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ABSTRACT
The technical revolution of Minimally Invasive Surgical (MIS) procedures had

a significant influence on the manual practice, opening the way to laparoscopic surgery,
then evolving into robotics surgery. Along with the benefits for patients, such as less
trauma, lower risk of complications, or faster recovery, this “keyhole” technique also
presents significant new challenges to the surgeons. The interventions often require
weary body posture, the range of motion is limited for the tools and the surgical in-
struments are cumbersome to manage. Teleoperated master–slave robots, such as the
da Vinci Surgical System, offer a general solution to these, enabling the surgeons to
operate in a more ergonomic, seated position at a master console, while their hand
motions are copied onto a robotic instrument inside the patient. Due to its positive
aspects, Robot-Assisted Minimally Invasive Surgery (RAMIS) has become a stan-
dard of care in the past few decades, having performed over 2.5 million procedures
per year worldwide. The next major step in the evolution of surgery could be the
introduction of automation. Partial and sequential introduction and increase of au-
tonomous capabilities could provide a safe way towards the concept of Surgery 4.0,
which integrates advanced robotics, digital technologies, and surgical data science to
improve precision, efficiency, and patient outcomes. The workflow of RAMIS pro-
cedures frequently contains monotonous and time-consuming elements; automation
of such subtasks would ease the cognitive load on the surgeons, allowing them to
pay more attention on the critical parts of the intervention. Unfortunately, autonomy
in the given environment, consisting mostly of soft organs, suffers from grave diffi-
culties. Unlike working on hard tissues, where exact registration of imaging data to
the instrument and the robot is possible, soft tissues are are highly deformable, per-
manently in motion, thus no pre-computed tool trajectories can be used efficiently.
Another challenge of surgical automation is undoubtedly the implementation of per-
ception algorithms usable in the complex human environment. Computer vision suf-
fers from reflections and features of different organs being highly similar, yet it is
still the gold standard. Due to the complexity of the environment, the equipment,
and the workflow, the field of surgical subtask automation is found to be quite chal-
lenging. Although serious research efforts have been invested to this area across
the globe, the objective definition and assessment of autonomous functions, standard
evaluation metrics, or benchmarking techniques have still not been formed. Another
important question is to what extent the surgeons are able to work together with those
autonomous functions, whether they are able to concentrate long enough while the
subtask is performed autonomously in order to supervise the execution. In this thesis,
the above-mentioned aspects of subtask automation in surgery are to be presented,
introducing the recent advances in surgical robot motion planning, perception, and
human–machine interaction, along with the limitations of task-level autonomy. A
characterization model for surgical automation, and a method for performance eval-
uation and comparison of automated surgical subtasks will be also shown. Finally,
the effect of automation of the surgeons’ performance is studied, providing insights
into the safe integration of autonomous functions into surgical practice.
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KIVONAT
A Minimálisan Invazı́v Sebészet (MIS) elterjedése jelentős hatással volt a se-

bészeti gyakorlatra, és lehetővé tette a laparoszkópos, majd a robotsebészeti tech-
nikák alkalmazásának elterjedését. A betegek számára biztosı́tott előnyök, mint
például a kisebb szöveti trauma, vagy a gyorsabb felépülés ellenére a MIS jelentős
kihı́vást is jelent a sebészek számára. A humán operatőr a beavatkozásokat gyak-
ran fárasztó testhelyzetben kényszerül végezni; a MIS eszközök kezelése nehézkes.
A teleoperációs mester–szolga tı́pusú robotok, mint a da Vinci Sebészeti Rendszer,
megoldást kı́nálnak ezekre a problémákra, lehetővé téve a sebész számára, hogy
ergonomikusabb testhelyzetben, egy teleoperációs konzolnál dolgozzon, miközben
kézmozdulatait a páciensen belül elhelyezkedő eszközök lekövetik. Előnyös tulaj-
donságainak köszönhetően a robottal támogatott minimál invazı́v sebészet (Robot-
Assisted Minimally Invasive Surgery, RAMIS) az elmúlt néhány évtizedben stan-
darddá vált a sebészeti gyakorlatban, évente több mint két és fél millió RAMIS be-
avatkozást hajtanak végre világszerte. A sebészet fejlődésében a következő nagy
lépés az automatizálás bevezetése lehet. Az önvezető autózással analóg módon az
autonóm készségek részleges és fokozatos bevezetése a sebészetben biztonságos utat
jelenthet a Sebészet 4.0 koncepció felé, amely fejlett robotikai és digitális techno-
lógiákat, valamint sebészeti adattudományt és adatalapú döntéstámogatást integrál a
pontosság, hatékonyság növelésének érdekében. A RAMIS eljárások munkafolya-
mata gyakran tartalmaz monoton és időigényes elemeket; az ilyen részfeladatok au-
tomatizálása csökkentené a sebész kognitı́v terhelését, lehetővé téve, hogy nagyobb
figyelmet fordı́thasson a beavatkozás kritikus részeire. A többnyire lágyszövetekból
álló műtéti környezetben az autonóm rendszerek fejlesztése komoly kihı́vást jelent.
Ellentétben például a csontszöveteken végzett beavatkozásokkal, ahol lehetséges a
pontos regisztráció az eszközök, a robot és az anatómia között, a lágyrészek folyama-
tosan mozgásban vannak, erősen deformálódnak, ı́gy nem igazán használhatóak előre
generált robot trajektóriák. A komplex környezet, a használt eszközök és a mun-
kafolyamat összetettsége miatt a sebészeti részfeladat-automatizálás területe megle-
hetősen nagy kihı́vást jelent. Bár világszerte komoly kutatási projektek folynak ezen
a területen, az autonóm funkciók objektı́v karakterizálása és validációja, standard va-
lidációs metrikák vagy benchmarking technikák még nem alakultak ki. További fon-
tos kérdés, hogy a sebészek hogyan tudnak együtt dolgozni ezekkel az autonóm rend-
szerekkel, például képesek-e a koncentrációt kellő ideig fenntartani a részfeladatok
robot általi végrehajtása közben az autonóm rendszer felügyeletéhez. A disszertá-
cióban a sebészeti részfeladat-automatizálás fent emlı́tett szempontjait vizsgáltam.
Sebészeti részfeladatok automatizálására kidolgozott, emberi mozgásmintákon ala-
puló módszertant, illetve azt támogató szoftver keretrendszert hoztam létre. Szintén
megalkottam egy, az autonóm sebészeti rendszereket karakterizáló modellt, valamint
az automatizált sebészeti részfeladatok teljesı́tményértékelésének, összehasonlı́tásá-
nak és validációjának módszertanát. Végül vizsgáltam az automatizálás sebészekre
gyakorolt hatását, és rámutattam az autonóm funkciók sebészeti gyakorlatba történő
biztonságos integrálásának lehetőségeire.
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Chapter 1

