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Abstract: A comprehensive study on the application of machine learning algorithms for 
dynamic system identification in wastewater treatment plants (WWTP) is presented.  
The research focuses on developing a flexible neural network model to predict the behavior 
of key variables in the aeration process of a pilot-scale water treatment plant.  
The methodology involves data collection from experimental trials, data preprocessing, 
neural network model development, validation, and implementation. The results 
demonstrate the effectiveness of the proposed approach in accurately predicting key 
variables such as dissolved oxygen, tank temperature, and tank level (mean squared error 
MSE=0.166 and coefficient of determination R2=0.967). The discussion highlights the 
importance of variable selection, data preprocessing techniques, model architecture 
design, and validation procedures. The conclusions emphasize the significance of machine 
learning techniques in optimizing wastewater treatment processes, improving energy 
efficiency, and facilitating real-time decision making. Recommendations for future research 
include scaling up the model to larger treatment plants, incorporating advanced deep 
learning techniques, and continuous validation and optimization of the model. 
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1 Introduction of WWT Challenges 

Wastewater treatment (WWT) stands as a critical endeavor in safeguarding 
environmental integrity and public health [1]. Aeration, a fundamental step within 
this process, plays a pivotal role by facilitating the removal of contaminants 
through the transfer of gases to liquids [2]. The efficacy of aeration profoundly 
influences treatment performance [3] and energy consumption within wastewater 
treatment plants (WWTP) [4]. 

Recently, several studies in Central Europe have also highlighted the growing 
interest in applying machine learning to wastewater treatment processes. For 
instance, [5] developed an ANN-based control system for aeration processes in 
Czech wastewater treatment plants, focusing on energy optimization. Similarly, 
[6] implemented real-time machine learning to improve nitrogen removal 
efficiency in Polish WWTPs. In Hungary, [7] explored deep learning techniques 
to enhance sludge treatment strategies. These regional efforts underscore the 
increasing relevance of data-driven approaches across different European 
contexts. 

Traditional methods for modeling and optimizing WWT processes often rely on 
complex mathematical models, although they are capable of accurately capturing 
the dynamic behavior of the system, it is important to acknowledge that they can 
face significant limitations [8]. These limitations arise due to the inherent 
complexity of the models [3] and the large number of involved phenomena [9]. 
On one hand, the development of these models can be an extensive and laborious 
process, as it requires the inclusion and understanding of multiple variables and 
relationships between them [10]. This process can take a long time, meaning that 
obtaining complete and accurate models can be a daunting and costly task. 
Furthermore, once these models are obtained, their simulation can also be 
challenging. Running detailed and accurate simulations may require significant 
computational resources and considerable time. This can be problematic, 
especially in environments where quick and agile decisions are required, such as 
in modern industry. Consequently, despite the potential accuracy of these complex 
models, they may not be the most practical option for quick decision making in 
modern industry [11]. In such cases, more simplified approaches or agile methods 
may be preferred to ensure that decisions are made in a timely and effective 
manner, even if it means sacrificing some degree of precision in the system's 
behavior. 

However, despite these contributions, few studies have concentrated specifically 
on dynamic system identification using flexible neural network architectures that 
integrate multiple input-output variables over time. Our study seeks to fill this gap 
by proposing a predictive ANN-based model tailored to capture the temporal 
behavior of key process variables in a pilot-scale WWTP. 
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In recent years, machine learning (ML) algorithms [12], particularly artificial 
neural networks (ANN) [13], have emerged as powerful tools for modeling 
complex systems [14] and predicting their behavior [15]. Despite the potential 
benefits of ML in WWTP, there is a lack of comprehensive studies that explore its 
application for dynamic system identification in treatment plants [16], [17]. 
Existing research often focuses on specific aspects of wastewater treatment [8] or 
employs simplistic models that do not fully capture the complexity of real-world 
systems [10]. 

