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Abstract: This study analyzes a nonlinear model of tumor growth dynamics, describing the 
interactions between tumor cells, immune system cells and a chemotherapeutic drug.  
The primary objective is to identify a locally stable steady state corresponding to cancer 
remission and map its stability region in the absence of treatment. This is achieved using two 
approaches: first, the Lyapunov method, which provides a conservative, analytically 
tractable ellipsoidal region; and second, a numerical method based on iterative grid-
searching, yielding a more accurate but complex and non-convex region. Additionally, we 
propose an optimal chemotherapy dosing protocol that minimizes the total drug amount and 
minimally disrupts the immune system while ensuring that the system's states move toward 
the natural stability region of cancer remission. To maintain remission post-treatment, a 
death penalty factor was applied if the terminal state fell outside the natural stability region 
defined by the ellipsoid inequality. Unlike other techniques in the literature, we avoid 
continuous drug infusion and instead consider the more practical approach of repeated 
chemotherapy administration as a finite sequence of individual doses (boluses). The results 
demonstrate that the proposed method can stabilize tumor growth across various initial 
conditions and induce cancer remission within a few chemotherapy doses without the need 
for prolonged continuously adjusted treatment. 

Keywords: chemotherapy; cancer treatment; mathematical modelling; optimal control; 
stability region 

1 Introduction 

Cancer, characterized by uncontrolled cell growth and proliferation, remains a 
significant global health challenge [1]. The interplay of genetic, environmental, and 
lifestyle factors contributes to cancer's multifaceted and heterogeneous nature, 
necessitating innovative treatments [2]. Understanding the molecular underpinnings 
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of cancer has led to targeted therapies and personalized medicine. Despite these 
advancements, challenges persist due to tumor heterogeneity and acquired 
resistance [3]. 

Medical studies have been conducted to develop means to counteract tumor 
initiation, suppress its growth and proliferation, or even ensure complete remission 
of cancer. In the effort to enhance the treatment effectiveness, these strategies are 
often supported by mathematical modeling, computer simulation and control theory 
[4-6]. 

From a phenomenological perspective, tumor growth dynamics are governed by 
interactions with the immune system and the broader physiological environment. 
Numerous mechanistic mathematical models have been developed to describe 
tumor growth, its interactions with the immune system and responses to various 
cancer therapies, including chemotherapy [7-12], immunotherapy [13-15], 
radiotherapy [16], anti-angiogenesis [17], and their combinations [18-21].  
The mechanistic models are not restricted to a specific chemotherapeutic drug or 
cancer subtype. Instead, they focus on the dynamics of a single solid tumor, without 
considering further proliferation or metastatic progression [22] [23]. 

Among the various control methods used for designing dosing strategies, optimal 
control has been the preferred approach in in-silico studies for cancer therapy 
development [24-29]. The methodologies in optimal control theory are primarily 
based on calculus of variations (Hamiltonian function) embodied in Pontryagin’s 
maximum principle [30] [31], necessitating a solution of the corresponding two-
point boundary value problem. 

It is important to acknowledge the series of works by L. G. de Pillis et. al. [26] [32], 
[33]. These papers analyze the geometry of state space corresponding to various 
mathematical models and attempt to find the conditions under which optimized 
time-varying chemotherapy with continuously adjustable rate can drive the system 
into a desirable vicinity of the chosen stable steady state. 

Paper [26] provided an analysis of a mathematical model of tumor–immune 
interactions with chemotherapy and compared optimal control strategies for 
continuous administration of chemotherapy, including quadratic and linear control. 
The objective of the control was to reduce tumor size while minimizing the total 
drug administered. However, the need for sustained infusion can be viewed as a 
drawback since cancer can only be in a true remission when no additional 
chemotherapy is needed. 

An interesting property of optimal control based on Pontryagin’s Maximum 
Principle is the contrast between L1 or L2 type objective functions: while quadratic 
cost functions lead to smooth, continuous control profiles, linear cost functions 
produce bang-bang controls, characterized by discontinuous switching between 
maximum and minimum (zero) dosing rates [27] [28] [34]. This discontinuous 
control strategy can offer practical advantages for chemotherapy administration, as 
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it eliminates the need for continuous dose adjustments, simplifying implementation 
in clinical settings. 

In [35], the model of cancer tumor growth considered both the immune system 
response and drug therapy. Specifically, this four-population model included tumor 
cells, host cells, immune cells, and drug interaction. The authors aimed to minimize 
only the final number of tumor cells while ensuring that the number of normal cells 
remained above a fixed threshold throughout the entire course of treatment. To 
derive the control law for continuous drug infusion, the Hamiltonian for the optimal 
control problem was formulated, and the solution was obtained numerically. 

Besides optimal chemotherapy, another approach is based on optimal anti-
angiogenesis, which can be found in the work of U. Ladzewicz [14] [15] [18] [19], 
[36], P. Bajger [21] and T. Ferenci [37]. More specifically, in [19], the problem of 
minimizing the tumor volume while combining anti-angiogenic and cytotoxic 
agents was addressed. The problem was formulated as an optimal control problem 
with free terminal time and constraints limiting the quantities of the agents to be 
administered. However, the considered functional involved only the terminal 
penalty for the tumor size, thus the full state trajectory was not optimized. 

The administration problem in cancer chemotherapy was modeled as an optimal 
control problem of switched systems with state-dependent switching, incorporating 
simple bounds on the decision variables in [8]. 

In contrast to optimization-based approaches, as described in [38], three nonlinear 
controllers, namely the Lyapunov-based controller, sliding mode controller, and 
terminal sliding mode-based controller have been developed to regulate 
chemotherapy infusion. The objective of the design was to diminish and stabilize 
the number of brain tumor cells, sustain a safe count of healthy cells, ensure immune 
cells remain above a specified threshold, and restrict the amount of administered 
anticancer drug. To suppress chattering in the drug injection typical for sliding 
mode control, a smooth super-twisting control was proposed in [39]. 

In [20], the authors designed an optimal cancer therapy where patient-specific 
uncertainties were addressed using multiple model adaptive control, a technique 
where both the model and the controller gains are adaptively selected to optimize 
outcomes. The tumor growth model was linearized around its equilibrium point, 
and a linear quadratic controller was designed for each model in a finite set. 

Similarly, robust linear controller is designed using a H∞ methodology, based on a 
linearized nominal model, while taking into account the modeling uncertainties 
caused by the nonlinearities of the system and parametric uncertainties, was 
described in [40]. 

Concerning the stability analysis, in [24] conditions for the existence and stability 
of equilibrium points have been presented in both drug-free and treated scenario. 
Local stability of the coexisting equilibrium point was proved in terms of eigenvalue 
analysis of Jacobian matrix of system using the Routh–Hurwitz rule. A similar 
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approach for studying the local stability of steady states based on the definiteness 
of the Jacobian matrix was pursued in [21] [26] [29] [41]. Despite providing 
essential information, the region (boundary geometry) of the local stability region 
remained unknown. 

