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Abstract: With social media being a significant part of everyday life, the possibilities of 
misinformation spreading in textual, visual or audio form are now significantly in 
comparison to past. With the onset of widely available generative AI models, the need for 
effective classification methods for generated or altered content grew even larger. This 
article focuses on the problem of Deepfake detection, particularly in a domain of 
artificially generated depictions of human faces. For the detection, we have selected a 
variety of CNN (Convolutional Neural Networks) based architectures which have recently 
proven their capabilities in image classification tasks. We have selected five models and 
performed testing on a two-class dataset which contained Deepfakes created with state-of-
the-art StyleGAN. The achieved results of selected models were comparable, each model 
attaining sufficient classification capability. 
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1 Introduction 

Due to the potential danger that they present, deepfakes pose a considerable 
social, economic and reputational risk for societies and individuals, especially 
with the rise of available AI methods such as StyleGAN [1]. Deepfakes are 
photorealistic images, videos, or voice recordings that have been algorithmically 
generated or manipulated often with malicious intent. Common cases of misuse 
include the dissemination of harmful content by perpetrators on socials media with 
the use of fake videos [2], where they can spread virally, leaving lasting damage 
to the parties involved even if subsequent legal action is taken (cases of 
individuals or companies protecting their brand name). 

Another case of severe misuse of this technology is the creation of illegal sexually 
explicit content, either breaking the valid laws of particular country, breaching the 
terms of technology provider or directly attacking particular person [3]. In most 
cases, it is almost impossible for human users to adequately distinguish between 
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authentic content and a carefully constructed deepfake with the naked eye. Even 
the cases of audio deepfakes have proven to be hardly discernible for human ear 
[4]. 

To produce deepfake, a variety of methods such as combination, merging, 
replacement or superimposing of images or videos are used [5], resulting in a 
realistic believable content. 

However, recently the creators generally employ more advanced AI-based 
techniques, mainly generative adversarial networks (GANs). Often, one type of 
deepfake modality is accompanied by another to produce more believable results, 
as in the case of deepfake videos where the lips of the speaking person are 
modified to be synchronized to the deepfake audio [6]. 

Due to the increasing presence of deepfakes in social media, our aim is to assess 
the possibilities of deepfake detection with the focus on generated images 
depicting humans. The experiments are aimed at using selected methods and 
subsequent evaluation with regard to recently generated content. 

In this paper, we will focus on CNN-based architectures. In the second section of 
this paper, we will describe related works in this field. In the subsequent sections, 
we will describe the issue of deepfakes followed by Section 4 where individual 
CNN architectures are explained. Section 5 is dedicated to our tests and the last 
section will be our conclusions. 

2 Related Works 

With the rise of artificially created content on social media, the importance of 
deepfake detection becomes apparent with an increasing amount of research being 
dedicated to it. Generally, deepfake detection is handled as a classification 
problem [7]. These works tend to focus on single modality, prioritizing the 
importance of visual [8] and facial features. Such features are facial expressions 
[9], eye blinking [10] or head movements [11]. However, several studies have 
performed classification where the focus is put on spotting more elaborate 
deepfake videos which are accompanied by audio [12]. In recent years, the 
primary solution to this problem is to leverage the advantages of advanced 
convolutional neural network architectures. Traditional approaches to face the 
problem of deepfakes often refer to algorithms developed before the advent of 
advanced deep learning models. These methods generally include manual 
inspection, forensic analysis [13] that are used to spot anomalies and 
inconsistencies in media content. In the area of deepfake classification, a variety 
of classical machine learning pattern recognition techniques have been employed, 
those techniques include logistic regression, random forest, decision trees, k-
nearest neighbors or support vector machines [14]. [15] summarized deepfake 
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detection methods such as CNN, LSTM-GAN, and DenseNet. A recent survey by 
[16] has categorized deepfake detection methods as conventional CNN-based 
detection, CNN with semi-supervised detection, transformer-based detection, and 
biological signal detection. The survey compares available deepfake detection 
datasets and methodologies, providing insight into their respective strengths and 
weaknesses. Other improvements were recorded with the introduction of attention 
mechanism [17], while promising outcomes are shown in [18] by using an 
architecture named capsule-network (CN). The main advantage of capsule 
networks is the smaller number of parameters that are required for training in 
comparison to very deep networks. The proposed solutions generally employ 
models with CNN-based architectures, which is an area that is quickly developing. 
Therefore, we have decided to follow this approach, implement individual 
methods and assess whether there are suitable for this task. 