INTRODUCTION

1.1 Robot-Assisted Minimally Invasive Surgery
Minimally Invasive Surgery (MIS) induced a revolution in the surgical practice over the
last three decades. Contrary to the traditional manual technique operating through large in-
cisions, MIS is performed through few-centimeter-wide ports—incisions like keyholes—
using laparoscopic instruments, the area of operation is observed via an endoscopic cam-
era. Smaller incisions offer benefits both for the patient and the hospital, such as lower
risk of complications, faster recovery, and thus shorter hospital stay. On the other hand,
MIS presents new challenges to the surgeons, such as the limited range of motion with
less Degrees of Freedom (DoF) and also fatigue from weary body postures.

Robot-Assisted Minimally Invasive Surgery (RAMIS) was introduced to ease these
difficulties. The idea of teleoperated master–slave RAMIS systems originates from space
research: the intervention was to be performed on the patient—in this case an astronaut—
by a teleoperated device, controlled by a human surgeon through a master device on
Earth [1, 2]. The slave-side robot arms are equipped with laparoscopic instruments and an
endoscopic camera, and copy the movement of the surgeon at the remote site, while at the
master console, the surgeon observes the operation via the endoscopic camera stream.

However, real remote teleoperation has not become a daily practice, and stalled at the
state of research, mainly due to the issues caused by time delay. It has been demonstrated
that teleoperation itself can present a number of benefits. The communication latency can
be reduced to a level that is insignificant for the surgeon by placing the master and the
slave devices close to each other; in the case of commercial RAMIS systems, the master-
and the slave-side devices are in the same room. This technology can still reduce the
fatigue of the surgeon, being able to operate in a more ergonomic, seated position. Fur-
thermore, the movement of the surgeon can be scaled on the slave side—the most delicate
movements can be controlled by relatively large hand movements, and hand tremors can
also be filtered. Moreover, the advanced endoscopic system and robotic surgical instru-
ments of RAMIS enable the execution of more advanced workflows, potentially improving
the outcome of the interventions. One, and the best-known of those is the nerve-sparing
technique in radical prostatectomy, increasing the rate of preserving the patient’s erectile
function [3, 4].

Undoubtedly, the most successful RAMIS device is the da Vinci Surgical System (In-
tuitive Surgical Inc., Sunnyvale, CA), with over 9200 da Vinci units installed worldwide,



Fig. 1.1. The five generations of the da Vinci Surgical System: da Vinci Classic, launched in 2000 (1st gen-
eration); da Vinci S, launched in 2006 (2nd generation); da Vinci Si, launched in 2009 (3rd generation);
da Vinci X, da Vinci Xi, and da Vinci SP, launched from 2014 to 2018 (4th generation); da Vinci 5, launched
in 2024 (5th generation).

that performed more than 15 million procedures to date. It has been 20 years since the
1st generation was cleared by the U. S. Food and Drug Administration, and today, the 5th

generation is available (Fig. 1.1.), along with the research-enhanced version of the original
system, the da Vinci Research Kit (DVRK) [5, 6].

1.2 Partial Automation in Surgery
Many believe that the next step in the advancement of surgery will be subtask-level au-
tomation. Automating monotonous and time-consuming subtasks may decrease the cog-
nitive load on the surgeon, who then could better focus on the critical steps of the oper-
ation [7]. Currently, many research groups are working on this problem [LT5][LTNR1];
some groups chose to work in ex vivo, in vivo [8], or realistic phantom environments [9],
but simplified silicone phantoms are utilized mostly [10, 11, 12, 13][LT1, LT2][LTNR5].

