor and hierarchical theories has notably culminated 
in the well-endorsed Cattell-Horn-Carrol (CHC) theory [11], which encompasses 
fluid and crystallized intelligence alongside a three-tier hierarchy. 

The challenges are multifaceted.  First, cognitive developmental tasks are inherently 
complex, as they often require multiple cognitive subskills to be performed 
simultaneously. For example, a puzzle game may require visual processing, short-
term memory, and logical reasoning, making it difficult to isolate the impact of 
individual sub-abilities. Current research focuses on developing assessments that 
can measure sub-abilities independently. Various studies are underway to improve 
such assessments [12], including the Wechsler Adult Intelligence Scale—Fourth 
Edition (WAIS–IV) [6], which aims to evaluate cognitive components such as 
crystallized ability, fluid reasoning, visual processing, short-term memory, 
processing speed, and quantitative reasoning. However, obtaining accurate 
estimations of these sub-abilities remains an open problem. The second major 
challenge is the parameterization of task complexity. The relationship between task 
difficulty and cognitive demand is often nonlinear; for example, increasing the size 
of a puzzle board from 6x6 to 7x8 may disproportionately affect difficulty. 
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Moreover, machine learning-based approaches require substantial labelled datasets, 
and selecting relevant features in high-dimensional spaces remains a critical issue. 

This paper introduces a novel approach by the development of a simulation 
environment capable of addressing these challenges by generating structured, 
parametrized synthetic data. This approach allows for flexible experimentation, 
enabling researchers to analyze the interaction between cognitive subskills and task 
success, validate cognitive models, and benchmark different machine learning 
approaches for ability estimation. Unlike conventional approaches that depend on 
large-scale empirical data collection, this framework provides a reproducible and 
controlled setting for hypothesis testing and model evaluation. 

Our work thus contributes to the universal interpretability and reusability of 
cognitive ability datasets, facilitating the acquisition and sharing of training and 
testing datasets within the machine learning research community, enabling the 
comparison of results from different machine learning tools, and accelerating the 
overall research process. 

The paper is organized as follows. The next section presents the relevant elements 
of the research area and the existing simulation environments. The third section 
analyses the model and background of the simulator. The fourth section details the 
software aspects of the work, followed by the summary of the paper to conclude. 

2 Related Work 

The CHC model widely defines individuals' abilities. While most item-response or 
task-solving tests assume a single latent ability, the probability of solving skill-
building games and similar tests often relies on multiple abilities in different ways. 
One identified bottleneck in research is the lack of a solution that can estimate the 
probability of task solving for a subject with known abilities when dealing with 
tasks based on multiple dimensions (that is, partial or sub-abilities).  
The Multidimensional Item Response Theory (MIRT) [1] is a statistical modeling 
framework used for analyzing multidimensional tests and modeling item responses. 
For the MIRT model to be appropriately applied, several important assumptions 
need to be considered, of which three are highlighted: (1) MIRT models often 
require larger sample sizes compared to unidimensional IRT models to estimate 
parameters accurately, especially when dealing with a high number of dimensions 
or items. (2) Normality of Latent Variables: The MIRT model assumes that latent 
variables (abilities) follow a normal distribution. This means that the distribution of 
abilities among the test takers is normal in the population. (3) Assumption of Local 
Independence: MIRT assumes local independence, meaning that conditional on the 
latent traits, item responses are independent. Violations of this assumption can lead 
to biased parameter estimates and model misfit. 



G. Füstös, et al. Data Synthesis and Simulation for Modeling Cognitive Abilities 

 – 104 – 

Additional extensions of the model have been proposed. For instance, [2] introduces 
a novel model known as the Multidimensional Two-Parameter Logistic Model with 
Ability-Item-Based Guessing (M2PL-AIG) model. This model not only reduces the 
number of parameters compared to the M3PL model but also incorporates 
participants' guesses, similar to the M3PL model. 