3 Deepfakes 

Deepfake content that appears in the form of images, videos and audio is a content 
that aims to appear authentic, however, it is made with the use of artificial 
intelligence algorithms. In most cases, deepfakes are created as facial alterations 
that can be categorized into four groups based on the type of transformation. 
These are the entire face synthesis, identity swap, change of facial attributes and 
change of expression. Attribute editing employs minor adjustments to a person's 
face. Those include change of skin tone, adding wrinkles or skin marks, facial 
hair, or making the person older or younger. In the case of expression 
manipulation, the identity of the person remains the same. However, the facial 
expression is altered to change the sentiment of the picture or video. A wide array 
of techniques in computer graphics is available. However, since the traditional 
approaches involve classical image manipulation, which is time consuming, the 
creators of such content have recently turned their focus to the GANs to alter the 
facial expression of people [19]. Examples of commonly used GAN architectures 
for this kind of task include CycleGAN [20] or InfoGAN [21]. Another example 
of possible architecture is the DCGAN, which adds upsampling convolutional 
layers in the generator part of GAN, thus yielding the possibility of generation of 
high-resolution images. MaskGAN [22] enables the user to transfer selected 
features for particular expression from one photo to another. MaskGAN learns the 
face manipulation process as traversing on the mask manifold [23], thus producing 
more diverse results with respect to facial components, shapes, and poses.  
A significant advantage of MaskGAN is that it enables the users to directly 
specify the location, shape and facial component categories for interactive editing. 
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Figure 1 

MaskGAN facial Manipulation [22] 

There are numerous methods which are used for the creation of facial deepfakes, 
however, the most currently used methods are autoencoders and GANs. 
Autoencoder architecture aims to efficiently compress -encode input data down to 
the essential features and reconstruct or decode the original input from this 
compressed representation. The Autoencoders consist of encoder and decoder. 
The role of the encoder is to transform the input data into a reduced-dimensional 
representation, which is often referred to as “latent space” or “encoding”. This 
representation is used as a basis for the decoder, which uses it to rebuild the initial 
input. This network can be trained by minimizing the reconstruction error, which 
serves as the measure for the deviations from the original input and the resulting 
reconstruction. The bottleneck is a key attribute of the network design, without its 
presence, the network could tend to simply memorize the input values by passing 
these values along through the network. A bottleneck constrains the amount of 
information that can traverse the full network, forcing a learned compression of 
the input data. Generative Adversarial Networks use a characteristic approach to 
generating new data by staging two neural networks in a contest against each 
other. GAN architecture was first described by [24]. DCGAN [25] is a class of 
GAN that is notable for producing high-quality, high-resolution images, thus it is 
often used for the creation of deepfakes. The GAN architecture comprises of two 
constituent sub-models: generator and discriminator. The purpose of the generator 
is to create new samples which are then fed to the discriminator. The discriminator 
tries to distinguish whether the provided image is real or created by generator. At 
the beginning, the generator model receives vector of a fixed length and creates 
sample in the particular domain. When the training is done, samples in this 
multidimensional vector space will correspond to samples in the problem domain, 
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the result being a significantly compressed representation of the data distribution. 
The aforementioned vector space is referred to as a latent space. The purpose of 
the Latent space is to compress high-level concepts of the observed input data 
such as the input data distribution. The discriminator model receives an example 
from the domain as input, which is either real or generated by generator and 
attaches real or fake label. The real example is sourced from the training dataset. 
The generated example is made by the generator model. The discriminator is a 
standard classification model. When the training process is finished, the 
discriminator model becomes redundant as it is not necessary for further 
generative use. Sometimes, the generator can be repurposed in transfer learning 
due to its ability to extract features. Generator and discriminator are trained 
together, the role of generator is to create samples that are as close as possible to 
the real ones, while the role of discriminator is to distinguish whether the provided 
samples are real or fake. Each round, both models try to improve their respective 
goals. When discriminator can classify too well, the generator is punished by 
larger updates to the model parameters. The same applies to the generator, which 
is penalized when its classifying results are too inaccurate. When the generator 
succeeds at tricking the discriminator, it receives a reward and the discriminator is 
penalized, meaning the parameters of the model have to be updated. The end 
condition occurs when generator creates indistinguishable replicas of the input 
each time, meaning the discriminator is unable to correctly classify and predict 
50% probability for both real and fake classes. With vast amounts of publicly 
available footage of politicians, actors or private data from social media, it is easy 
for perpetrators to use this data as a training data for GANs, which may be 
subsequently used for illicit purposes. 