Unfortunately for the researchers, autonomy in the surgical environment affecting
mostly soft tissues, presents grave difficulties. Unlike working on rigid-tissues, where
exact registration to the instrument is possible, soft tissues are permanently in motion, and
highly deformable, thus no pre-computed tool trajectories can be used. Another challenge
of surgical automation is undoubtedly the implementation of perception algorithms usable

15



in this complex environment. Computer vision suffers from reflections and the fact that the
visual features of different organs being very similar, yet it is still the gold standard. New
methods relying on palpation emerged in the last years, where force sensors can be utilized
e.g., to find the location of tumors or other anatomies/pathologies [12, 14, 15][LTNR9].

Finally, irrespective of the nature of automation, the supervision of the surgeon is
crucial and safety critical during the execution, that requires effective human–machine
interaction. The surgeon should be able to parameterize and launch autonomous ex-
ecution. They also must have the ability to observe the area of operation during au-
tonomous execution, and to gain back manual control anytime if necessary, or the au-
tonomous algorithm encounters events it cannot solve [16]. This requirement closely par-
allels the domain of self-driving cars, where human intervention remains essential in cases
of sensor failures, unpredictable environmental changes, or ethical decision-making dilem-
mas [17][LT9][LTNR6]. In both fields, autonomous decision-making relies on real-time
data interpretation, risk assessment, and predefined safety protocols; the challenge in both
domains lies in creating robust algorithms that ensure safety and reliability while adapting
to unpredictable conditions.

1.3 Research Goals
RAMIS often involves time-consuming and monotonous subtasks. Automating these sub-
tasks can reduce the surgeons’ cognitive load, allowing them to focus more on critical
aspects of the procedure. Recent technological advancements, like deep learning or smart
mechatronics, offer an increased capability in the automation of surgical subtasks; and
consequently, it became a prevailing topic in the research community. Meanwhile, sev-
eral challenges remain, including operating in a continuously changing soft tissue envi-
ronment, difficulties in anatomical and pathological recognition due to visual limitations,
such as glare and the complexity of both the procedures and the instruments used.

To address these challenges, my research aimed to:

1. Develop a standardized methodology to support the automation of surgical sub-
tasks in RAMIS. The field of RAMIS automation is highly fragmented, with most
systems being far from clinical translation. A unified, transparent framework is nec-
essary to support the development of autonomous RAMIS systems.

2. Establish robust validation metrics for clinical applicability. Many developed
systems lack proper validation and adjacent metrics, making comparisons difficult.
A standardized methodology is required to assess and compare the clinical applica-
bility of autonomous surgical systems.

3. Monitor and quantify situational awareness in surgical automation. Increased
automation may reduce the operator’s SA, potentially affecting performance. It is
essential to monitor and quantify this effect to ensure safe and effective human–
machine interaction.
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Chapter 2

RELATED WORK

2.1 Degree of Autonomy of Surgical Equipment
Just over a decade ago, the joint International Organization for Standardization (ISO) and
International Electrotechnical Commission (IEC) Technical Committee (TC) group ana-
lyzed the status of surgical robot standardization. Only one major gap was found: the
Degree of Autonomy (DoA)—employed in ISO 8373:2012 – Robots and robotic devices
– Vocabulary—was not defined properly. Understanding the fact that the proper definition
of autonomy and its conjugated forms “autonomous”, “automation”, or related definitions
can be unambiguous, the ISO/IEC joint working group decided to extend the scope of their
work to all Medical Electrical Equipment (MEE) or Medical Electrical System (MES) with
a DoA (other than zero). The discussion on the topic was conceived in a new Technical
Report (TR) IEC/TR 60601-4-1: Medical electrical equipment – Part 4-1: Guidance and
interpretation – Medical electrical equipment and medical electrical systems employing
a degree of autonomy. The TR recommended to omit such words like “automation” or
“automatic” within this robotic standard; DoA was defined instead as “taxonomy based on
the properties and capabilities of the MEE or MES related to autonomy”.

Derived from the field of industrial automation [18] and service robotics [19, 20], the
TR recommends the parametrization of DoA along four cognition-related functions of a
system, which are affecting options of an MES:

• Generate an option: to formulate possible options, based on the result of the mon-
itoring task for achieving predefined goals;

• Execute an option: to carry out the selected option. Robots can typically be active
or passive supporters of a surgical task execution;

• Monitor an option: to collect necessary information to perceive the status of MEE
or MES, patient, operator, or environment. Therefore, signals beyond the internal
(proprioceptive) control signals of the robot;

• Select an option: to decide on a particular option from the pool of generated.

DoA = F{G|E|M |S} (2.1)

where the overall DoA metric is normed sum of the four functions of the system assessed
on a linear scale, 0 meaning fully manual and 1 fully autonomous.



TABLE 2.1: Descriptive classification of Degree of Au-
tonomy adapted from [18] based on IEC/TR 60601-4-1.
H: the human operator performs the given function. C: the
computer-driven system performs the given function.

DoA Description Monitor Generate Select Execute

1.

Full manual (FM): No autonomy in-
volved. The operator performs all tasks
including monitoring the state of the
system, generating performance op-
tions, selecting the option to perform
(decision making) and executing the
decision made, i.e., physically imple-
menting it.

H H H H

2.

Teleoperation (TO): The equipment
assists the operator with the execution
of the selected action, although contin-
uous operator control is required. The
operator performs all tasks, including
monitoring the state of the equipment,
generating options, selecting the de-
sired option and execution of it. (Mas-
ter–Slave teleoperation.) Note: tradi-
tional robotics standards consider tele-
operation as zero DoA.