Computerized adaptive testing (CAT) represents a sophisticated method for 
administering assessments, surveys, and similar evaluations. It relies on intricate 
computer algorithms that tailor the test to each individual examinee, while also 
managing practical considerations such as content distribution, item exposure, and 
test duration. CATs have demonstrated the capability to significantly decrease test 
length by as much as 90% without sacrificing precision. Nevertheless, realizing 
such efficiency gains and leveraging the benefits of CAT necessitates thorough 
research studies conducted by CAT developers to simulate CAT performance. [3] 

For achieving these goals, several popular simulators are available. Among them, 
CATSim [4] offers three simulation types for computerized adaptive testing (CAT), 
employing both dichotomous and polytomous item response theory (IRT) models: 
post-hoc (real data) simulations, hybrid simulations, and Monte Carlo simulations. 
CATSim enables simulations for item banks containing up to 999 items, with no 
restriction on the number of examinees for both post-hoc and hybrid simulations, 
and a cap of 10,000 examinees for Monte Carlo simulations. 

Similar goals are pursued by SimulCAT [5], a software program developed for 
conducting CAT simulation studies. The SimulCAT program encompasses most of 
the methods utilized for the three key components of item selection in CAT: item 
selection criterion, item exposure control, and content balancing. It also includes 
methods for determining test length (fixed or variable) and score estimation 
algorithms. 

However, a strong criticism against these simulators is that they are not suitable for 
generating examinees with multiple different sub-abilities, and it is not possible to 
configure the distribution of these subskills. The mentioned simulators can only 
apply a single parameter with a normal distribution in terms of ability. 

In the analysis of the aforementioned and related research works, the following 
challenges emerged: 

(A) Data Synthesis 

To develop and validate ability-enhancing tasks, simulations are needed where (1) 
the subskills of subjects can be defined within flexible frameworks, and (2) the tasks 
to be tested can be parameterized, where the likelihood of solving them depends on 
reaching certain levels of subskills, and the dependency on these can be weighted 
(allowing for the simulation of well-known compensatory abilities in psychology). 
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(B) Simulation 

A simulation environment is needed that can test various cognitive models. In such 
cases, the simulator is used to validate how accurately a procedure can replicate 
latent traits by observing the success of solving certain types of tasks. This is 
particularly important in assessing the success of neural network-based solutions 
developed in response to deficiencies and challenges in solutions based on factor 
analysis and decision trees. 

3 The Simulator 

The cognitive simulator is constructed using small, interlocking foundational 
blocks, enabling it to perform multiple simulation tasks. These tasks include 
simulating an individual's response to a parameterized exercise based on the given 
parameters and the person's abilities, as well as simulating numerous artificial 
entities and exercises and their corresponding responses. In the subsequent sections, 
we will explore the functionality of each of these foundational blocks, beginning 
with the core process: calculating the probability of a correct answer for a known 
individual undertaking a specified task. 

3.1 Predicting Exercise Outcome 

The simulator's core component processes the attributes of both a person and an 
exercise, computing the likelihood that the individual will correctly solve the 
specific task. It can provide the outcome as either a probability or a binary value. 

Throughout the article, we represent the person's abilities with a single vector, and 
the exercise parameters with one mandatory and another optional vector. These 
vectors correspond to specific cognitive abilities; therefore, prior to using the 
simulator, the user must define all the specific sub-abilities they wish to consider. 
For instance, one could utilize the ten broad cognitive abilities for this purpose. 

For this study, we define a constant list of specific cognitive abilities, which will be 
referenced throughout the article to ensure consistent analysis and discussion. We 
denote this list as 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  ["𝐺𝐺𝐺𝐺", "𝐺𝐺𝐺𝐺", . . . , "𝐺𝐺𝐺𝐺"], where each element 
corresponds to a broad factor of cognitive processing as described by the CHC 
theory. For instance, Gv represents Visual Processing, Gq stands for Quantitative 
Knowledge, and Ga denotes Auditory Processing. The actual definitions of these 
abilities are not the primary focus; instead, their inclusion serves to facilitate easy 
reference. Thus, when 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑖𝑖 is mentioned, it refers to one of these predefined 
sub-abilities in our list. 
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Finally, before detailing the attributes of the exercise-solving core component, let 𝑘𝑘 
represent the length of the previously defined 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 list. This value denotes the 
number of specific sub-abilities we have chosen to include in our model. 