4 Convolutional Neural Networks 

Convolutional neural networks are a class of neural networks which have left their 
mark in computer vision, but thanks to their capabilities they have also been 
widely used in other fields such as time series forecasting [26] or natural language 
processing [27]. One of the common applications is the field of healthcare [28]. 
The main advantage of CNNs is that they automatically extract features and 
capture spatiotemporal dependencies. When it comes to architecture, 
convolutional layers, activation functions, pooling and fully connected layers are 
the main components of CNNs. Starting with the convolutional layer followed by 
either pooling layer or another convolutional layer, the network ends with the last 
fully connected layer. The complexity of CNN grows with each additional layer, 
thus being able to identify larger portions of the processed image. First layers 
concentrate on less complicated features, for example edges. As the image data 
passes deeper through the layers of the CNN, it starts to distinguish more delicate 
features and shapes of the object, resulting in the final identification of the object. 
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4.1 DenseNet 

DenseNet, a convolutional neural network with densely connected structure, was 
proposed by [29] in 2017, which revolutionized the field of computer vision by 
proposing a novel connectivity pattern within CNNs, addressing challenges such 
as feature reuse, vanishing gradients, and parameter efficiency. In contrast to the 
traditional CNN architectures, where connections are only made between one 
layer and the following one, in DenseNet all layers within a block are connected 
between each other, hence the term dense connectivity. This feature makes it 
possible for each layer to receive feature maps from all previous layers, enabling 
extensive flow of information through the network. Characteristic features of the 
DenseNet are: 

1. Mitigated Vanishing Gradient Problem: Dense connections secure the 
direct flow of gradients to earlier layers, significantly reducing the 
vanishing gradient issue commonly occurring in deep networks. 

3. Improved Feature Propagation: All layers have immediate availability 
of gradients from loss function and original input signal, which results in 
improved propagation of features. 

4. Feature Reuse: DenseNet supports feature reuse through concatenation 
of features sourced from all preceding layers, thus curbing redundancy 
while increasing efficiency. 

5. Reduced Parameters: Despite dense connections, DenseNet is 
parameter efficient. One of the advantages is the elimination of the need 
to relearn redundant features, thus resulting in fewer parameters in 
comparison to traditional networks. 

DenseNet architectures are composed of building units called Dense blocks.  
A dense block is constructed from multiple convolutional layers that are paired 
with batch normalization as well as non-linear activation functions, such as ReLU. 
Each layer contained within dense block is given feature maps from all previous 
layers which serve as inputs. This mechanism promotes feature reuse and 
propagation through the network. To connect individual dense blocks, transition 
layers are included. They have two distinctive purposes. The first one is the 
reduction of feature maps count and second one is the downsampling of the spatial 
dimensions of these feature maps, which proves to be beneficial in maintaining 
computational efficiency and lightweight structure of the network. A standard 
transition layer is made from:  

• Batch Normalization: normalization of the feature maps. 