H/C H H H/C

3.

Pre-programmed execution (PE):
The operator generates and selects the
options to be performed without any
analysis or selection by the equipment.
Note: traditional robotic standards
considered this as “autonomous” or
“automatic” operation.

H/C H H C

4.

Shared decision (SD): Both the oper-
ator and the equipment generate possi-
ble decision options. The operator re-
tains full control over the selection of
which option to execute. Both the op-
erator and the equipment participate in
the execution.

H/C H/C H H/C
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5.

Decision support (DS): The equip-
ment generates a list of decision op-
tions, which the operator can select
from, or the operator may generate al-
ternative options. Once the human has
selected an option, it is turned over to
the equipment to execute it.

H/C H/C H C

6.

Blended decision (BD): The equip-
ment generates a list of decision op-
tions, which it selects from and exe-
cutes if the operator consents. The op-
erator may also generate and select an
alternative option; the equipment will
then execute the selected action. BD
represents a high-level decision sup-
port system that is capable of selecting
among alternatives as well as executing
the selected option.

H/C H/C H/C C

7.

Guided decision (GD): The equip-
ment presents a set of actions to the
operator. The operator’s role is to se-
lect from this set, he/she cannot gen-
erate any other additional option. The
equipment will fully executes the se-
lected action.

H/C C H C

8.

Autonomous decision (AD): The
equipment selects the best option
and executes it, based upon a list of
alternatives it has generated (this list
can be augmented by alternatives
suggested by the operator).

H/C H/C C C

9.

Operator monitoring (OM): The
equipment generates options, selects
the option to implement and executes
it. The operator monitors the equip-
ment and intervenes if necessary. In-
tervention places the human in the role
of making a different option selection.
During the procedure there may be de-
cision making points that will be de-
cided by the equipment.

H/C C C C
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10.

Full autonomy (FA): The equipment
carries out all actions. The operator
does not intervene except to e-stop the
equipment (which is a general require-
ment).

C C C C

The objective assessment of the DoA of a system can be utilized along the four de-
scribed functions, each can be performed by a human or by a computer. The DoA of the
system is defined on a scale from 0 to 1; DoA = 0 means “no autonomy”, and the highest
DoA represents “full autonomy”. The low-level electronic and computational functions of
MEE or MES, like communication or motor control, are excluded from this definition, as
the term “no autonomy” is meant on the system level. Also, a classification of DoA can be
given at different levels of granularity, depending on the level where those functions are
implemented.

Autonomous execution is already present in surgery (especially in image-guided surg-
ery), however decision making (selecting) is mostly done by human experts. On the other
hand, computer systems are more capable in monitoring tasks compared to humans, hence
most critical processes happen at a faster scale humans can perceive; this is the safety
concept of Situation Awareness (SA).

The TR offers various alternatives for DoA assessment; the most applicable one, based
on industrial automation, defines 10 levels of DoA (Table 2.1). Practically, during the risk
management of a surgical robot (most commonly according to ISO 14971 – Application
of risk management to medical devices), DoA should also be taken into account; DoA
does not necessarily correlates with the level of risk, but it may impact risk management
gravely. In the case of an error or malfunction, the take-over of the human operator may be
necessary. Due to loss of SA the operator may not be able to control the situation properly,
thus the DoA determines the handling of the hazards. At lower DoA, the responsibility can
be shared between the human and the robot; at higher DoA malfunctions presents critical
hazards.

2.1.1 Basic Safety and Essential Performance of Surgical Robots
From the aspect of the user (and also of the manufacturer), avoiding and managing any
kind of failure (software, hardware, communication, system-level) is critical. In the past
three decades, 33 documented casualties were caused by industrial robots, which is still
only giving 0.0005% of all work-related deaths [21]. None of the surgical robotic cases
are included in this statistics. Alemzadeh et al. conducted a study in the field of robotic
surgery [22], using the United Sates Food and Drug Administration (FDA) Manufacturer
and User Facility Device Experience (MAUDE) database, covering reports from 2000 to
2013. According to their findings, out of 1.74 million robotic procedures, 10,624 adverse
events were reported, including 1,391 injuries and 144 deaths. A high number of injuries
were caused by electrical arcing, which led to injuries such as burned tissues. Overall, 9
patient deaths were reported in conjunction with device malfunctions, such as unintended
operation of instruments or detachment of broken pieces, fell into the patient’s body. In the
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case of surgical robotics—especially in RAMIS—the human surgeon takes full liability for
the outcome of the intervention (as ruled in all juridical cases up to now).

With the increase of DoA, risk mitigation and management become crucial. Method-
ologies to support the safety of design and development of robotic devices were published
by various groups, like the generic Hazard Identification and Safety Insurance Control
(HISIC) policy that has been applied to several robotic systems [23].

In 2015, the ISO/IEC TC 62/SC 62D joint committee started a discussion on the min-
imum requirements for a practical degree of safety for surgical robots; the results were
published in 2019 as IEC 80601-2-77: Particular requirements for the basic safety and
essential performance of Robotically Assisted Surgical Equipment (RASE). IEC 80601-2-
77 is tailored specifically for the invasiveness of surgical robots, making it distinct from
non-medical robotic applications. The standard collects all relevant thermal and mechan-
ical hazards, along with the required usability trials. It also defines the basic types of
surgical robots and their relevant components. In terms of RAMIS, the focal points of the
standard are:

• robotic surgical instruments;
• the patient-side part of the robot;
• the operator-side part of the robot;
• the endoscope holder (if any).