Another problem is that all the aforementioned works assume the administration of 
chemotherapy in the form of continuous infusion (continuous optimal control). 
However, in the current medical practices, the application of a continuous drug 
protocol is not recommended nor convenient as it is more practical to rather 
administer a few discrete doses (boluses) [34] [42]. As an exception, in [43] cancer 
is treated by periodically administered constant doses. From the point of view of 
cybernetics, this is an impulse control system, where the amount and frequency of 
drug used can be determined using the impulse control theory. In [43], the globally 
stable condition for prescription of a periodic oscillatory chemotherapeutic agent 
was derived. The authors demonstrated the stability of the equilibrium point, the 
stability of the periodic oscillation of the chemotherapeutic agent, and the condition 
under which chemotherapy can eliminate the cancer cells and preserve the immune 
cells. However, a significant drawback is the assumption of constant (fixed) drug 
size without allowing for variable drug dosing. 

The optimization and control of tumor growth dynamics share fundamental 
challenges with various complex control systems [44], including robotic 
applications [45] and telerobotic systems [46]. Moreover, hybrid control strategies 
like ADRC-SMC in tower cranes [47] parallel the integration of adaptive and 
optimal methods in cancer therapy. In telerobotic surgery and space medicine [48], 
handling the variability of human tissue and environmental constraints is analogous 
to accounting for tumor microenvironment changes. Furthermore, reinforcement 
learning-based adaptive control in crane systems [49] shares similarities with 
optimizing chemotherapy protocols. 

In contrast to the referenced studies, with their methodological shortcomings and 
identified research gaps, this paper presents a novel approach by introducing three 
key innovations: 

• Pulsatile (bolus-like) chemotherapy administration: Rather than assuming 
continuous infusion, the proposed method delivers variable discrete doses at 
periodic intervals, better reflecting real-world clinical practice. 

• Comprehensive consideration of immune dynamics: Beyond focusing solely 
on tumor size, this study also incorporates the dynamics of cytotoxic 
lymphocytes and natural killer cells. 

• Rigorous stability boundary analysis: Instead of relying on basic local stability 
analysis based on the Jacobian matrix’s definiteness, this work employs a 
Lyapunov-based approach to explicitly characterize the guaranteed stability 
region (boundary) as an ellipsoidal inequality. By embedding this stability 
constraint directly into the optimization problem, the method ensures that the 



Acta Polytechnica Hungarica Vol. 22, No. 7, 2025 

‒ 121 ‒ 

terminal state remains within the natural stability region, thereby guaranteeing 
sustained remission following the completion of therapy. 

The goals and main contributions of this study can be stated as follows: 

The first goal is to identify a locally stable steady state associated with cancer 
remission and characterize its stability region in the absence of treatment. To 
meet this goal, the mathematical model of tumor growth is examined to 
identify steady states and classify them based on clinical interpretation and 
local stability. A desired steady state is then selected for further analysis.  
The natural stability region (region of attraction) of this state is determined 
using the Lyapunov approach, resulting in conservative yet analytically 
tractable ellipsoid inequality. This is subsequently refined through iterative 
grid mapping using numerical solution of differential equations to obtain a 
more accurate, but complex non-convex stability region. Identifying this 
stability region helps to define the threshold for cancer remission in the 
absence of chemotherapy. 

The second goal is to design an optimal treatment strategy by adjusting the 
dosing protocol for bolus-like chemotherapy. The administration of 
chemotherapy is intended to guide the system’s state trajectories toward the 
natural stability region, ensuring convergence to the desired steady state from 
a broad range of adverse initial conditions using only a finite sequence of 
discrete doses. To achieve this, a terminal-time stability penalty—expressed 
as an ellipsoid inequality—is incorporated into the optimization problem. This 
guarantees that, once the finite chemotherapy regimen concludes, the system 
remains stable and is naturally attracted to the remission state. By following 
this optimized dosing protocol, the therapeutic objective is met while 
minimizing the total drug dosage and reducing disruptions to the immune 
system. 

The paper is structured as follows: Section 2.1 presents the adopted nonlinear 
mathematical model of the tumor growth dynamics, analyzes its steady states and 
their classification according to local stability. The conventional stability analysis 
using Lyapunov theory is presented in section 2.2. The region of natural stability 
for the chosen steady state is then numerically mapped in section 2.3. The design of 
optimal dosing protocol for chemotherapy to achieve successful treatment is 
addressed in section 2.4. The simulation experiments to validate the proposed 
methodology are presented in section 3. Conclusions are drawn in section 4. 
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2 Methodology 

2.1 Mathematical Model of the Tumor Growth Dynamics 

The model will be adopted from the work of G. Song et.al. [10], which describes 
the dynamics of four state variables: 

• N(t) natural killer cells population 
• L(t) cytotoxic lymphocytes population 
• T(t) tumor cell population 
• u(t) amount of drug in the tumor site 

forming the state vector 𝑥𝑥(𝑡𝑡) = (𝑁𝑁(𝑡𝑡) 𝐿𝐿(𝑡𝑡) 𝑇𝑇(𝑡𝑡) 𝑢𝑢(𝑡𝑡))T 

The model is defined by nonlinear ordinary differential equations (1) describing the 
evolution of the state variables 𝑁𝑁(𝑡𝑡), 𝐿𝐿(𝑡𝑡), and 𝑇𝑇(𝑡𝑡). 

𝑁̇𝑁(𝑡𝑡) = 𝑁𝑁(𝑡𝑡)�𝑎𝑎�1 − 𝑏𝑏𝑏𝑏(𝑡𝑡)� − 𝛼𝛼1𝑇𝑇(𝑡𝑡) − 𝑘𝑘𝑁𝑁𝑢𝑢(𝑡𝑡)�  

𝐿̇𝐿(𝑡𝑡) = 𝑟𝑟𝑟𝑟(𝑡𝑡)𝑇𝑇(𝑡𝑡) − 𝐿𝐿(𝑡𝑡)(𝜇𝜇 + 𝛽𝛽1𝑇𝑇(𝑡𝑡) + 𝑘𝑘𝐿𝐿𝑢𝑢(𝑡𝑡))  (1) 

𝑇̇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡)�𝑐𝑐�1 − 𝑑𝑑𝑑𝑑(𝑡𝑡)� − 𝛼𝛼2𝑁𝑁(𝑡𝑡) − 𝛽𝛽2𝐿𝐿(𝑡𝑡) − 𝑘𝑘𝑇𝑇𝑢𝑢(𝑡𝑡)�  

Nonlinear differential equations in (1) are supplemented by linear differential 
equation (2) describing the dynamic relationship between the amount of the 
chemotherapeutic agent inside the tumor 𝑢𝑢(𝑡𝑡) and the rate of drug administration 
𝑣𝑣(𝑡𝑡). 