• 1×1 Convolution: feature maps quantity reduction 

• Average Pooling: downsampling of the spatial dimensions. 
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To define a quantity of produced feature maps by individual layers present in 
dense block, a hyperparameter growth rate (k) is introduced. A larger growth rate 
implies that more information is added at each layer, however, it also leads to 
increased computational costs. The choice of k affects the network’s capacity and 
performance. 

 

Figure 2 
Densenet with growth rate k=2 

4.2 VGG-16 

Created by Visual Geometry Group in 2014 [30], the characteristic feature of 
VGG-16 is its depth consisting of 16 layers, 13 of which are convolutional while 
the three remaining layers are fully connected. The network won the ILSVR 
(ImageNet) competition in 2014 [31], proving its pioneering capabilities. VGG is 
one of the pioneers of deep neural net structures, renowned for its simplicity and 
efficacy in a variety of computer vision tasks. The input of VGG is an RGB image 
with the size of 224x244. The average RGB value is calculated for all images 
from the training set image, and afterwards the image is passed as an input to the 
VGG network. While not having a a large number of hyper-parameters, VGG16 
uses convolution layers with a 3x3 filter and a stride 1 that have the same padding 
and maxpool layer of 2x2 filter of stride 2. Each convolution layer contains 2 to 4 
convolution operations. For example, in AlexNet each convolutional layer has 
only single convolution with the filter size 7x7. The main idea being to use 
smaller convolutional filter is the reduction of parameters while making the 
decision more discriminative. This arrangement of convolution and max pool 
layers reoccurs repeatedly throughout the whole architecture. In the end it has two 

https://builtin.com/machine-learning/what-is-deep-learning
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fully connected layers, followed by a softmax for output. It is important to point 
out that despite this, the network has around 138 million parameters (VGG-16) or 
144 million parameters (VGG-19). Due to its performance, VGG-16 is used for 
image recognition and classification of new images, using the pre-trained version. 
The pre-trained version of the VGG16 network is trained on over one million 
images from the ImageNet visual database, with the two classify images into 
1,000 different categories with 92.7 percent test accuracy. The included classes 
encompass animals, plants items or vehicles. 

4.3 Resnet 50 

ResNet is a type of convolutional neural network (CNN), which was devised with 
the aim of training extremely deep networks. Introduced by [32], the Resnet 
proved as a breakthrough in the field of deep learning, especially in computer 
vision tasks, and they have been widely adopted since their introduction. ResNets 
function by learning residual functions that reference to the layer inputs, instead of 
learning unreferenced ones. One of the commonly associated problems with 
deeper neural networks was the vanishing gradient problem. With the increasing 
network depths, the gradients got progressively smaller, cutting down the ability 
of network to learn meaningful representations. Based on a deep residual learning 
framework, ResNet faces the gradient degradation problem and extracts more 
information from the original data with the introduction of the skip connections, 
which supports more efficient flow of the information across layers. To form a 
network, residual blocks are stacked on top of each other. For instance, a ResNet-
50 contains fifty layers made from these blocks. The main building unit of 
ResNets, the residual block, is composed of multiple layers equipped with the skip 
connections. A variety of residual block modifications exist, the most common 
ones are: 

1. Identity Block: The simplest version of a residual block, the input is 
added directly to the output without any modifications. 

2. Convolutional Block: Adds the convolutional layers to the residual 
block to learn more complex mappings. 

The characteristic feature of ResNet, the Skip connections, are the distinguishing 
part that separates it from traditional neural networks. In a standard deep neural 
network, each layer feeds the output into the subsequent one. In the case of 
ResNet, certain layers are equipped with ‘shortcuts’ to non-adjacent layers.  
The roles of the skip connections are as follows: 

• Encourage Training:  Thanks to the ability of network to circumvent 
one or multiple layers, skip connections enhance gradient from across 
the network during backpropagation, thus simplifying the training of 
deeper networks. 

https://builtin.com/machine-learning/fully-connected-layer
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• Alleviate Vanishing Gradients: By enabling the gradients to omit 
layers, they reduce the problem of vanishing gradients in deep 
networks.  