The same committee also finalized a standard, focusing on the hazards related to loss
of SA, namely IEC 80601-2-78: Particular requirements for the basic safety and essential
performance of medical robots for rehabilitation, compensation or alleviation of disease,
injury or disability. This standard defines SA as “the operator’s perception, comprehen-
sion, and prediction of a robot’s behavior in its environment”. SA is a key factor in tasks
where human supervision or interaction with the robot is necessary to reduce risk. The
standard states that the manufacturers will have to include necessary SA information for
their future medical robotic systems. The quality of the Human–Machine Interface (HMI)
is essential to keep SA; if the critical information is forwarded to the human operator
through an adequate way, e.g., sound alerts, that may highly increase SA.

By the introduction of Artificial Intelligence (AI) methods to robotic surgery, the sys-
tem may also offer decision support to handle complex situations [16]. With the increasing
role of AI-driven decision support in surgical robotics, ISO/IEC 25059: Quality models for
AI systems provides a standardized quality model for AI systems. This standard outlines
metrics for evaluating AI performance, ensuring that AI components used in surgery meet
rigorous accuracy, robustness, and transparency criteria. From August 1, 2024, the Euro-
pean Union enacted the EU AI Act, introducing a risk-based regulatory framework for arti-
ficial intelligence, categorizing AI systems into different risk levels. High-risk AI systems,
including those that could negatively impact human health, safety, or fundamental rights,
are permitted but must comply with strict requirements and obligations before entering the
EU market. These requirements include transparency, human oversight, data governance,
robustness, and accuracy to ensure AI systems operate safely and ethically. The EU AI
Act aims to balance innovation with public safety, ensuring that AI technologies enhance
healthcare outcomes without compromising patient well-being or ethical standards.
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It is believed in the community, that upcoming standards and regulations would fo-
cus more on the safety of the patients and the improvement of the treatments rather than
technical metrics, and willing to continue work aiming that goal.

2.2 Level of Autonomy for Surgical Robots
Although the standards, mentioned above are fundamental for the assessment of the ca-
pabilities of surgical robotic systems, they are not definite enough to present taxonomy to
generally assess the development phases of surgical robotics, or to perform benchmark-
ing. A structured classification system is necessary to categorize surgical robotic systems
based on their advancement relative to the field. A gradual mapping was presented in [24],
to classify the autonomous capabilities of surgical robots. Some earlier work suggested to
put the HMI into the center of the classification, defining a 0–7 scale [25]. Similar con-
cepts are also presented in the field of self-driving; in [26] a 6-grade scale was introduced
for autonomous vehicles. At higher levels of autonomy, the role of the robot is still argued;
the robot is not only a medical device anymore, but it also practices medicine, which is en-
tirely different from the viewpoint of regulatory. The FDA, for example, regulates medical
devices, but not the practice of medicine.

The mapping of [24] has one fundamental problem in the middle ranges Level of Au-
tonomy (LoA), where the most of the current autonomous capabilities would fall into: this
mapping offers no metric to determine the level of human supervision required. The role
of SA may be crucial to distinguish the cognitive level up to which the human may be able
and shall be allowed to perform take-over; described as human-on-the-loop control [27].

Any autonomy classification must account for human supervision dependency. Since
human sensory and cognitive processing capabilities are limited, the loss of SA can di-
rectly impact a surgeon’s ability to intervene when required. Whether in partial autonomy—
where the system assists but requires human oversight—or conditional autonomy—where
the system operates independently under certain predefined conditions—the distinction
lies in how and when human intervention is expected. The key factor is the cognitive time
horizon available for human response, which determines the feasibility of safe supervisory
control in an autonomous surgical system.

Coherent to the current standardization efforts, yet fitting to the commonly used terms,
the following scale of LoA is suggested [LT5] (Fig. 2.1):

• LoA 0 — No autonomy: all system-level functions (generating, selecting, execut-
ing, and monitoring actions) are performed by the human operator. Technically it
means that during the surgery no active robotic equipment is used, thus it may be
considered identical to a non-robotic case.

• LoA 1 — Robot assistance: the surgical robot performs specific, low level func-
tions only. E.g., teleoperated systems, tremor filtering, minor safety features.

• LoA 2 — Task-level autonomy: the system is trusted to complete certain tasks
or sub-tasks in an autonomous manner. E.g., image-guided bone drilling, wound
closure. It may only happen for a short instance.

• LoA 3 — Supervised autonomy: the system can autonomously complete large
sections of a surgical procedure, while making low-level cognitive decisions. All
actions are performed under human supervision, assuming the operator’s full SA.
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Fig. 2.1. The 6-grade classification for assessing the autonomous capabilities of surgical robots. The
concept of Level of Autonomy follows the ISO/IEC standardization framework, determining LoA based on
the human versus robotic functions of the system [LT5].

• LoA 4 — High-level autonomy: the robotic system executes complete procedures
based on human-approved surgical plans, while the human only has the capability
to emergency stop (e-stop) the procedure. The robot shall be able to complete the
task even if the human fails to respond appropriately to a request to intervene.