𝑢̇𝑢(𝑡𝑡) = 𝑣𝑣(𝑡𝑡) −𝜔𝜔𝜔𝜔(𝑡𝑡)  (2) 

The explanation and units of the model parameters can be found in [10]. 

For 𝑡𝑡 → ∞ and terminated treatment manifesting by 𝑣𝑣(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) = 0, the state 
variables of model (1) approach their steady values 𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0. Given the fact that 
(1) is a nonlinear system, it has multiple steady states, each with a specific (or none) 
region of attraction. The steady states can be determined numerically as the 
solutions of algebraic equations emerging from (1) when assuming 𝑁̇𝑁(𝑡𝑡) = 𝐿̇𝐿(𝑡𝑡) =
𝑇̇𝑇(𝑡𝑡) = 0. Due to quadratic nonlinear nature of (1), the steady states are obtained as 
simultaneous solutions of three quadratic forms (intersection of three quadratic 
surfaces in three dimensions). 

The Jacobian matrix 𝐴𝐴(𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0) of model (1) is then given by: 



Acta Polytechnica Hungarica Vol. 22, No. 7, 2025 

‒ 123 ‒ 

𝐴𝐴(𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0) =

⎝

⎜
⎜
⎜
⎛
𝑑𝑑𝑁̇𝑁(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑁̇𝑁(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑁̇𝑁(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝐿̇𝐿(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝐿̇𝐿(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝐿̇𝐿(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑇̇𝑇(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑇̇𝑇(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑇̇𝑇(𝑡𝑡)
𝑑𝑑𝑑𝑑(𝑡𝑡)⎠

⎟
⎟
⎟
⎞

𝑁𝑁(𝑡𝑡)=𝑁𝑁0,   𝐿𝐿(𝑡𝑡)=𝐿𝐿0,   𝑇𝑇(𝑡𝑡)=𝑇𝑇0,   𝑢𝑢(𝑡𝑡)=𝑢𝑢0

 

=

 �
𝑎𝑎(1 − 2𝑏𝑏𝑁𝑁0) − 𝛼𝛼1𝑇𝑇0 − 𝑘𝑘𝑁𝑁𝑢𝑢0 0 −𝛼𝛼1𝑁𝑁0

𝑟𝑟𝑇𝑇0 −(𝜇𝜇 + 𝛽𝛽1𝑇𝑇0 + 𝑘𝑘𝐿𝐿𝑢𝑢0) 𝑟𝑟𝑁𝑁0 − 𝛽𝛽1𝐿𝐿0
−𝛼𝛼2𝑇𝑇0 −𝛽𝛽2𝑇𝑇0 𝑐𝑐(1 − 2𝑑𝑑𝑇𝑇0) − 𝛼𝛼2𝑁𝑁0 − 𝛽𝛽2𝐿𝐿0 − 𝑘𝑘𝑇𝑇𝑢𝑢0

�

(3) 

The motivation for studying the properties of Jacobian matrix 𝐴𝐴(𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0) is to 
determine the local stability of the corresponding equilibrium point based on its 
definiteness. If 𝐴𝐴(𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0) ≺ 0 then the equilibrium point is locally stable but the 
properties of the attraction region are unknown. 

There are four possible clinical scenarios for the steady states. The first is the Dead 
state, where all state variables are zero, indicating the elimination of the tumor but 
also the depletion of the immune system—an undesirable outcome from a clinical 
standpoint. The most favorable scenario is the Cured state, characterized by the 
complete absence of tumor cells and a sufficient presence of natural killer (N) cells. 
However, this state is typically unstable and cannot be sustained. The worst-case 
scenario is the Grown state, marked by a high tumor cell count, representing 
advanced-stage cancer. Therefore, the most viable option is the Coexisting state, 
where cancer remains in remission with a small population of T cells and an 
adequate number of N cells. 

Considering no treatment 𝑣𝑣(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) = 0, the names assigned according to 
clinical interpretations and coordinates of the steady states (equilibrium points) are 
given in Table 1. For all stationary points from Table 1, the local stability was 
investigated based on the definiteness of the Jacobian matrix (3). 

Table 1 
Names and coordinates of the steady states in the state space defined by variables N, L, T 

 Stability 𝑵𝑵𝟎𝟎 𝑳𝑳𝟎𝟎 𝑻𝑻𝟎𝟎 
Dead Unstable 0 0 0 
Coexisting 1 Stable 𝟑𝟑.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ×  𝟏𝟏𝟏𝟏𝟓𝟓 𝟏𝟏.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒 ×  𝟏𝟏𝟏𝟏𝟔𝟔 𝟖𝟖.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔 ×  𝟏𝟏𝟏𝟏𝟓𝟓 
Coexisting 2 Unstable 6.5644 ×  103 1.3219 ×  106 9.7919 ×  107 
Cured Unstable 3.1546  ×  105 0 0 
Grown Stable 0 0 9.8039 ×  108 
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Even though 𝑇𝑇0 = 8.6566 ×  105 in the case of Coexisting state 1 is clearly much 
more than zero (complete remission), comparing it with 𝑇𝑇0 =   9.8039 × 108 in the 
case of Grown state means that the tumor cell population is roughly 1000 times 
smaller. Therefore, Coexisting state 1 seems to be the best option as it corresponds 
to cancer in partial remission. 

2.2 Stability Analysis According to Lyapunov Approach 

In this section, the Lyapunov approach will be applied to find the guaranteed 
stability region of the cancer remission (without the treatment) in the form of an 
analytically tractable ellipsoid inequality condition. 

Consider a quadratic Lyapunov function 𝑉𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) such that: 

𝑉𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) = 1
2
𝜆𝜆1(𝑁𝑁 −𝑁𝑁0)2 + 1

2
𝜆𝜆2(𝐿𝐿 − 𝐿𝐿0)2 + 1

2
𝜆𝜆3(𝑇𝑇 − 𝑇𝑇0)2 (4) 

where 𝜆𝜆1 > 0, 𝜆𝜆2 > 0, 𝜆𝜆3 > 0 are the tuning coefficients. Lyapunov function (4) 
then satisfies the necessary conditions 𝑉𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) ≥ 0 and 𝑉𝑉(𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0) = 0. 