• Identity Mapping: Skip connections essentially perform identity 
mapping, where the output of a layer is added to the output of the 
following layer, thus encouraging the preservation of information. 

The numbers in ResNet variants (34, 50, 101, 152) designate the number of layers 
found in the network. The architecture for each variant varies slightly: 

• ResNet-34: Uses basic blocks with two 3x3 convolutional layers 
each.  

• ResNet-50, 101, and 152: common feature is the use of bottleneck 
blocks, which have slightly increased complexity. Each bottleneck 
block consists of three layers: a 1x1 convolution (dimensional 
reduction), a 3x3 convolution (the main processing unit), and second 
1x1 convolution (dimensional restoration). This design increases the 
network efficiency and depth. 

Each version of ResNet is tailored to diverse needs and computational constraints. 
The smaller variants ResNet-34 and ResNet-50 are popular for tasks requiring 
balance between complexity and performance, the larger versions ResNet-101 and 
ResNet-152 are suitable for cases where model depth is necessary in order to 
process complex patterns. 

 
Figure 3 

Resnet 50 Architecture 

4.4 EfficientNet 

Proposed by [33] EfficientNet is a CNN architecture that can is characterized by 
its use of compound scaling. The main advantage of this concept is its high 
accuracy accompanied by computational efficiency. It scales uniformly the depth, 
width and resolution of the neural network. This addresses the problem of 
increasing accuracy while maintaining reasonable model size. Increasing depth by 
adding layers, width by adding channels containing convolutional layers 
considerably increases the number of parameters in the network. Larger number of 
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parameters leads to more calculations, exacerbating the overall computational 
burden. Another important aspect of scaling is that it leads to Memory Bottleneck 
as larger models with more parameters require more memory to store the model 
weights and activations during processing. To capture large-scale features with 
more pixels, high-resolution images require deeper networks, however, contrary to 
these are the finer features that prefer wider networks. To achieve improvements 
in accuracy and efficiency, all network dimensions need to be balanced during 
scaling. 

1. Width: The terms width in this context is applied to the number of 
channels present in each layer. With increasing width, complex features 
can be captured which improves the overall accuracy. On the other hand, 
the reduction of width leads to a more lightweight model. 

2. Depth: Depth scaling refers to the number of layers found in the 
network. Deeper models can capture more intricate representations of 
data; however, they require increased number of computational 
resources. Contrary to this, shallower models are computationally 
efficient with the significant possibility of the accuracy reduction. 

3. Resolution: The resolution scaling modifies the size of the input image. 
High resolution images contain more detailed information, potentially 
yielding superior performance. Their main drawback is that they require 
more computational power and resources. The lower resolution images 
are more resource-efficient; however, they may lead to a loss of 
information contained in finer details of a picture. 

To balance the three dimensions, EfficientNet uses a principled approach. This is 
initiated with a baseline model, used as a launching point. Generally, the baseline 
model is a reasonably sized model that has proven track record on a given task but 
offers a space for optimization in terms of accuracy or computational efficiency. 

A compound coefficient is a user-defined parameter that determines the amount of 
scaling for the dimensions. It is represented as a single scale value, scaling the 
depth, width and resolution of model uniformly. By adjusting the value of this 
coefficient, the overall complexity of the model and associated resource 
requirements can be adjusted. 

The main idea of compound scaling is to scale the dimensions of the baseline 
model (width, depth, and resolution) in a balanced and coordinated manner.  
The scaling factors for each dimension are derived from the compound coefficient 
labeled φ. 

• Width Scaling: The width scaled proportionally by raising φ to the 
power of another exponent (denoted as α). 