• LoA 5 — Full autonomy: the robotic system operates autonomously at all times,
managing both routine and adverse conditions without requiring human interven-
tion. The system succeeds in scenarios where even the best human operator would
fail, therefore there will be no need for a human fallback option.

Unlike DoA, this LoA definition is empirical, focusing on the key enabling robot ca-
pabilities of a system. Full autonomy of surgical robots still belongs to the domain of
science fiction, however, several techniques based on AI and machine learning are being
under intensive research by various research groups [28, 29]. Many believe that, similarly
to domain of self-driving vehicles, the market will suddenly get interested in autonomy, as
LoA 3 (Supervised Autonomy) becomes reliable and widely used.

2.3 Recent Trends in Automating Surgery
The first papers on RAMIS subtask automation appeared in the middle of ’00s, with focus
on knot-tying and suturing [LTNR1]. Currently, partial (or conditional) automation is the
most intensively researched domain of surgical automation. The workflow of RAMIS
interventions often contains subtask elements, that are time-consuming and repetitive,
such as blunt dissection or grasping and holding tissues [30]. Partial automation—the
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automation of such subtasks—may reduce the cognitive load and fatigue on the human
surgeon, making possible them to pay more attention on the critical subtasks of the oper-
ation [LTNR5]. The technological advancements of the past few years in the domain of
deep learning or mechatronics offer a rising potential on the research of surgical subtask
automation [31].

In the most recent years, the automation of simple surgical training exercises on rigid
[41, 43, 48, 49, 50, 51] or deformable [32, 52] phantoms tends to get into the focus of
attention. Among all the training exercises, the automation of different versions of peg
transfer is presented in a significant number of studies [41, 43, 48, 49, 50, 51], prob-
ably due to its simplicity, enabling to elaborate the basic principles and best algorithms
for automation. A number of further subtasks are currently under active research, such as
different aspects of suturing, soft tissue cutting, debridement, palpation, or blunt dissec-
tion [32, 38, 39, 11, 12, 8, 40, 10, 28, 37]. These works are compiled into Table 2.2.

One of the first successful projects in the domain—the work of UC Berkeley AUTO-
LAB and Center for Automation and Learning for Medical Robotics (CAL-MR)—was
presented [32], with not one, but two surgical subtasks completed autonomously in phan-
tom environment, using the DVRK: multilateral (using at least two arms) debridement
(Fig. 2.2a–b) and shape cutting (Fig. 2.2c). In this work, the learning by observation ap-
proach was used: human motion patterns were recorded and segmented, and then those
patterns were used to generate robot trajectories during autonomous execution. The mo-
tion segments were, e.g., in the case of debridement: motion, penetration, grasping, retrac-
tion, and cutting. In order to autonomously execute the motion segments, a state machine
was compiled for each subtask. The state machine required parameters for the motion
segments for execution, e.g., the height of lifting motion in the case of retraction. The
parameters were determined empirically, using binary search methodology. After each

Fig. 2.2. Recently automated surgical subtasks. a-c) Multilateral cutting [32]; d) tumor palpation [39]; and
e) resection, debridement [10].
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TABLE 2.2
LIST OF SURGICAL SUBTASKS FROM THE ASPECT OF SUITABILITY FOR PARTIAL AUTOMATION.

Subtask Platform Sensory
input

Experimental
environment Complexity Clinical

relevance Ref.

shape cutting DVRK stereo
camera

gauze patch,
FRS Dome1 medium high [32]

suturing DVRK stereo
camera

silicone, foam,
FRS Dome high high [11]

tissue manipu-
lation, needle
handling,
knot-tying

DVRK wrist
cameras

silicone phan-
tom, animal tis-
sues

high high [33]

needle han-
dling, vessel
dilation, shunt
insertion

DVRK –
simulation,
special
phantom

high high [34]

peg transfer,
needle han-
dling, gauze
retrieve

DVRK stereo
camera

simulation,
special
phantom

medium high [35][36]

ligation EndoBot – special
phantom medium high [37]

palpation DVRK force
sensor

special silicone
phantom, FRS
Dome

medium medium [12][38]

tumor
palpation and
resection

DVRK,
RAVEN

force
sensor

special silicone
phantom, FRS
Dome

high medium [39]

debridement DVRK stereo
camera tiny objects medium high [40][10]

suction and
debridement DVRK – special

phantom medium high [28]

bowel
anastomosis STAR2 RGB-D

camera porcine bowel high high [8]

peg transfer DVRK RGB-D
camera

peg transfer
board medium low [41][42]

peg transfer DVRK RGB-D
camera

peg transfer
board medium low [43][44]

[45]

peg transfer DVRK stereo
camera

peg transfer
board, simula-
tor

medium low [46]

peg transfer DVRK stereo
camera

peg transfer
board, simula-
tor

medium low [47]
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motion segment was parameterized and tested individually, the whole state machine was
tested again, and the parameters updated, if necessary. The positions of the targets were
estimated by computer vision, two pairs of stereo cameras were used to observe the field
of operation. The debridement targets and the circle for cutting were detected in the im-
ages, and robot’s trajectories were translated based on the 3D coordinates of the detected
objects. To evaluate the autonomous execution, autonomous debridement was executed 10
times with 5 targets each, and shape-cutting were performed 20 times. The repeatability
of the subtasks (ratio of successful trials) was respectively 96% and 70%.