Consider a sub-level set of a Lyapunov function 𝑉𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) given by the inequality: 

𝑉𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) ≤ 1  (5) 

For (4), the states will satisfy the ellipsoid inequality: 

0 < 1
2
𝜆𝜆1(𝑁𝑁 − 𝑁𝑁0)2 + 1

2
𝜆𝜆2(𝐿𝐿 − 𝐿𝐿0)2 + 1

2
𝜆𝜆3(𝑇𝑇 − 𝑇𝑇0)2 ≤ 1 (6) 

Taking the time derivative 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) of (4) results in: 

𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) = 𝜆𝜆1(𝑁𝑁 − 𝑁𝑁0)𝑁̇𝑁(𝑡𝑡) + 𝜆𝜆2(𝐿𝐿 − 𝐿𝐿0)𝐿̇𝐿(𝑡𝑡) + 𝜆𝜆3(𝑇𝑇 − 𝑇𝑇0)𝑇̇𝑇(𝑡𝑡) (7) 

Notice that 𝑉̇𝑉(𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0) = 0 

Substituting the model equations (1) into (7) yields: 

𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) = 𝜆𝜆1(𝑁𝑁 − 𝑁𝑁0)�𝑁𝑁(𝑎𝑎(1 − 𝑏𝑏𝑏𝑏) − 𝛼𝛼1𝑇𝑇 − 𝑘𝑘𝑁𝑁𝑢𝑢)� + 𝜆𝜆2(𝐿𝐿 − 𝐿𝐿0)�𝑟𝑟𝑟𝑟𝑟𝑟 −
𝐿𝐿(𝜇𝜇 + 𝛽𝛽1𝑇𝑇 + 𝑘𝑘𝐿𝐿𝑢𝑢)� + 𝜆𝜆3(𝑇𝑇 − 𝑇𝑇0)𝑇𝑇(𝑐𝑐(1 − 𝑑𝑑𝑑𝑑) − 𝛼𝛼2𝑁𝑁 − 𝛽𝛽2𝐿𝐿 − 𝑘𝑘𝑇𝑇𝑢𝑢) (8) 

Considering no therapy 𝑢𝑢(𝑡𝑡) = 0 results in: 

𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) = 𝜆𝜆1𝑁𝑁�−𝑁𝑁2𝑎𝑎𝑎𝑎 + 𝑁𝑁(𝑎𝑎 − 𝛼𝛼1𝑇𝑇 + 𝑎𝑎𝑎𝑎𝑁𝑁0) − 𝑁𝑁0(𝑎𝑎 − 𝛼𝛼1𝑇𝑇)�+𝜆𝜆2�−𝐿𝐿2(𝜇𝜇 +
𝛽𝛽1𝑇𝑇) + 𝐿𝐿�𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐿𝐿0(𝜇𝜇 + 𝛽𝛽1𝑇𝑇)� − 𝐿𝐿0𝑟𝑟𝑟𝑟𝑟𝑟�+𝜆𝜆3𝑇𝑇�−𝑇𝑇2𝑐𝑐𝑐𝑐 + 𝑇𝑇(𝑐𝑐 − 𝛼𝛼2𝑁𝑁 − 𝛽𝛽2𝐿𝐿 +
𝑐𝑐𝑐𝑐𝑇𝑇0) − 𝑇𝑇0(𝑐𝑐 − 𝛼𝛼2𝑁𝑁 − 𝛽𝛽2𝐿𝐿)�  (9) 

Clearly, for arbitrary unbounded 𝑁𝑁, 𝐿𝐿,𝑇𝑇, the time derivative 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) in (9) does 
not satisfy the stability condition 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) < 0, hence the system is not globally 
stable at 𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0. 

Therefore, the goal is to determine whether for 𝑁𝑁, 𝐿𝐿,𝑇𝑇 satisfying inequality (6) for 
given 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, the time derivative 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) satisfies 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) < 0. Finding 𝜆𝜆1, 
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𝜆𝜆2, 𝜆𝜆3 such that 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) < 0 subject to constraint 𝑉𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) ≤ 1 means that we 
found a finite region of stability of the equilibrium 𝑁𝑁0, 𝐿𝐿0, 𝑇𝑇0. 

Unfortunately, verifying the boundedness of 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) in the region constrained by 
ellipsoid 𝑉𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) ≤ 1 cannot be done analytically. Instead, a constrained 
numerical maximization of 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) must be performed such that: 

𝑁𝑁∗, 𝐿𝐿∗,𝑇𝑇∗ = arg max �𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇)�  subj. to 𝑉𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) ≤ 1 (10) 

The constraint function 𝑔𝑔(𝑁𝑁, 𝐿𝐿,𝑇𝑇) is: 

𝑔𝑔(𝑁𝑁, 𝐿𝐿,𝑇𝑇) = 1
2
𝜆𝜆1(𝑁𝑁 −𝑁𝑁0)2 + 1

2
𝜆𝜆2(𝐿𝐿 − 𝐿𝐿0)2 + 1

2
𝜆𝜆3(𝑇𝑇 − 𝑇𝑇0)2 − 1 ≤ 0 (11) 

The sufficient stability condition then gets 

𝑉̇𝑉(𝑁𝑁∗, 𝐿𝐿∗,𝑇𝑇∗) = 0, 𝑁𝑁∗ = 𝑁𝑁0, 𝐿𝐿∗ = 𝐿𝐿0, 𝑇𝑇∗ = 𝑇𝑇0 (12) 

If (12) is satisfied, then for an arbitrary state 𝑁𝑁, 𝐿𝐿,𝑇𝑇 lying inside the region given by 
𝑉𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) ≤ 1, the state trajectory will converge to 𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0. 

To efficiently solve the constrained maximization problem (10), it is necessary to 
find the gradient of 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) and gradient of the constraint function 𝑔𝑔(𝑁𝑁, 𝐿𝐿,𝑇𝑇). 

The partial derivatives of 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇) can be derived according to (8) as: 
𝜕𝜕𝑉̇𝑉(𝑁𝑁,𝐿𝐿,𝑇𝑇)

𝜕𝜕𝜕𝜕
= 𝜆𝜆1(−3𝑁𝑁2𝑎𝑎𝑎𝑎 + (2𝑁𝑁 −𝑁𝑁0)(𝑎𝑎 − 𝛼𝛼1𝑇𝑇) + 2𝑁𝑁𝑎𝑎𝑎𝑎𝑁𝑁0)+𝜆𝜆2𝑟𝑟𝑟𝑟(𝐿𝐿 −

𝐿𝐿0)+𝜆𝜆3𝛼𝛼2𝑇𝑇(−𝑇𝑇 + 𝑇𝑇0) 
𝜕𝜕𝑉̇𝑉(𝑁𝑁,𝐿𝐿,𝑇𝑇)

𝜕𝜕𝜕𝜕
= 𝜆𝜆2(−(2𝐿𝐿 − 𝐿𝐿0)(𝜇𝜇 + 𝛽𝛽1𝑇𝑇) + 𝑟𝑟𝑟𝑟𝑟𝑟)+𝜆𝜆3𝑇𝑇𝛽𝛽2(−𝑇𝑇 + 𝑇𝑇0) (13) 