3.1.1 Person Attributes 

Let 𝜃𝜃 represent the abilities of a person, where: 

• 𝜃𝜃 ∈  ℝ𝑘𝑘 

• ∀𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘: 𝜃𝜃𝑖𝑖  ~ 𝒩𝒩(1, 0.15) 

Here, 𝜃𝜃𝑖𝑖 corresponds to the person’s proficiency in the i th specific cognitive ability 
as outlined in the list 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. This statistical representation allows us to model 
each cognitive ability as an independent quantifiable trait, broadening the 
conventional statistical approach where cognitive ability as a whole is typically 
represented by a single value following a similar normal distribution. 

3.1.2 Exercise Attributes 

Let 𝛽𝛽 represent the difficulty of an exercise, and use 𝑤𝑤 for a weighting purpose, 
where: 

• 𝛽𝛽 ∈  ℝ𝑘𝑘 

• 𝑤𝑤 ∈  ℝ𝑘𝑘 

• ∀𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘: 𝛽𝛽𝑖𝑖  ~𝒩𝒩(1, 0.15) 
• ∀𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘: 𝑤𝑤𝑖𝑖 ≥ 0 

Here, 𝛽𝛽𝑖𝑖 refers to the minimum level of proficiency required in the i th cognitive 
ability to solve the task correctly. By definition, the probability that a person with 
𝛿𝛿𝑖𝑖 = 𝑟𝑟 successfully solves an exercise requiring 𝛽𝛽𝑖𝑖 = 𝑟𝑟 is almost 1, provided that 
only the i th cognitive ability is considered. On the other hand, if the person’s ability 
is approximately two standard deviations (0.3) lower than 𝛽𝛽𝑖𝑖, then the probability is 
about 0. If the task does not involve any knowledge from one cognitive ability, the 
corresponding 𝛽𝛽𝑖𝑖 should be set to zero. 

The optional weight vector’s i th element, 𝑤𝑤𝑖𝑖 , defines the significance of the person’s 
ability meeting the required level, 𝛽𝛽𝑖𝑖. If the weight vector is not provided, the 
importance of each specific ability is assumed to be equal. If 𝛽𝛽𝑖𝑖 > 0, the weight also 
must be positive: 𝑤𝑤𝑖𝑖 > 0. On the other hand, if 𝛽𝛽𝑖𝑖 = 0, the weight could still be 
positive, because it gets automatically neglected by the simulator. This architecture 
was chosen, so one can use a vector containing only e.g., 1-s and does not have to 
manually set all weights to zero, where 𝛽𝛽𝑖𝑖 = 0. 

Prior to computation, the weight vector is normalized such that a value of 1 indicates 
normal importance, whereas values lower or higher denote lesser or greater 
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importance, respectively. Thus, the normalization considers the number of abilities 
required to solve a task, which is the number of positive values in vector 𝛽𝛽. Let 𝑙𝑙 
denote this value. The normalization formula is as follows: 

𝑤𝑤𝑖𝑖′ =  
𝑤𝑤𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑘𝑘
𝑖𝑖=1

⋅ 𝑙𝑙 

This calculation ensures, that if all weights are equal, then the originally not zero 
values will all be 1-s, by normalizing the weights between 0 and 1, and then scaling 
them so they sum up to 𝑙𝑙 – the number of important abilities. 

We chose to separate the exercise attributes into difficulty and weight vectors 
because the roles they represent are distinctly different. Imagine a scenario, where 
an individual is required to solve equations presented on a screen. In this case, a 
basic lever of visual knowledge is crucial: the person must accurately perceive every 
detail of the equation. However, a higher proficiency in visual knowledge is not 
necessary to solve this task correctly. With our method we can accurately represent 
these types of cases by assigning a low value to the difficulty and increasing the 
importance. 

Now that the attributes are defined, let’s examine, how the simulator calculates the 
probability of an individual solving a specific exercise – given both the person’s 
and the task’s attributes. 

The basis of the calculation lies in a statistical formula commonly used in 
psychometrics, known as Item response theory (IRT). The theory defines the item 
response function, which determines the probability of a correct response to one 
dichotomous item, considering the proficiency of a person and the difficulty of a 
task. The simulator employs a modification of the two-parameter IRT model to 
calculate probability with respect to one specific cognitive ability. The modified 
function is as follows. 

𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | 𝜃𝜃𝑖𝑖,𝛽𝛽𝑖𝑖) =  
1

1 + 𝑒𝑒−𝑑𝑑(𝜃𝜃𝑖𝑖−(𝛽𝛽𝑖𝑖−𝜎𝜎2)) 

In the previous equation, 𝑑𝑑 and 𝜎𝜎2 are constants, with the latter representing the 
standard deviation previously set as 0.15. The former 𝑑𝑑 controls maximum 
steepness of the function and has been set to 20 to maintain the relationship between 
the attributes as defined. With this formula, only considering one ability, the 
probability of correct response is 0.5 if 𝜃𝜃𝑖𝑖 =  𝛽𝛽𝑖𝑖 −  𝜎𝜎2, around 1 if 𝜃𝜃𝑖𝑖 ≥ 𝛽𝛽𝑖𝑖, and 
around 0 if 𝜃𝜃𝑖𝑖 ≤  𝛽𝛽𝑖𝑖 − 𝜎𝜎2. 

To calculate the probability considering all specific cognitive abilities we have 
employed the assumption, that the events of a person solving an exercise given one 
ability are independent, allowing the probabilities to be multiplied. We also 
accounted for the exercise weights and some unknown, random factors, leading us 
to the formula presented in the next. 
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𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | 𝜃𝜃,𝛽𝛽,𝑤𝑤) = �𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 | 𝜃𝜃𝑖𝑖 ,𝛽𝛽𝑖𝑖 + 𝑥𝑥𝑖𝑖)𝑤𝑤′
𝑘𝑘

𝑖𝑖=1

 

𝑥𝑥𝑖𝑖~𝒰𝒰[−𝜖𝜖,𝜖𝜖] 

As the formula indicates, the normalized weights are used as exponents, enhancing 
importance when the current weight exceeds 1, and reducing it below 1. 
Additionally, a random value between −𝜖𝜖 and 𝜖𝜖 is added to each proficiency value 
to account for variables such as luck, lack of attention, and other similar factors. In 
cases where we are solely interested in whether the solution is correct, a calculated 
probability of 0.5 or higher will be considered a correct solution. Thus, we have 
arrived to the foundational formula of the simulator. 

3.2 Simulating Results for Simple Exercises 

In this section we will demonstrate how the derived formula can be applied to 
simulate the solving of simple exercises. By simple, we refer to tasks for which the 
vectors 𝛽𝛽 and 𝜃𝜃 are predetermined and independent of other task attributes, such as 
the difficulty level. We will focus on these more complex tasks in the subsequent 
section. 

The simulator presents this feature as the form of the simulate exercise function. 
The function’s input parameters are as followed: 

• 𝑛𝑛 ∈ ℤ+, the number of solutions to simulate 
• 𝛽𝛽, w ∈ ℝ𝑘𝑘, vectors of the exercise 

• 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∈ {𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹}, whether to simulate probability of correct 
answer or merely classify the outcome as solved or not solved. 

The function generates 𝑛𝑛 abilities vectors representing individuals and calculates 
the probability of a correct response to the specified exercise. If the 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 
parameter is set to 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, the simulator will output binary values based on these 
probabilities. The generated abilities vectors are stored in a matrix, where each row 
corresponds to a person’s abilities. The function returns this matrix alongside the 
results, stored in a separate vector. 

3.3 Simulating Results for Parameterized Exercises 

In real-life exercises, particularly in games, there are often multiple levels of tasks 
to undertake. The previous approach necessitates a separate exercise vector for each 
task variation, which can be both tedious and monotonous to manually calculate 
and configure. In this section, we explore how the simulator can simplify this 
process for users. 
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We can define higher-level parameters that are adjustable within a predefined range 
of values and control the exercise’s exact 𝛽𝛽 vector. For instance, consider a task 
where individuals must compute the results of various arithmetic operations. One 
parameter could specify the maximum number digits between operands. This 
illustrates the complex relationship between a parameter and the task’s difficulty. 
Another parameter could specify the allotted time for an exercise. In this example, 
a larger value for this parameter corresponds to a less difficult task. 