Another work of the same research group [39], aimed at autonomous multilateral tu-
mor resection based on palpation in phantom environment (Fig. 2.2d). To achieve the
completion of these series of subtasks, custom-built instruments were designed, attach-
able to end effector of the da Vinci: a palpation probe, a scalpel, and a fluid injector. Also,
a state machine was compiled to execute the series of subtasks: scan the phantom by pal-
pation and localize the hard inclusion, making of the incision, removal of the inclusion
(debridement), and fluid injection to close the wound. To evaluate the performance of the
system, 10 end-to-end trials were performed, with overall 50% success rate. In 2 of the tri-
als, the tumor location was estimated incorrectly, another 2 times retraction failed, and in
1 trial the tumor was not fully resected, which shows the challenges given the complexity
of any surgical procedure. The authors asserted that the performance could be enhanced
by visual feedback and are planned to include computer vision features in the future.

Suturing is probably the most intensively researched subtask of RAMIS, it occurs quite
frequently in the workflow of surgical interventions, yet extremely time-consuming for the
surgeon, and challenging for automation. Suturing has two, highly difficult aspects: needle
guidance through the tissue on a given trajectory, and also thread manipulation, especially
during knot-tying [53, 54]. In another work of the UC Berkeley Automation Lab [11],
a solution for the former one is presented. To precisely grasp the needle, a positioning
adapter (Suture Needle Angular Positioner—SNAP) was designed, that itself achieved a
3-fold error reduction in needle pose. The needle position was estimated using camera im-
age, the needle size, trajectory, and control parameters using were optimized by sequential
convex programming. During the trials, the system was able to complete 86% of attempted
suture throws successfully. In a recent study by Kim et al. [33], the automation of surgi-
cal manipulation subtasks—tissue manipulation, needle handling, and knot-tying—,using
imitation learning and action chunking with transformers, is presented. The inconsistency
of kinematic data from the da Vinci is overcome by relative action formulation. Addition-
ally, they tested and evaluated the use of wrist cameras in the proposed imitation learning
technique.

Implementation of autonomous subtasks on cable-driven robots, like the da Vinci or
the RAVEN can be challenging due to their inherent non-linearities. The inaccurate robot
positioning causes no issue in teleoperation, as the human surgeon, who follows the tool
position on the endoscopic camera stream, is part of the control loop. However, in the
case of the automation of position-critical subtasks those inaccuracies can easily cause
failures. In Seita et al. [10] a two-phase calibration method was presented, to decrease
position errors of cable-driven surgical robots, using deep neural network and random

1Fundamentals of Robotic Surgery, Florida Hospital Nicholson Center, Celebration, FL
2Smart Tissue Autonomous Robot, Johns Hopkins University, Baltimore, MD
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Fig. 2.3. Recent works and their experimental setups for autonomous peg transfer: a) The solution of
Ginesi et al., utilizing answer set programming and dynamic movement primitives [41]; b) Automation using
deep recurrent neural networks by Hwang et al. [43]; c) A reinforcement learning-based implementation by
Xu et al., with the open-source SurRoL platform [46]; d) A shared control approach utilized learning by
observation technique by Zhang et al. [47].

forest techniques. By precise calibration, the debridement subtask was automated with
94.5% success rate (Fig. 2.2e).

Since the peg transfer training exercise is probably one of the most intensively re-
searched subtasks in the field of surgical automation, this exercise deserves to be men-
tioned separately. The first paper on surgical automation that mentions peg transfer dates
2014 [40], however, its automation received the most attention after the year of 2018.

Ginesi et al. presented a solution on autonomous peg transfer, with focus on the high-
level decision making (Fig. 2.3a) [41]. In their study, the task was to transfer colored
blocks (rings) to the appropriate colored pegs, that in instances required the removal of
other, obstructing blocks first. This problem was solved by answer set programming; the
tool trajectories were generated using dynamic movement primitives. Their later work [42]
focuses on dynamic movement primitives and obstacle avoidance.

Hwang et al. proposed implementations with emphasis on decreasing the positioning
error of the robotic instruments of the DVRK (Fig. 2.3b) [43, 44, 45]. This was achieved
using deep recurrent neural networks and a 3D printed fiducial for hand–eye registration.
The peg board utilized was also fully 3D printed; the source files for the board and also
for the fiducial are available online,3 making this setup highly usable as a benchmark
environment.

3https://sites.google.com/view/surgicalpegtransfer
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A reinforcement learning-based solution is presented in the work by Xu et al. (Fig. 2.3c)
[46]. The teaching of the system was performed in the open-source SurRoL platform,
offering a simulated gym environment for performing surgical tasks. Later, Huang et
al. [35] used the same simulation environment for a demonstration-guided reinforcement
learning-based method that narrows down exploration space by encouraging expert-like
behaviors and enabling robust guidance when confronting states unobserved in demon-
strations. Zhang et al. presented a solution to utilize a simulated environment to generate
the data required for learning by observation, then translate the learned principles to the
physical setup (Fig. 2.3d) [47].