𝜕𝜕𝑉̇𝑉(𝑁𝑁,𝐿𝐿,𝑇𝑇)
𝜕𝜕𝜕𝜕

= 𝜆𝜆1𝛼𝛼1𝑁𝑁(−𝑁𝑁 + 𝑁𝑁0) + 𝜆𝜆2(−𝛽𝛽1𝐿𝐿2 + 𝐿𝐿(𝑟𝑟𝑟𝑟 + 𝐿𝐿0𝛽𝛽1) − 𝐿𝐿0𝑟𝑟𝑟𝑟) +
𝜆𝜆3�−3𝑇𝑇2𝑐𝑐𝑐𝑐 + 2𝑇𝑇𝑐𝑐𝑐𝑐𝑇𝑇0 + (2𝑇𝑇 − 𝑇𝑇0)(𝑐𝑐 − 𝛼𝛼2𝑁𝑁 − 𝛽𝛽2𝐿𝐿)� 

The partial derivatives of 𝑔𝑔(𝑁𝑁, 𝐿𝐿,𝑇𝑇) can be derived according to (11) as: 
𝜕𝜕𝜕𝜕(𝑁𝑁,𝐿𝐿,𝑇𝑇)

𝜕𝜕𝜕𝜕
= 𝜆𝜆1(𝑁𝑁 − 𝑁𝑁0), 𝜕𝜕𝜕𝜕(𝑁𝑁,𝐿𝐿,𝑇𝑇)

𝜕𝜕𝜕𝜕
= 𝜆𝜆2(𝐿𝐿 − 𝐿𝐿0), 𝜕𝜕𝜕𝜕(𝑁𝑁,𝐿𝐿,𝑇𝑇)

𝜕𝜕𝜕𝜕
= 𝜆𝜆3(𝑇𝑇 − 𝑇𝑇0) (14) 

Then, numerical optimization methods based on Karush–Kuhn–Tucker conditions, 
such as interior point methods, can be used. 

Considering coefficients 𝜆𝜆1 = 0.05 × 10−8, 𝜆𝜆2 =  0.27 × 10−8, 𝜆𝜆3 = 0.0300 ×
10−8 in Lyapunov function (4), which were adjusted in attempt to maximize the 
volume of the corresponding ellipsoid, the maximization problem (10) was solved 
while satisfying (12), thus validating the negative value of 𝑉̇𝑉(𝑁𝑁, 𝐿𝐿,𝑇𝑇). 

The resulting region of stability defined by an ellipsoid given by (6) is visualized in 
Figure 1. This figure demonstrates that the region of stability is relatively small as 
it allows only a few percent variations of the state variables, taken relatively with 
respect to the considered steady state, for stability (attraction) to be ensured. 
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Figure 1 

Natural region of stability of cancer remission obtained using the Lyapunov approach 

However, it is important to note that this ellipsoid does not represent the full 
stability region (complete stability boundary) since there might exist different 
coefficients 𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3 to obtain different stability regions. Besides that, the actual 
stability region is not likely to be an ellipsoid but rather a more complex shape 
asymmetrical with respect to the steady state 𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0. From this perspective, the 
Lyapunov approach can be considered quite conservative, but computationally 
tractable. 

2.3 Numerical Mapping of Natural Stability Region 

Due to limitations of the Lyapunov approach, the region of natural stability of 
cancer remission will be mapped by numerically integrating the nonlinear model 
(1) for the total time of 𝑡𝑡𝑓𝑓 = 500 days considering variety of initial conditions 
𝑁𝑁(0), 𝐿𝐿(0), 𝑇𝑇(0) arranged in a three-dimensional grid and by subsequent checking 
for the convergence to 𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0. 

In detail, the three-dimensional grid of the testing initial conditions 𝑁𝑁(0), 𝐿𝐿(0), 
𝑇𝑇(0) was spaced linearly with the dimensions 100 × 100 × 100 implying the total 
of 106 different trajectories while considering the following intervals 0 ≤ 𝑁𝑁(0) ≤
106, 0 ≤ 𝐿𝐿(0) ≤ 107 , 0 ≤ 𝑇𝑇(0) ≤ 109. The individual initial conditions 𝑁𝑁(0), 
𝐿𝐿(0), 𝑇𝑇(0) from this finite set were classified based on the convergence of the 
corresponding state responses 𝑁𝑁(𝑡𝑡), 𝐿𝐿(𝑡𝑡), 𝑇𝑇(𝑡𝑡) to the equilibrium 𝑁𝑁0, 𝐿𝐿0, 𝑇𝑇0 
according to Lyapunov stability condition (6) defining the ellipsoid inequality 
1
2
𝜆𝜆1�𝑁𝑁�𝑡𝑡𝑓𝑓� − 𝑁𝑁0�

2 + 1
2
𝜆𝜆2�𝐿𝐿�𝑡𝑡𝑓𝑓� − 𝐿𝐿0�

2 + 1
2
𝜆𝜆3�𝑇𝑇�𝑡𝑡𝑓𝑓� − 𝑇𝑇0�

2 ≤ 1. The obtained 
stability region is then visualized in Figure 2. For all initial states 𝑁𝑁(0), 𝐿𝐿(0), 𝑇𝑇(0) 
located inside this region, the state trajectories will converge to the Coexisting state 
1 without the treatment. 
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Figure 2 

Numerically mapped natural region of stability of cancer remission 

The region of natural stability forms a three-dimensional nonconvex hull. One can 
notice that its base, where 𝑇𝑇(0) is very small, has the largest area of stability in the 
positive N-L plane. This suggests that if the tumor is sufficiently small, the immune 
system doesn't need to be in an ideal (specific) condition to inhibit further tumor 
growth. 

As tumor cells emerge and proliferate, the area of stability in the N-L plane 
progressively contracts in both dimensions. In other words, the conditions for state 
variables N and L of the immune system become increasingly stringent, leading to 
the formation of a pyramidal hull-shaped region of stability. This pyramidal shape 
arises because reaching certain critical thresholds of N and L cell quantities, which 
become tighter and stricter with an increasing tumor size, creates more favorable 
conditions for tumor growth and proliferation. 

Comparing Figures 1 and 2, it is evident that the numerically mapped stability 
region is much larger than the conservative ellipsoid, particularly in the T state, 
where the stability region spans multiple magnitudes. Besides that, there can be 
observed a strong asymmetry of the stability region with respect to the equilibrium 
𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0. 

A significant drawback of the numerical mapping is its computational complexity 
associated with repetitive numerical solution of differential equations across a dense 
three-dimensional grid of the testing initial conditions (106 in total). Another 
disadvantage is that the obtained stability region, is not a convex hull and thus, 
cannot be expressed using a set of linear inequalities and further refined in the 
therapy design. 
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2.4 Optimization of Chemotherapy Doses 

The aim of the chemotherapy dosing schedule design is to drive the system state 
from the initial state 𝑁𝑁(0), 𝐿𝐿(0),𝑇𝑇(0) optimally to the natural stability region of the 
Coexisting state 1 defined by the triplet 𝑁𝑁0, 𝐿𝐿0,𝑇𝑇0 (see Table 1) representing the 
cancer in remission. After guiding the states to this stability region, the 
chemotherapy can be completely stopped and the states are naturally attracted to the 
Coexisting state 1. 