This study aims to address this gap by proposing a novel approach for dynamic 
system identification in wastewater treatment plants using ANN algorithms. By 
integrating data from various sensors and process parameters, our proposed 
methodology seeks to develop accurate models capable of predicting system 
behavior, optimizing process performance, and facilitating proactive maintenance. 

In this paper, we present the results of our investigation into the application of ML 
algorithms for dynamic system identification in a pilot-scale WWTP [3], [18]. 
Through rigorous experimentation and analysis, we demonstrate the effectiveness 
of our approach in improving the efficiency and reliability of WWT processes. 

This research not only contributes to the existing body of literature but also 
presents a paradigm shift in WWT methodology, offering innovative solutions to 
complex challenges. By harnessing the power of ML, we aim to propel the field 
towards more efficient and sustainable practices, thereby advancing environmental 
stewardship and public health. 

2 Methodology for Dynamic System Identification 

This section outline the method developed for dynamic system identification in 
WWTPs using machine learning algorithms. Our approach consists of several key 
steps, including data collection, preprocessing, model selection, training, and 
validation (see Figure 1). 

Two development methodologies were chosen: Kanban methodology and the 
Iterative Research Pattern (IRP) (see Figure 1). Kanban methodology focuses on 
continuously seeking improvement for the final product [19], while the IRP 
involves observations used to generate research questions addressed through a 
development cycle [20]. The IRP comprises four stages: observation, problem 
identification, solution development, and validation (see Figure 1). For 
observation, the aeration process of a WWTP was analyzed, requiring referencing 
previous studies that used mathematical models with dynamic balance equations 
containing necessary information [3], [18]. This yielded ample data by varying 
key parameters. Problem identification involved analyzing aeration process 
instructions and transferring the mathematical model to a neural network model, 
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which efficiently identified system dynamics and provided an appropriate solution 
based on mean squared error (MSE), the coefficient of determination (R2), and the 
integral prediction index of absolute time error (ITAE). Subsequently, the ANN 
model was verified under different conditions to assess its performance and error. 

 

Figure 1 
IRP methodology phases [20] 

2.1 Observation of Process Variables 

During the observation phase, an analysis of data collected from the pilot plant 
was conducted to determine which variables were essential for inclusion in the 
ANN model. Additionally, potential relationships between each variable were 
observed, along with validation of whether the obtained values corresponded to 
the pilot plant experimentation. 

Data were collected from a pilot-scale wastewater treatment plant (see Figure 2), 
which was previously constructed as part of prior work [3], [18]. This pilot plant 
and all its instrumentation were detailed in these previous works, including the 
acquisition of data from the three fundamental variables used in this study: 
dissolved oxygen, temperature, and liquid level in the process tank. 

The process parameters, as well as the plant parts, are thoroughly described in [3], 
[18]. Below, the input and output (measured) variables involved in the study are 
detailed. Table 1 delineates the dependent (measured) and independent variables. 
The input variables remain consistent since both the plant and the ANN are based 
on the same dataset. The objective is for the outputs to closely resemble each 
other, with the error tending towards zero. 
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Figure 2 
Aeration pilot plant used for data acquisition [3], [18] 

Table 1 
Dependent variables (measured) and independent variables (inputs) 

Variable  Role Description Time 
Dependence 

Volumetric flow rate of air Input % Bubble injection to aerator Time dependent 

Relay position Input Heat exchanger relay control 
(%) Time dependent 

Valve opening at the outlet 
stream Input Valve V-1 (%) Time dependent 

Fraction of pumping Input Pump percentage from 
auxiliary tank Time dependent 

Oxygen scavenger added Input Dosage of oxygen scavenger 
(g) Time dependent 

Temperature  Output Aerator tank temperature (°C) Time dependent 

Dissolved oxygen  Output DO concentration in aerator 
(mg/L) Time dependent 

Liquid level Output Water level in aerator tank 
(m) Time dependent 
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Measurements of various process input variables such as relay position in the heat 
exchanger (% Relay), the fraction of volumetric flow rate of air (%Bubble), the 
valve opening at the outlet stream %V-1 , the fraction of pumping from auxiliary 
tank outlet (%Pump), and the amount of oxygen scavenger added to the reaction 
medium (g Scavenger) were obtained from sensors installed throughout the plant 
and recorded at regular intervals (see Figure 3). 