• Depth Scaling: the depth of the network is scaled by raising φ to another 
exponent (denoted as β). 
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• Resolution Scaling: The input image is scaled by multiplying the 
original resolution (r) by φ raised to a different exponent (often denoted 
as γ). 

Another important component of EfficientNet are Mobile Inverted Bottleneck 
(MBConv) layers. These are made as a combination of inverted residual blocks 
and depth-wise separable convolutions. The MBConv layers are a characteristic 
feature of the EfficientNet architecture. They are inspired by the inverted residual 
blocks sourced from MobileNetV2; however, they are modified. A standard 
MBConv layer starts with a depth-wise convolution, which is followed by a point-
wise convolution (1x1 convolution) that increases the number of channels, and 
finally, another 1x1 convolution that reduces the channels back to the original 
number. The bottleneck design is key to efficient learning of the model.  
The EfficientNet model architecture also uses the Squeeze-and-Excitation (SE) 
optimization to further enhance performance. This is incorporated in the SE block, 
which is designed to aid models in learning by suppressing less relevant features 
and shifting focus on the essential ones. To reduce dimensions of feature maps to 
single channel, the SE block employs global average pooling and subsequently 
two fully connected layers. This allows the model to learn feature dependencies 
and create attention weights, which are then combined with original feature map 
by multiplication, thus emphasizing relevant information. EfficientNet is available 
in a variety of different variants, for illustration EfficientNet-B0, EfficientNet-B1, 
with different scaling coefficients. For every variant, there is a different ratio of 
model size and accuracy balance, thus leaving it to the user to select 
correspondent one to the particular task and its respective requirements. 

4.5 ConvNext 

The ConvNeXT model was proposed in [34]. It is a pure convolutional model 
inspired by the design of Vision Transformers, with the aim to improve their 
performance. One of the features of ConvNets are their built-in inductive biases 
that make them well suited to a wide range of computer vision applications. In the 
field of computer vision, the stem of a network typically refers to the initial layer 
where input images will go through. This layer usually involves downsampling of 
the image and increasing feature map count (i.e. number of filter channels). In the 
case of traditional ResNet architectures, the stem consists of a 7x7 convolution 
with a stride of 2, followed by max pooling. In a convolution, when kernel size is 
larger than stride (when padding is 0), the result will overlap, meaning that the 
kernel will convolve over the input. In this way the adjacent information is 
captured resulting in preservation of relational data. 

ConvNext and of vision transformers use a “patchify stem”, which is done by a 
4x4 convolution a value of stride being 4. This is followed by layer normalization. 
Due to the stride and kernel sharing of the same size, the result is non-overlapping 
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convolution, meaning that kernel convolves over the input, no information sharing 
occurs between kernel and input, thus unique patches are produced. Ultimately, 
each of these receptive fields will be merged into the final layers of the network. 
In a classic residual block, which can be found in ResNet models, the input passes 
through multiple convolutional layers. There, the number of feature maps is down 
sampled after the entry and eventually upsampled when exiting the layer. 
Simultaneously, a skip connection enables the direct addition of original input to 
the output of the last convolutional layer. This novel modification has resulted in 
the possibility of achieving increased depth of neural networks while preserving 
training stability, resulting in the increasing ability to learn complex and abstract 
representations. Inverted bottleneck block, a component commonly associated 
with transformer architecture, is a specialized type of residual block. The Inverted 
Bottleneck starts with a depth-wise separable convolution, which is the 
combination of two convolutional layers: a depthwise convolution followed by a 
1x1 pointwise convolution where the number of feature maps is upsampled by a 
factor of 4. Subsequently, another 1x1 convolution follows, downsampling the 
feature map count back to original state that was before entering the block, 
allowing for a skip connection to be made at the end. ConvNeXt uses an Inverted 
Bottleneck block design that is similar to the transformers, paired with the layer 
normalization and GeLU activation. This block design is extremely 
computationally efficient compared to a vanilla residual block. 