Assume that the therapy consists of administering a finite sequence of 𝑛𝑛𝑑𝑑 individual 
(discrete) doses (boluses) of chemotherapy in the form of short and uniformly 
spaced pulses periodically with the period of 𝑇𝑇𝐷𝐷 days. 

Each of these 𝑛𝑛𝑑𝑑 doses constitutes a decision variable to be determined. The doses 
will be modelled as a rectangular pulse of the administration rate 𝑣𝑣(𝑡𝑡), which has 
the duration of 0.1 × 𝑇𝑇𝐷𝐷 and the amplitude of 𝐷𝐷𝑖𝑖 × 10

𝑇𝑇𝐷𝐷
 in order to ensure that the 

area under the curve of the corresponding pulse is equal to 𝐷𝐷𝑖𝑖. 

The optimization problem will consider a decision vector 𝐷𝐷 of 𝑛𝑛𝐷𝐷 positive doses of 
chemotherapy constituting the input administration rate (control) signal 𝑣𝑣(𝑡𝑡) as 

𝑣𝑣(𝑡𝑡) = �𝐷𝐷𝑖𝑖 × 10
𝑇𝑇𝐷𝐷

   if  0 ≤ 𝑡𝑡 − (𝑖𝑖 − 1)𝑇𝑇𝐷𝐷 ≤
𝑇𝑇𝐷𝐷
10

  
0   otherwise   

 for 𝑖𝑖 = 1,2 … 𝑛𝑛𝐷𝐷 , 

𝐷𝐷 = (𝐷𝐷1 𝐷𝐷2 𝐷𝐷3 ⋯ 𝐷𝐷𝑛𝑛𝐷𝐷)T  (15) 

which will drive the system state towards the Coexisting state 1 following the 
optimal trajectory, while the total amount of administered chemotherapy will be 
minimal. 

To this end, we define an integral quadratic criterion: 

𝐽𝐽(𝐷𝐷) = ∫ [𝑤𝑤𝑁𝑁(𝑁𝑁(𝑡𝑡,𝐷𝐷) −𝑁𝑁0)2 + 𝑤𝑤𝐿𝐿(𝐿𝐿(𝑡𝑡,𝐷𝐷) − 𝐿𝐿0)2 + 𝑤𝑤𝑇𝑇(𝑇𝑇(𝑡𝑡,𝐷𝐷) − 𝑇𝑇0)2 +𝑡𝑡𝑓𝑓
0

 𝑢𝑢2(𝑡𝑡,𝐷𝐷)] d𝑡𝑡  (16) 

where 𝑡𝑡𝑓𝑓 is the optimization horizon related to the overall treatment duration, 𝑁𝑁0, 
𝐿𝐿0, 𝑇𝑇0 are the coordinates of the Coexisting state 1, and 𝑤𝑤𝑁𝑁 > 0, 𝑤𝑤𝐿𝐿 > 0, 𝑤𝑤𝑇𝑇 > 0, 
are the weighting coefficients. 

The choice of the multicriterial integral criterion (16), which includes individual 
quadratic penalty terms for all state variables, is motivated by the goal of achieving 
a therapy that not only reduces the tumor size at the terminal time but also minimizes 
fluctuations in 𝑁𝑁 and 𝐿𝐿 cells during the treatment to preserve (minimally disturb) 
the immune system. Additionally, by penalizing the area under the curve of the drug 
amount at the tumor site 𝑢𝑢, the total chemotherapy dosage is reduced, thereby 
minimizing side effects on healthy cells and reducing the overall cost of therapy. 
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To achieve therapy optimality, criterion (16) needs to be minimized with respect to 
vector 𝐷𝐷, while adhering to the constraints imposed by the model's differential 
equations (1) and the non-negativity of the doses such that 𝐷𝐷 ≥ 0. Dynamic 
optimization problems are usually approached by Bellman's dynamic programming 
or Pontryagin's maximum principle [30] [31]. However, these standard strategies 
are primarily suited for applications where the control signal 𝑣𝑣(𝑡𝑡) is continuous or 
piecewise constant (e.g., infusion), which does not align with the chemotherapy 
dosing comprised of individual doses (boluses). Therefore, the problem needs to be 
addressed in the impulsive system framework [50] [51]. 

Given that our problem is finite-dimensional and integral (16) cannot be solved 
analytically, we opt for a numerical optimization approach. In this context, we 
replace the integral criterion (16) with the summation criterion (17) representing the 
nonlinear least-squares problem. The state trajectories 𝑁𝑁(𝑖𝑖𝑇𝑇𝑠𝑠 ,𝐷𝐷), 𝐿𝐿(𝑖𝑖𝑇𝑇𝑠𝑠 ,𝐷𝐷), 
𝑇𝑇(𝑖𝑖𝑇𝑇𝑠𝑠 ,𝐷𝐷), 𝑢𝑢(𝑖𝑖𝑇𝑇𝑠𝑠 ,𝐷𝐷) are obtained by the numerical integration of (1) using the 
fourth order Runge-Kutta method considering 𝑇𝑇𝑠𝑠 is the step of the numerical 
integration [52]. 

𝐽𝐽(𝐷𝐷) = ∑ ⌊𝑤𝑤𝑁𝑁(𝑁𝑁(𝑖𝑖𝑇𝑇𝑠𝑠 ,𝐷𝐷) −𝑁𝑁0)2 + 𝑤𝑤𝐿𝐿(𝐿𝐿(𝑖𝑖𝑇𝑇𝑠𝑠,𝐷𝐷) − 𝐿𝐿0)2 + 𝑤𝑤𝑇𝑇(𝑇𝑇(𝑖𝑖𝑇𝑇𝑠𝑠,𝐷𝐷) −
𝑡𝑡𝑓𝑓
𝑇𝑇𝑠𝑠
𝑖𝑖=1

𝑇𝑇0)2 + 𝑢𝑢(𝑖𝑖𝑇𝑇𝑠𝑠,𝐷𝐷)2⌋  (17) 

The weighting coefficients 𝑤𝑤𝑁𝑁, 𝑤𝑤𝐿𝐿, 𝑤𝑤𝑇𝑇, need to be adjusted empirically to ensure 
that all four penalties in (17) have roughly similar magnitudes. By maintaining 
similar magnitudes across penalties, we aim to achieve a balanced optimization 
process that appropriately considers the importance of each component in achieving 
the desired therapeutic outcome. 