 
Figure 3 

Applied inputs variables for dynamic system identification [3], [18] 

From the input data depicted in Figure 3, measurements of the three key output 
variables, namely aerator tank temperature (T), liquid level in the aerator tank (L), 
and dissolved oxygen concentration (DO), were derived, thus completing the 
dataset for dynamic identification via ANN of the WWTP. Figure 4 illustrates the 
WWTP's response to changes in the input variables from Figure 3. 

 

Figure 4 
WWTP dynamic response [3], [15] 
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2.2 Data Cleaning, Selection, and Preprocessing 

During this stage, it was determined within the dataset that certain variables 
provided by the WWTP were unnecessary for inclusion in the ANN model. 
Furthermore, a data cleaning process was conducted for the variables used in the 
model to prevent any contamination during model training. This involved 
handling empty data points, before training the machine learning models, the 
collected data underwent preprocessing to remove noise (refers to the 
preprocessing steps applied to improve data quality prior to model training), 
handle missing values, and normalize features (see Figure 5). Specifically, we 
used mean imputation to handle missing values, applied feature scaling 
(normalization) to bring all variables to a common range (0–1), and removed 
obvious outliers based on visual inspection and standard deviation thresholds. 
These procedures help reduce the effect of irregular or anomalous readings from 
sensors, thus improving the robustness of the ANN model. 

 

a) 

 

b) 

Figure 5 
Normalized input (a) and output (b) data in the interval (0 - 1) 

2.3 Development and Configuration of the ANN Architecture 

In the early phase of model selection, we considered multiple machine learning 
algorithms including support vector machines (SVM), decision trees, and random 
forests. While these models offer advantages in interpretability and training speed, 
they are generally less effective in capturing the complex temporal dependencies 
and nonlinear relationships present in dynamic wastewater systems. Artificial 
Neural Networks (ANN) were ultimately selected due to their proven ability to 
model time-dependent, multivariate processes with high flexibility. Their 
architecture allows incorporating temporal delays and layered processing, which 
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are crucial for dynamic system identification tasks (see Figure 6). It was 
developed for dynamic system identification, leveraging the TensorFlow and 
Keras libraries in Python. The model architecture consisted of multiple layers of 
neurons incorporating suitable activation functions (RLu and  hyperbolic tangent) 
and regularization techniques (gradient descent, regressors and adaptive moment 
estimation - ADAM) to effectively capture complex relationships within the data. 

During this phase, the neural network programming took place, involving iterative 
testing to determine the optimal input data for the ANN. Through trial and error, 
parameters such as network architecture and error calculations were adjusted, 
ensuring the model trained equally well on both training and testing data. 
Additionally, meticulous review was conducted to confirm that the model 
performed consistently across both sets of data. 

According to Figure 6, the utilization of regressors in data processing for 
prediction models is a method involving shifting data backward by a specified 
number of steps. This facilitates the creation of a dataset that incorporates 
historical and significant information for models reliant on the memory of 
previous events, as commonly encountered in time series analysis. 

 

Figure 6 
ANN model implemented 

Incorporating temporal delays in neural networks is pivotal for analyzing 
sequences and time-varying data, as it enables the network to consider historical 
information in predictions and decision making. By manually deciding on the 
delay configuration in variables, rather than opting for TDNN (Time-Delay Neural 
Network) architectures, greater flexibility is achieved in tailoring the data to the 
model's requirements [21]. 

Compared to recent machine learning-based solutions in Central Europe, such as 
the ANN controller for aeration in Czech WWTPs [5], or the ML-driven nitrogen 
removal monitoring system in Poland [6], our model presents a novel approach by 
focusing on dynamic system identification using historical regressors and ANN 
time-delay configuration. Additionally, unlike the deep learning application for 
sludge treatment proposed in Hungary [7], our model captures a broader process 
scope, integrating variables like DO concentration, tank level, and temperature 
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within a single predictive framework. This distinction underlines the originality of 
our approach and reinforces its potential for enhancing decision making and 
predictive maintenance in wastewater treatment operations. 