We have defined three types of higher-level parameters based on the relationship 
between the parameter’s value and the task difficulty: linear, power, and 
exponential. However, these can be easily expanded to include new ones. First, we 
will explore the common features shared by these types. 

Each parameter type must specify a range from which the parameter can take values. 
By default, the minimum value is zero and the maximum is ten, which is a common 
choice when defining levels. The value of every parameter can be set to any real 
number within this specified range, making the parameters stepless. 

Each parameter must define a specific sub-ability it influences. This can be achieved 
by providing the index of the corresponding ability from the globally defined 
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 list. If a parameter affects multiple abilities, the relationship between the 
parameter each ability often varies. Therefore, we encourage users to create 
multiple separate variables for such scenarios. 

Lastly, every parameter must have a maximum change value, which defines the 
difficulty multiplier for the largest parameter value. This value can be any positive 
number; values above 1 indicate a positive correlation with difficulty, while values 
below 1 indicate a negative correlation. For reference, the difficulty multiplier for 
the smallest value is set at 1. The parameters differ in how they transform the 
difficulty multiplier from 1 to the desired maximum change value. 

Along with precise definitions of the previous values, a parameterized exercise also 
requires a base difficulty vector and a weight vector. A task can incorporate multiple 
parameters, each multiplying the difficulty value of the chosen abilities based on 
the parameter’s current value. 

Before we examine each type of parameter, let’s denote the parameter’s current 
value as 𝑥𝑥, the parameter’s minimum and maximum as min (𝑥𝑥) and max (𝑥𝑥), 
respectively. We will denote the difficulty multiplier for the largest parameter as 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, and the difficulty multiplier at a given parameter value as 𝑚𝑚(𝑥𝑥). 
Additionally, define the normalized value of 𝑥𝑥 as 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥 − min (𝑥𝑥)

max(𝑥𝑥) − min (𝑥𝑥)
. 

This normalization scales 𝑥𝑥 from its original range to a normalized range [0, 1]. 



G. Füstös, et al. Data Synthesis and Simulation for Modeling Cognitive Abilities 

 – 110 – 

3.3.1 Linear Parameters 

The simplest form of the previously described higher-level parameters are linear 
parameters. These change the difficulty multiplier linearly from 1 to the desired 
value when the parameter is adjusted from its minimum to its maximum. This 
functionality is achieved by the following function, computing the current 
multiplier for a given parameter. 

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) = 1 + (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 1) ⋅ 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (1) 

Equation (1) defines a linear function ranging from 1 to 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, when the parameter 
is between its minimum and maximum. 

3.3.2 Power Parameters 

The second type of higher-level parameters are power parameters. These change the 
difficulty multiplier using a power function such as 𝑥𝑥𝑙𝑙, where 𝑙𝑙 is the exponent that 
can be defined as desired. The formula for this type of parameter is as follows. 

𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) = 1 + (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 1) ⋅ 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙  (2) 

Because 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ranges between 0 and 1, 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙  will also be within this 
range. Therefore, the function 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥) represents a power function that ranges 
from 1 to 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as the parameter varies within its range. 

3.3.3 Exponential Parameters 

Lastly, there are exponential parameters, which change the difficulty multiplier 
using parameter’s value as an exponent. 

𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒(x) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  (3) 

Equation (3) defines an exponential function, where the output ranges from 1 to 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, as the parameter runs from its minimum to its maximum. 

The simulator features a function called simulate_exercise_params designed to 
generate solutions for parameterized tasks. This function extends the features of a 
simple exercise simulation, and has two additional inputs: 

• List of parameter types: 

This specifies the type and settings of each parameter involved in the exercise. 
For example: 

- A linear parameter affecting 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠2, with a minimum value of 0, a 
maximum of 5, and a maximum multiplier being 2. 

• List of current parameter values: 
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This provides the current values for each parameter at the time of the exercise 
simulation. The values should correspond to the types defined in the list of 
parameter types. 