Despite the finite optimization horizon 𝑡𝑡𝑓𝑓 (finite terminal time) in (17), long-term 
cancer remission after completing the therapy can be ensured. This would imply 
that the tumor will not eventually regrow if the state vector at the terminal time is 
located within the natural region of stability of the coexisting state. 

Therefore, an additional death penalty term will be added to 𝐽𝐽(𝐷𝐷) to implement soft 
constraint. A hard constraint cannot be applied because the relationship between the 
doses 𝐷𝐷 and the terminal state 𝑥𝑥�𝑡𝑡𝑓𝑓� is unknown. The soft constraint penalty based 
on the value of Lyapunov function (4) and the ellipsoid condition (6) will be defined 
discontinuously as: 

𝑆𝑆 = �
0   if   𝑉𝑉 �𝑁𝑁�𝑡𝑡𝑓𝑓�, 𝐿𝐿�𝑡𝑡𝑓𝑓�,𝑇𝑇�𝑡𝑡𝑓𝑓�� ≤ 1

𝑤𝑤𝑠𝑠 �𝑉𝑉 �𝑁𝑁�𝑡𝑡𝑓𝑓�, 𝐿𝐿�𝑡𝑡𝑓𝑓�,𝑇𝑇�𝑡𝑡𝑓𝑓�� − 1�    if   𝑉𝑉 �𝑁𝑁�𝑡𝑡𝑓𝑓�, 𝐿𝐿�𝑡𝑡𝑓𝑓�,𝑇𝑇�𝑡𝑡𝑓𝑓�� > 1
  (18) 

where 𝑤𝑤𝑠𝑠 > 0 is a very large number. 

Since 𝐷𝐷𝑖𝑖  represent positive quantities of chemotherapy to be administered, the 
additional constraints on vector (15) are imposed as 𝐷𝐷 ≥  𝟎𝟎 and 𝐷𝐷 ≤ 𝟏𝟏𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚, where 
the maximal chemotherapy dose is 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 = 5 IU. Constraint 𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 can be 
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interpreted as the maximal admissible chemotherapy dose that will not kill the 
patient. The final optimization problem can be stated as: 

min
𝐷𝐷

�⌊𝑤𝑤𝑁𝑁(𝑁𝑁(𝑖𝑖𝑇𝑇𝑠𝑠 ,𝐷𝐷) −𝑁𝑁0)2 + 𝑤𝑤𝐿𝐿(𝐿𝐿(𝑖𝑖𝑇𝑇𝑠𝑠 ,𝐷𝐷) − 𝐿𝐿0)2 + 𝑤𝑤𝑇𝑇(𝑇𝑇(𝑖𝑖𝑇𝑇𝑠𝑠 ,𝐷𝐷) − 𝑇𝑇0)2

𝑡𝑡𝑓𝑓
𝑇𝑇𝑠𝑠

𝑖𝑖=1

+  𝑢𝑢(𝑖𝑖𝑇𝑇𝑠𝑠 ,𝐷𝐷)2⌋ + �
0   if   𝑉𝑉 �𝑁𝑁�𝑡𝑡𝑓𝑓�, 𝐿𝐿�𝑡𝑡𝑓𝑓�,𝑇𝑇�𝑡𝑡𝑓𝑓�� ≤ 1

𝑤𝑤𝑠𝑠 �𝑉𝑉 �𝑁𝑁�𝑡𝑡𝑓𝑓�, 𝐿𝐿�𝑡𝑡𝑓𝑓�,𝑇𝑇�𝑡𝑡𝑓𝑓�� − 1�    otherwise
  

subj. to 𝐷𝐷 ≥  𝟎𝟎 , 𝐷𝐷 ≤ 𝟏𝟏𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 

𝑁̇𝑁(𝑡𝑡) = 𝑁𝑁(𝑡𝑡)�𝑎𝑎�1 − 𝑏𝑏𝑏𝑏(𝑡𝑡)� − 𝛼𝛼1𝑇𝑇(𝑡𝑡) − 𝑘𝑘𝑁𝑁𝑢𝑢(𝑡𝑡)�    (19) 

𝐿̇𝐿(𝑡𝑡) = 𝑟𝑟𝑟𝑟(𝑡𝑡)𝑇𝑇(𝑡𝑡) − 𝐿𝐿(𝑡𝑡)(𝜇𝜇 + 𝛽𝛽1𝑇𝑇(𝑡𝑡) + 𝑘𝑘𝐿𝐿𝑢𝑢(𝑡𝑡))  

𝑇̇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡)�𝑐𝑐�1 − 𝑑𝑑𝑑𝑑(𝑡𝑡)� − 𝛼𝛼2𝑁𝑁(𝑡𝑡) − 𝛽𝛽2𝐿𝐿(𝑡𝑡) − 𝑘𝑘𝑇𝑇𝑢𝑢(𝑡𝑡)� 

𝑢̇𝑢(𝑡𝑡) = 𝑣𝑣(𝑡𝑡) −𝜔𝜔𝜔𝜔(𝑡𝑡) 

𝑣𝑣(𝑡𝑡) = �𝐷𝐷𝑖𝑖 ×
10
𝑇𝑇𝐷𝐷

   if  0 ≤ 𝑡𝑡 − (𝑖𝑖 − 1)𝑇𝑇𝐷𝐷 ≤
𝑇𝑇𝐷𝐷
10  

0   otherwise   
 for 𝑖𝑖 = 1,2 … 𝑛𝑛𝐷𝐷  

To obtain vector 𝐷𝐷 that solves the optimization problem (19), numeric optimization 
implemented in the fmincon function of Matlab optimization toolbox [53] was used. 
This function implements some of the well-known interior-point methods for 
constrained numeric optimization [54] [55]. 

Interior-point algorithms form a group of optimization techniques that navigate 
through the interior of the feasible domain rather than along its boundaries. These 
methods incorporate a barrier term—often logarithmic in form—into the objective 
function to discourage solutions from approaching constraint edges too closely. A 
key concept in these approaches is the "central path," which traces the progression 
of solutions to the barrier-modified problem as the influence of the barrier term 
diminishes. This path ultimately leads to the solution that fulfills both the primal 
and dual optimality criteria, typically characterized by the Karush–Kuhn–Tucker 
(KKT) conditions. In the context of nonlinear least-squares problems, such as (19), 
where analytical derivatives are not available, the fmincon solver estimates 
gradients using finite differences and approximates the Hessian through a quasi-
Newton strategy. 

3 Results 

In this section, we will perform simulation experiments to validate the proposed 
methodology. Let the optimization horizon be 𝑡𝑡𝑓𝑓 = 100 days, the time step of 
numerical integration 𝑇𝑇𝑠𝑠 = 1/100 day, the number of doses 𝑛𝑛𝐷𝐷 = 5, and the dosing 
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period 𝑇𝑇𝐷𝐷 = 14 days. The weights in (19) were chosen as 𝑤𝑤𝑁𝑁 = 10−10, 𝑤𝑤𝐿𝐿 =
10−12, 𝑤𝑤𝑇𝑇 = 10−14, 𝑤𝑤𝑠𝑠 = 1016. 