2.4 Model Testing and Evaluation Strategy 

During the test phase, a thorough examination was conducted to ensure that the 
model did not suffer from overfitting, and that the graphical representation of the 
ANN output aligned with expectations. This entailed scrutinizing whether the 
predicted values closely approximated the actual values of the output variables 
(measured variables, L, T, and DO), thereby confirming the model's accuracy. 
Additionally, measures were taken to prevent the model from becoming overly 
tailored to the training data, which could compromise its ability to generalize to 
unseen data. The validation process aimed to validate the model's performance 
and verify its reliability in producing predictions consistent with real-world 
outcomes. 

2.4.1 ANN Training Phase: Data Splitting and Optimization Techniques 

The selected ANN model was trained using a subset of the collected data (60%, 
with the remaining data reserved for validation (20%) and testing (20%). During 
training, techniques such as gradient descent optimization, batch normalization, 
and early stopping to prevent overfitting and improve convergence were 
employed. 

2.4.2 Validation Metrics and Testing Methodology 

The trained model was validated using the reserved validation dataset to assess its 
predictive accuracy and generalization ability. We evaluated performance metrics 
such as mean squared error (MSE) expressed as in (1), the coefficient of 
determination (R2) as in (2), and the integral prediction index of absolute time 
error (ITAE) expressed as in (3) to quantify the model's performance in terms of 
the three available data sources: level, temperature, and dissolved oxygen 
concentration. 

 (1) 

The MSE presented in (1) is a commonly used metric for assessing the accuracy 
of a model's predictions as ANN. It is calculated as the average of the squared 
differences between the n predicted values  and the n measurement values . 
This measure is particularly useful in dynamic systems identification problems, 
where the goal is to minimize the discrepancy between the model's predictions and 
the observed data, providing a quantitative way to evaluate its performance.  
A lower MSE value indicates higher accuracy in the model's predictions. 
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   (2) 

The R2 coefficient as in (2), is a statistical measure that represents the proportion 
of the variance in the measurement variables  that are predictable from the 
estimated output variables  in an ANN model. It ranges from 0 to 1, where a 
value closer to 1 indicates a better fit of the model to the data. 

The prediction index ITAE in (3) is a performance metric used in dynamic 
systems identification to evaluate the transient response of a process. Unlike 
traditional error measures, ITAE places more emphasis on reducing the integral of 
the absolute time-weighted error over a specified time interval. It is particularly 
useful for systems where minimizing the duration and magnitude of error is 
crucial [3]. 

  (3) 

where t is the time, t0 and tf are the initial and final times, respectively,  is the i-
th measurement, and  is the model prediction for that measurement. 

In the case of the WWTP, these three metrics (1), (2), and (3) must be calculated 
for the three measured variables: L, T, and DO in the aerated tank. These metrics 
are essential for assessing the performance and efficiency of the treatment 
processes in wastewater management systems. 

3 Results and Discussion: Accuracy and Robustness 

A preliminary ANN scheme was designed (see Figure 7), which would later be 
implemented in code. Phyton and Google Cola were chosen as the development 
and training environment for its collaborative features and access to GPU 
resources. This facilitated the seamless transition from conceptualization to 
practical implementation, allowing for efficient development and training of the 
neural network model. 

This choice presented in Figure 7 allows for better portability of the model, 
eliminating the need for specialized hardware for training the ANN. Google 
Colab's provision of GPU-equipped servers enables model training without 
consuming local or remote resources. Constructing the model involved selecting 
existing data analysis and machine learning tools. Python was chosen as the 
primary programming language due to its extensive libraries. Pandas facilitated 
dataset manipulation from Excel files, while NumPy handled matrix operations 
required in machine learning algorithms. Scikit-Learn, specialized in machine 
learning algorithms, validated the model's test data. Matplotlib facilitated result 
visualization by plotting the ANN outputs. Tensorflow libraries were used for 
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ANN training, with Keras serving as a high-level API tailored for ANN 
construction. This comprehensive toolset formed the foundation of the project's 
development framework. 