 
Figure 4 

ConvNext Block 

The structure of the ConvNext model is complex, involving a wide variety of 
features, some of which are: 

• Original Architecture uses small size filters, which renders network 
lighter and less parameterized while having smaller computational 
requirements. 
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• Long Distance Connections: ConvNeXt directly connects the outputs of 
previous layers to the next layers using long distance connections. These 
connections improve network learning capabilities while increasing 
accuracy rates. 

• Group Normalization: Instead of layer normalization, ConvNeXt uses a 
normalization method called Group Normalization (GN), which enables 
the network to learn faster and results in training of models with fewer 
parameters. 

• Activation Function: ConvNeXt uses an activation function called 
GELU. GELU provides a linear output for values that are larger than 
zero. Contrary to the ReLU activation function, it has a non-linear output 
for negative values, which improves the performance of the network. 

• Global Average Pooling (GAP):  Used to flatten the output of the last 
convolution layer. 

The aim of ConvNeXt authors was to improve the CNN architecture of ResNet 
with considerable adjustments making it competitive against transformer 
architectures or architectures that contain attention mechanisms. These 
adjustments in the case of training follow these principles: 

• Mixup: a training technique where the network is trained on a convex 
combination of examples and their labels 

• Cutmix: a segment is cut from one image and pasted into another image. 
The label of this new compounded image is adjusted so it reflects the 
respective image labels in proportion to the image and pasted segments. 

• RandAugment: an automatic image augmentation that can be used out 
of the box. It works with a reduced search space, showing satisfactory 
performance on large datasets 

• Random Erasing: erases random sections of an image. 

• Stochastic Depth: training technique that shortens the network by 
randomly dropping layers during training. This allows better information 
and gradient flow. 

• Label Smoothing: takes marginalized effect of label dropping into 
account 

4.6 MobileNet 

As the name suggests, MobileNet was developed by [35] with the aim of creating 
a CNN that would be suitable for mobile and embedded devices. The first version 
of the MobileNet, MobileNet v1, trained 10 times faster in comparison to VGG16. 
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Not only is it significantly faster, but its size is also considerably smaller while 
remaining at par with benchmark models in terms of performance. The main 
features of the MobilNet architecture are depth-wise separable convolution 
replacing standard convolution, ReLU 6 replacing standard ReLU and width and 
resolution hyperparameters. There are three main versions of MobileNet available, 
each of them improving upon the previous one. The MobileNet V2, like the first 
version, uses depth-wise separable convolutions. These convolutions perform 
standard convolution in a two-way manner. First, is standard convolution, second 
is pointwise convolution. This separation leads to a significant reduction in a 
number of parameters and computations, increasing the networks efficiency. 
Instead of non-linear bottlenecks found in the first version, the V2 uses linear 
bottlenecks which secure a more optimal compression rate, which in turn prevents 
the loss of information while simultaneously increasing the accuracy of the model. 
The linear bottleneck layer uses the pattern of 1×1 convolution for expansion, 
depthwise convolution for spatial filtering, and another 1×1 convolution for 
projection. MobileNet V2 uses the modification of the ReLU activation functions, 
the ReLU6. The main aspect of ReLU6 is the restriction of the activation values to 
a range of [0, 6], which results in improved quantization properties for efficient 
computation on mobile devices. The use of ReLU6 helps in achieving a balance 
between accuracy and efficiency. The MobileNet V2 architecture is composed of 
several key building blocks, including the inverted residual block, which is the 
core component of the network. The architecture of MobileNet V2 consists of: 

1. Initial Convolution Layer: A standard convolution layer that contains 
32 filters and a has stride with the value of 2. 

2. Series of Inverted Residual Blocks: The network contains several 
stages, each with a specific number of inverted residual blocks.  
The expansion factors, output channels, and strides vary across individual 
stages to manage the computational complexity and receptive field. 