Consider the initial state 𝑁𝑁(0) = 0.5 𝑁𝑁0, 𝐿𝐿(0) = 0.5 𝐿𝐿0, 𝑇𝑇(0) = 1.0 × 108, which 
leads to the grown state in the absence of chemotherapy since it is outside the natural 
stability region (see Figure 2). This implies that treatment is necessary to ensure 
remission. The optimal chemotherapy dosing protocol was determined as 𝐷𝐷 =
(2.2918 1.1097 2.0709 1.6448 0.7855)T. 

The corresponding state trajectory is shown in Figure 3 and the evolutions of the 
states are shown in Figure 4, demonstrating that the states are converging towards 
the desired Coexisting state 1, hence the designed therapy ensures the remission of 
cancer. 

Figure 3 

State trajectory of the state variables N, L, T and stability region for scenario 1 
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Figure 4 

Evolution of the state variables N, L, T, and u in time according to input v for scenario 1 

Now consider an even more demanding initial condition 𝑁𝑁(0) = 0.1 𝑁𝑁0, 𝐿𝐿(0) =
0.1 𝐿𝐿0, 𝑇𝑇(0) = 2.0 × 108 in which the immune system is significantly weakened 
and tumor is larger. The optimal chemotherapy dosing protocol was determined as 
𝐷𝐷 = (3.7850 1.9477 3.3067 1.9020 0.7604)T. 

The corresponding state trajectory is shown in Figure 5 and the evolutions of the 
states are shown in Figure 6, demonstrating that the states are converging towards 
the desired Coexisting state 1, so the treatment can be considered successful. 
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Figure 5 

State trajectory of the state variables N, L, T and stability region for scenario 2 

The state trajectories in Figures 3 and 5, document that the terminal state 𝑁𝑁(𝑡𝑡𝑓𝑓), 
𝐿𝐿(𝑡𝑡𝑓𝑓), 𝑇𝑇(𝑡𝑡𝑓𝑓) lies inside the stability region bounded by ellipsoid from Figure 1. 
Therefore, the future convergence of the states to the steady state 𝑁𝑁0, 𝐿𝐿0, 𝑇𝑇0 is 
guaranteed due to the natural attraction (stability) despite the treatment is 
completed. 

The Matlab source code associated with this paper is publicly available at Github 
repository: https://github.com/dodekm/Optimal-Treatment-of-Tumor-Growth-
Using-Individual-Doses-of-Chemotherapy  

 

7.5

1.55
4

8

8.5

3.5

T 
[c

el
ls

]
10 5

1.5

L [cells]

10 6
10 5

N [cells]

9

3

9.5

1.45
2.5

N(t),L(t),T(t)

N(t
f
),L(t

f
),T(t

f
)

N
0

,L
0

,T
0

V(N,L,T)  1

https://github.com/dodekm/Optimal-Treatment-of-Tumor-Growth-Using-Individual-Doses-of-Chemotherapy
https://github.com/dodekm/Optimal-Treatment-of-Tumor-Growth-Using-Individual-Doses-of-Chemotherapy


M. Dodek et al. Tumor Growth Dynamics – Mapping the Natural Stability Region and the 
 Design of Optimal Stabilizing Treatment Using Individual Doses of Chemotherapy 

‒ 134 ‒ 

 
Figure 6 

Evolution of the state variables N, L, T, and u in time according to input v for scenario 2 
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numerical mapping revealed a highly asymmetric and nonconvex stability region, 
hindering its description by a system of linear inequalities. 

To determine the optimal dosing protocol, we considered a summation quadratic 
criterion over a finite horizon, which can be seen as a nonlinear least squares 
problem, and facilitated the numerical optimization with the state responses 
obtained by the numerical solution of model differential equations. 

Biologically, optimizing the dosing protocol mitigates the disruptions to the 
immune system and minimizes the administered chemotherapy, thereby reducing 
its negative side effects on healthy cells. From a cybernetic perspective, systematic 
design of the dosing protocol provides stabilization by guiding the state towards the 
natural stability region, effectively enabling cancer remission in adverse conditions. 

Another striking feature is that, unlike conventional continuous infusion methods, 
which often assume constant or continuously varying drug administration, the 
approach proposed in this study focuses on discrete boluses. This not only ensures 
remission while minimizing drug administration and immune system disruption but 
also aligns better with real-world clinical practices, where bolus dosing is more 
practical and widely used. 

The topology of clinical application of the proposed optimizer of chemotherapy 
doses is outlined in Figure 7. 

 
Figure 7 

Topology of clinical application of the proposed optimizer of chemotherapy doses 

The simulation results confirmed the practical applicability of the proposed 
approach by demonstrating that remission could be achieved under a variety of 
adverse initial conditions. The first simulation scenario, where the immune system 
was relatively strong, required a moderate chemotherapy dose sequence, which 
successfully guided the system to the natural stability region. In contrast, a second 
scenario, with a weakened immune response and larger tumor, required a higher 
total chemotherapy dosage but still converged to remission. Importantly, in both 
cases, the final state remained within the stability region, ensuring that remission 
was maintained without requiring sustained treatment. 
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Unlike prior works that focus on minimizing tumor size and drug quantity, our 
methodology explicitly incorporates cytotoxic lymphocytes and natural killer cell 
populations into the optimization problem. 

The chemotherapy dosing protocol designed in this study is noteworthy for its 
ability to transition the system into remission within a finite number of treatment 
cycles. By incorporating a terminal-state stability constraint into the optimization 
framework, the method ensures that the final system state resides within the natural 
stability region. The inclusion of a death penalty in the optimization function 
effectively prevents scenarios where remission is achieved temporarily but lacks 
long-term stability. 

While the results are promising, certain limitations should be acknowledged. 

First, the model assumes a single solid tumor and does not account for metastasis. 
Future studies should explore extending the model, to incorporate metastatic spread 
and adaptive resistance mechanisms. Second, the computational complexity of the 
numerical stability mapping, remains a challenge. Third, in vivo and clinical 
validation are necessary to confirm the real-world effectiveness of the proposed 
dosing strategy. Although the mathematical model is grounded in biologically 
relevant principles, experimental validation would provide essential insights into 
the feasibility and safety of the proposed approach. And finally, a limitation arises 
from the formulation of the nonlinear least square’s optimization problem, as it 
introduces the possibility of multiple local extrema. This, in turn, increases the risk 
of the optimization algorithm converging to a suboptimal local extremum rather 
than the global optimum. One potential solution is to employ global optimization 
techniques, such as stochastic methods (e.g., simulated annealing, genetic 
algorithms). 
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