 

Figure 7 
Sequence diagram of ANN construction 

Starting from Figure 7, the model development follows a logical sequence, 
initiating with the importation of necessary libraries and the creation of the 
regressors function. Subsequently, data loading occurs, and input and output 
(measured) variables are defined, followed by their conversion into normalized 
arrays. The ANN architecture is then designed using Keras. Once the structure is 
defined, K-fold cross-validation is performed to assess the model's prediction fit. 
Finally, using libraries, the predicted variables are visualized and compared with 
the measured variables through respective graphs, marking the culmination of the 
model process. 

3.1 Regressor Function and Time Dependency Handling 

As shown in Figure 6, The regressor function was implemented to adjust the 
temporal alignment of variables (input and output) consisting of historical data, 
indicating their time-dependence. While time itself isn't used in model training, it 
governs the sequence and order of the data. The regressor function was necessary 
to shift the values of each variable array backward in time by a defined number of 
positions, denoted by the variable 'num_delay', which in this case is set to two 
time lags. The regressor function was implemented using Python and NumPy to 
shift time series data, allowing the ANN to incorporate temporal dependencies. 



M. A. Ospina Alarcón et al. Machine Learning Algorithms for Dynamic System Identification 
  in Wastewater Treatment Plant 

 – 58 – 

The function introduces a delay in the input and output variables, which is critical 
in dynamic system identification tasks. 

Applying this adjustment fixes the initial values to zero, with subsequent data 
points reassigned to maintain the correct sequence. Figure 8 shows the second 
regressor of the data along with their respective original value for the sum input 
(Bubble, Relay, and Scavenger) variables, and the first regressor to all output 
(Level, DO, and Temperature) variables presented in Figures 3, 4, and 5. These 
regressors are adjusted based on the data's temporal behavior as depicted in Figure 
8. 

Incorporating information on data behavior over time enhances the predictive 
model's accuracy, particularly evident in measured variables such as dissolved 
oxygen, tank level, and tank temperature. The effectiveness of the regressors 
function is demonstrated by the alignment between original (measured) variables 
and estimated regressors values (see Figure 8). 

 

Figure 8 
Variables with a regressor function 

3.2 ANN Model Configuration Using Keras Framework 

The ANN model was built using TensorFlow and Keras. It consists of four layers: 
three hidden layers with ReLU activation and one output layer using a hyperbolic 
tangent function. The Adam optimizer was applied for training, and mean squared 
error (MSE) was used as the loss function. This architecture was selected to 
ensure high performance in modeling nonlinear and time-dependent relationships. 
The consistency of the network with multiple layers enables the model to learn 
patterns and relationships among the data, thereby enhancing prediction accuracy. 
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ReLU activation function was applied to the hidden layers, chosen for its precision 
in regression problems and its ability to handle and mitigate the issue gradient 
decrease vanishing in the network. 

As the optimization method, the Adam algorithm was chosen over the traditional 
gradient descent due to its ability to automatically adjust the learning rate for each 
parameter, thereby enhancing the effectiveness of the process. Adam was used in 
conjunction with the mean squared error (MSE) as the loss function, as it imposes 
a more severe penalty on erroneous predictions compared to MSE by assigning 
different weights to errors. This results in a more reliable and accurate model. 

3.3 Validation through Visual and Quantitative Methods 

During the validation phase, the model's robustness was assessed by analyzing its 
predictive capacity and determining whether it optimally fit the data or exhibited 
overfitting. Iterations and modifications were made during the development stage 
to enhance the model's accuracy. This was achieved by using graphs that 
compared ANN predictions with measured variables and by observing key metrics 
such as (1), (2), and (3). These evaluations provided insights into the model's 
performance and guided adjustments to optimize its predictive capability. 