Like the simple exercise simulation, this function generates 𝑛𝑛 abilities vectors 
representing individuals and calculates the probability of a correct response based 
on the current parameter values. Additionally, it can also output binary values.  
The abilities vectors are stored in matrix similarly and are returned along with the 
results, which are contained in a separate vector. 

3.4 Data Synthesis 

The previously defined simulator also serves as data synthesis. It employs widely 
accepted and empirically verified predictive formulas from the field of study, 
enabling it to generate synthesized data as well. 

The simulator presents a data_synthesis function, for which the input is only 3 
number, and a binary value: 

• 𝑛𝑛 ∈ ℤ+, the number of individuals 
• 𝑚𝑚 ∈ ℤ+, the number of exercises 
• 𝑘𝑘 ∈ ℤ+, the number of specific sub-abilities, therefore the length of the 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 list 
• 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∈ {𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹}, similarly, as described earlier 

The data synthesis function generates 𝑛𝑛 abilities vectors, each sub-ability defined 
by a normal distribution centered around 1 with a standard deviation of 0.15.  
The function then generates 𝑚𝑚 exercises, each depending on a few specific abilities. 
It ensures that each exercise relies on at least one sub-ability, with an average of 
around 3. Lastly, the function calculates the probability of a correct response for all 
generated individuals across all generated tasks, using the previously defined 
formulas. It returns a dataframe where each row represents one individual solving 
one exercise. The row includes the attributes of both the individual and the task, 
along with the result, which can be either a probability of correct response or a 
binary value. With this approach, we can generate as much data as needed, and the 
calculations ensure that the generated data closely resembles real-life scenarios. 

3.5 Implementation 

The simulator is implemented in the Python programming language. It exports three 
functions that correspond to the functionalities outlined in sections 3.1 to 3.3, 
alongside an abstract dataclass for describing higher-level parameters with multiple 
implementations, as detailed in sections 3.3.1 to 3.3.3. In the following section, we 
will examine the configuration and usage of the simulator. 
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The simple simulator’s function is named simulate_exercise, and its parameters are 
the following (using python notation for type and default value): 

• n: int 
• exercise: list[float] 
• exercise_weights: list[float] = [] 
• binary: bool = False 

where these correspond to the previously defined inputs accordingly.  

The function returns with a tuple of two numpy arrays: 
• abilities_matrix: numpy.ndarray[float] 
• results: numpy.ndarray[float] 

The parameterized exercise simulator’s function is named 
simulate_exercise_params, and extends the previously defined functions input 
parameters with the following values: 

• params: list[float] = [] 
• params_type: list[Param] = [] 

where the first corresponds to the current values of the parameters, while the latter 
defines the types of parameters used. The type of the output is the same as in the 
simple case. 

The simulator defines an abstract class Param to create and use different types of 
higher-level parameters. The common attributes of the Param implementations are 
the following: 

• ability_index: int 
• max_change: float 
• min: float = 0.0 
• max: float = 10.0 

There are three implementations for the abstract Param class: LinParam, 
PowerParam, and ExpParam, as detailed in sections 3.3.1-3.3.3. The PowerParam 
extends the attribute list with one extra parameter, the exponent, previously denoted 
as 𝑙𝑙, which defaults to 2. Therefore, creating a PowerParam can be configured like: 
p = PowerParam(ability_index=2, max_change=1.5, exponent=3). 

Lastly the simulator has a data_synthesis function. This function’s attributes are 
three numbers, and an optional Boolean value: 

• number_of_people: int 
• number_of_exercises: int 
• number_of_abilities: int 
• binary: bool = False 
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This function returns a pandas DataFrame where each row represents one 
individual solving one exercise. The dataframe’s columns are: person_id, 
exercise_id, ability, exercise, weight, result, where ability, exercise, and weight are 
all 𝑘𝑘 dimensional vectors, 𝑘𝑘 being the number_of_abilities the model accounts for. 

Conclusions 

The developed simulator, along with its underlying mathematical model, is capable 
of simulating both current cognitive tests and more complex ability-enhancing 
tasks. It can also generate data suitable for neural network-based models, aimed at 
uncovering subskill dependencies. Leveraging the simulator, these novel cognitive 
models can be validated. 
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