3. Final Convolution Layer: A 1×1 convolution layer with 1280 filters, 
followed by a global average pooling layer. 

4. Fully connected Layer: softmax activation for classification tasks 

The third version of MobileNet, V3, introduces the use of hard swish activation 
and squeeze-and-excitation modules that are found in MBConv blocks. It is two 
times faster, 30% smaller than the second version, however, the accuracy has 
decreased by 2%.  
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5 Experiments 

For each individual method, we have used the same approach. For experiments, 
we have used the Google Colab environment with T4 GPU. The work was 
conducted in Python programming language, for DL models we have used Keras 
library. For our purposes, we have used VGG16, ResNet50, DenseNet121, 
MobileNet, EfficientNet and ConvNext implementations from Keras.applications 
repository. In our experiments, we have modified the parameters of learning-rate 
and number of epochs. We have also used the early stopping in order to avoid 
overfitting. The input shape for each network was 256x256x3, the values were 
normalized. 

5.1 Dataset 

The used dataset was created as a combination of existing Flickr real face dataset 
(Flickr-Faces-HQ) provided by Nvidia that were collected for the StyleGAN 
paper. It also has good coverage of accessories such as eyeglasses, sunglasses, 
hats, etc. The images are split into two classes, fake and real, each of them 
containing 70000 samples. The images were crawled from Flickr, thus inheriting 
all the biases of that website, and automatically aligned and cropped using dlib. 
Only images under permissive licenses were collected. Various automatic filters 
were used to prune the set, and finally Amazon Mechanical Turk was used to 
remove the occasional statues, paintings, or photos of photos. The part of dataset 
containing fake faces was created with the use of StyleGAN. The dataset pictures 
are labeled as real or fake, therefore, it is a binary classification task. The whole 
dataset is publicly available at [https://www.kaggle.com/code/nicoladisabato/fake-
face-detection-with-keras-accuracy-0-987]. The dataset is split into train, test and 
validation parts. The train contains 50000 samples, test 10000 and validation also 
10000, meaning that both classes have equal representation in each subdataset. 
The images are colored, have dimensions of 256 x 256 pixels and are focused on 
the faces. There are no multiple individuals depicted, only single face per picture. 

http://dlib.net/
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Figure 5 

Dataset example 

5.2 Test Results 

In this chapter, we have selected the best-performing variants of individual 
methods, which are summarized in Table 1. The selection criterium was the 
accuracy achieved on the validation set. Overall, all models achieved validation 
accuracy above 90%. 

The best results were achieved by the EfficientNet architecture with the validation 
accuracy of 96.76%, followed by ConvNext with 95. 72%. The worst performance 
was attained by the oldest architecture of VGG16, which scored 92.25%. 

Table 1 
Results 

Model Name  Validation accuracy  
VGG16  0.9225  
DenseNet121  0.9528  
ResNet50  0.9364  
MobileNet 0.9448 
EfficientNet 0.9676 
ConvNext 0.9572 

Conclusions 

Our conclusion is that with rapidly increasing capabilities of DL models and with 
accessible computing power in combination with the societal impact that the 
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social media have it is of a high importance to focus on the development of tools 
to detect artificially generated content. As the models that are used for generation 
of content constantly improve, the same needs to apply for the detection tools to 
prevent harmful conduct. The achieved performance of our selected architecture 
was comparable, with the best results achieved by EfficientNet. The accuracy 
provided by those models was satisfactory, each of them scoring above 90%, 
which would provide the potential user with a viable chance to detect false content 
including human faces. The experiments were conducted successfully considering 
the initial goal of this work, we do believe that the rapid development of large 
language models along with security measures implemented by social media will 
force the quality of generated content to increase which will in turn create a 
demand for improved detection models. 

It is important to point out that due to data availability we have performed 
experiments on a single dataset where deepfakes were created with single 
generative model, thus leaving certain characteristic detection marks. 
Implementing different generative model or overall settings (such as filters, video 
frames or photos with multiple people) will result in the inefficiency of the trained 
models. Therefore, we aim to focus on these shortcomings in our upcoming 
research by adding more recently generated samples from multiple models. 
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