Detecting overfitting through validation with test data was necessary to ascertain 
the model's ability to accurately predict new data and verify its adequacy in 
prediction. The K-fold method, facilitated by Scikit-Learn, was chosen for this 
purpose. It partitions the dataset into subsets, iteratively training and evaluating on 
one subset as the test set and the remaining subsets as the training set. This 
process is repeated for each subset, allowing for the comparison and averaging of 
errors across subsets. Low error indicates that the model does not suffer from 
overfitting. 

3.3.1 Graphical Comparison of Measured and Predicted Variables 

Once the model was trained, the accuracy of the ANN's predictions regarding the 
actual data of the measured variables was examined. Figures 9, 10, and 11 
illustrate the comparison between measured values and predictec values by the 
ANN model for three distinct variables: dissolved oxygen (DO) (see Figure 9), 
tank temperature (see Figure 10), and tank level (see Figure 11). In each graph, the 
lines depict the time series of measured data (in black) versus the model estimates 
(in red). The common feature across these graphs is the notable consistency 
between predictions and real values, indicating the model's high accuracy in its 
estimations for different variable types. This level of precision suggests that the 
model adequately captures the underlying dynamics of the WWTP. 

From Figures 9, 10 and 11, the model achieved high prediction accuracy for 
variables such as dissolved oxygen (DO) concentration, tank temperature, and 
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water level, which are critical for optimizing treatment processes. The model's 
ability to accurately forecast these variables contributes to improve operational 
efficiency and resource utilization in WWTP. 

 

Figure 9 
Comparison of measured and estimated DO 

Through dynamic system identification (see Figures 9, 10, and 11), the model 
successfully captured the complex temporal dynamics inherent in wastewater 
treatment processes. By analyzing time-series data from sensors installed 
throughout the plant, can be identified patterns and trends that influence system 
behavior, enabling better understanding and control of the treatment process. 

While the performance of the ANN approach was thoroughly evaluated, direct 
comparisons with traditional baseline methods like linear regression and time-
series analysis were not conducted in this research. Instead, the focus remained on 
assessing the predictive capability and robustness of the machine learning model 
independently. The results obtained from Figures 9, 10, and 11, the qualitative 
comparison in the figures underscored the effectiveness of the machine learning 
model in enhancing WWTP operations, showcasing its potential for real-world 
applications. 
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Figure 10 
Comparison of measured and estimated temperature 

 

Figure 11 
Comparison of measured and estimated level 

3.3.2 Quantitative Evaluation Using MSE and R² Metrics 

To evaluate model performance, we used standard functions from the Scikit-learn 
library to compute the Mean Squared Error (MSE) (1) and the coefficient of 
determination (R²) (2) between predicted and observed values. These metrics 
provided a quantitative assessment of model accuracy and fit. The MSE quantifies 
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the discrepancy between actual values and those predicted by the model, with 
lower values indicating higher prediction accuracy. The R2 denotes the proportion 
of variability in the data values explained by the model, with a higher value 
(approaching 1) on a scale of 0 to 1 indicating a greater likelihood of explaining 
data variability and better model fit. For the implemented ANN, satisfactory 
values were obtained for both MSE and R2 (see Table 2). 

Table 2 summarizes the model's performance in terms of accuracies for the 
measured variables. The values of MSE and R2 indicate a high-level of accuracy. 
For the dissolved oxygen variable, as well as for tank temperature and level, the 
R2 values approach unity, signifying high robustness in the predictability and 
adaptability of the model. 

Table 2 
Comparison of EMC and R2 calculation for the three measured variables 

Measured Variable MSE R2 
DO concentration 0.109 0.948 

Temperature 0.043 0.997 
Level 0.261 0.996 

Based on (1) and (2), the calculation function is capable of individually computing 
each prediction of the measured output variables, as well as performing the 
combined calculation of all three variables. This feature allows for a granular 
analysis of each predicted output variable's performance while also providing a 
comprehensive assessment of the model's overall predictive accuracy. By offering 
the flexibility to assess individual predictions and their collective impact, this 
capability enhances the model's interpretability and facilitates targeted 
adjustments or interventions as needed. Additionally, the ability to aggregate 
predictions enables a holistic evaluation of the model's efficacy in capturing 
system dynamics and predicting outcomes across multiple variables 
simultaneously. This comprehensive functionality underscores the versatility and 
robustness of the calculation function in supporting informed decision making and 
optimizing system performance. 

The developed ANN model demonstrated robust performance in predicting key 
process variables within the WWTP. Evaluation metrics such as mean squared 
error (MSE) and R-squared coefficient indicated strong agreement between 
predicted and observed values, validating the model's effectiveness. 

3.3.3 ITAE-Based Assessment and Comparison with Literature Models 

The ITAE metric (3) was computed using the trapezoidal rule (via the trapz 
function from SciPy) to assess the model's transient error response. This helped 
compare the ANN model against existing literature, particularly for dynamic 
behavior in dissolved oxygen concentration [3], [18]. This approach was adopted 
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to validate the data and theories underlying semi-empirical models of 
phenomenological bases. 

The ITAE calculated from the ANN model's predictions aligns with the data 
reported in the literature (refer to Table 3). It's important to note that while the 
ANN model doesn't fully describe or interpret the phenomenon involved in 
WWTP, it can serve for quick decision making and the implementation of 
efficient intelligent control strategies in such processes. 

Table 3 
ITAE predictions with literature 

Measured Variable ITAE Best ITAE in [3] Best ITAE in [18] 
DO concentration 1.432x104 1.50 ×104 1;41x104 

Temperature 7.130x104 not reported not reported 
Level 2.653x103 not reported not reported 

The comparison of ITAE values between the ANN model and phenomenological 
based models [3] and [18] in Table 3 provides valuable insights into the predictive 
performance of the model. Despite its limitations in fully elucidating the complex 
dynamics of WWTP, the neural network model demonstrates its utility in the 
deployment of effective control strategies. By leveraging historical data and 
leveraging its predictive capabilities, the model offers a practical tool for 
enhancing operational efficiency and optimizing resource allocation within 
WWTPs. By examining the importance of model characteristics and coefficients, 
valuable information was obtained about the underlying mechanisms driving the 
dynamics of the process. 

Despite its effectiveness, the model has certain limitations, including the need for 
extensive data preprocessing and computational resources for training. 
Additionally, future research could explore the integration of advanced machine 
learning techniques, such as recurrent neural networks (RNNs) and convolutional 
neural networks (CNNs), to further improve predictive performance and 
accommodate nonlinear relationships. 

The research results highlight the potential of machine learning algorithms in 
particular the ANN for dynamic system identification in WWTP. By leveraging 
advanced modeling techniques and real-time data analysis, operators can optimize 
plant performance, minimize energy consumption, and improve environmental 
sustainability. 

Conclusions 

This study applied artificial neural networks (ANN) for dynamic system 
identification in a pilot-scale wastewater treatment plant (WWTP). The proposed 
model demonstrated high accuracy in predicting key process variables—dissolved 
oxygen concentration, tank temperature, and liquid level—based on time series 
data collected from sensor measurements. 
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By leveraging historical input-output relationships and incorporating temporal 
delays, the ANN model captured nonlinear dynamics of the aeration process with 
promising performance metrics (MSE = 0.166; R² = 0.967). These results support 
the viability of machine learning as a tool for improving process understanding, 
operational efficiency, and decision-making in WWTPs. 

Compared to traditional modeling approaches, the ANN offers advantages in 
flexibility, adaptability, and reduced need for extensive physical modeling. 
However, the model requires significant data preprocessing and training, which 
presents some limitations in real-time deployment scenarios. 

Future research may explore the integration of recurrent neural networks (RNN), 
reinforcement learning for control applications, and model scalability to full-scale 
plants. Additionally, incorporating more process variables and testing under 
varying operational conditions could enhance model generalizability. 
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