The revolution of Large Language Models (LLMs) since the 2022 release of Chat-
GPT 3.5 [55] has also impacted this research field. Moghani et al. [34] introduced Su-
FIA, a framework for natural language-guided augmented dexterity that incorporates the
reasoning capabilities of LLMs, enabling a learning-free approach without requiring in-
context examples or motion primitives. SuFIA follows a human-in-the-loop paradigm,
allowing the surgeon to regain control when information is insufficient, thereby mitigat-
ing unexpected errors in mission-critical tasks. Fu et al. [36] proposed a goal-conditioned
decision transformer, which leverages large-scale transformers from LLMs to automate
goal-conditioned surgical robot subtasks, such as peg transfer and needle picking.
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Chapter 3

MATERIALS AND METHODS

3.1 Software Tools and Environment
To realize the data collection and processing for surgical subtask automation, complete
research platforms have to be built and constructed, bringing computer technology to the
operating room. On in academic domain, the Robot Operating System (ROS) [56] plat-
form is widely used in the research of robotics, and also preferred by many in the medical
robotics domain; most of the research centers, working on the two dominant platforms
presented below, rely on ROS. ROS is undoubtedly a powerful, modular tool with already
implemented solutions for most of the frequently occurring problems of the field, such as
stereo-camera calibration or acquisition of sensory data. A new version of the platform—
ROS 2—was released in 2017, offering, among other improvements, better support for
real-time systems and enhanced communication, making it more suitable for large-scale
and industrial applications. The transition to this new version is still ongoing; currently,
both versions coexist. Some parts of the presented implementations have already been
ported to ROS 2, while the discussion in this thesis remains independent from the specific
ROS version.

3.2 Available Open Research Platforms for Automating
Surgical Subtasks

The research projects on surgical subtask automation have utilized a number of robotic
devices during the last decade, including medical, industrial, or custom-built robots. How-
ever, the two RAMIS research platforms presented in the followings appear most domi-
nantly in the field, probably to ease the future translation of the developed methods to the
clinical practice.

3.2.1 The da Vinci Research Kit
Roughly 8 years ago, when the 1st generation da Vinci robots (da Vinci classic) was sent
to retirement due to the discontinued service and supply, the old systems found another
purpose. Those systems were still functional and could be utilized in applications more



tolerant to malfunctions. At the Johns Hopkins University, the development of a re-
search platform for those robots—the da Vinci Research Kit (DVRK)—was concluded,
and only within a few years, an active community was built with more than 40 setups
worldwide [57].

DVRK is a fully open-source platform, consisting of custom hardware and software
elements, in order to open the possibility of programming the da Vinci arms. The control-
lers—developed to operate the arms—are built on custom boards: an IEEE-1394 FPGA
board for computational power and low latency communication and a Quad Linear Am-
plifier (QLA) for high-frequency low-level robot control. The controllers are connected
to PC using IEEE 1394a (FireWire). On the PC side, the open-source cisst libraries are
responsible for the handling of FireWire communication and the mid-level control of the
robot. The cisst libraries offer the functionality to program the arms themselves. Addi-
tionally, cisst is also interfaced with ROS, which interface is currently used to program the
da Vinci arms at more than half of the DVRK locations [57, 58].

3.2.2 The RAVEN Platform
The RAVEN-I platform was originally developed at the University of Washington in the
mid-2000s, aiming for space use, and other specific application areas. Hence most surgical
robots were bulky, and meant to be used dominantly in the operating room. RAVEN-I was
to be a new, lighter, portable, and still durable surgical robot, with possibility to be used on
the field. After it has proved its versatility and durability in a number of experiments, e.g.,
in a trial on an underwater research station, as a part of the NASA’s NEEMO program,
its research potential was also soon discovered. In the beginning of 2010s, the University
of Washington Biorobotics Lab and the University of California Santa Cruz Bionics Lab
developed an updated design of the system, named RAVEN-II. Later, Applied Dexterity4

was formed to support the RAVEN community, and also the development of the RAVEN-
III platform was started. Today, there are 16 RAVEN sites worldwide within the cutting-
edge research of surgical robotics.

The research platform is fully open-source, consists of two 3 DoF positioning arms,
with 4 DoF attachable instruments—similar to the da Vinci. Like the DVRK, the system
is Linux-based, and uses ROS interface for programming [59].

3.3 Description of Surgical Subtasks
This thesis focuses on two surgical subtasks as models to support the developed con-
cepts and methodologies. These two subtasks presented below—blunt dissection and peg
transfer—, are simple enough to enable work on the very fundamentals of surgical subtask
automation, yet relevant from the clinical aspect.

3.3.1 The Blunt Dissection Surgical Subtask
Blunt dissection is a surgical subtask, where the surgeon carefully separates two tissue
layers without using the instruments’ cutting edges in an effort to avoid any damage to

4http://applieddexterity.com/about/history
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sensitive tissue structures (e.g., vessels, nerves). During blunt dissection, the retractor
holds the tissues, and the dissector is inserted between the two layers, then by opening of
the dissector it forces the two layers apart. This surgical subtask is a recurring element
in multiple procedures, where automation could ease the cognitive load on the surgeon
by relieving him/her from the repetitive manipulation of instruments, so the surgeon may
pay full attention to the patient-specific details of the surgery. Furthermore, robotically
executed procedures can provide an increased accuracy compared to the human operator,
therefore it can take effect the success of the operation. The frequency of blunt dissection
depends on the type of surgery. It is commonly used in laparoscopic, robotic, and open
surgeries, particularly in procedures involving delicate tissue separation. The duration of
blunt dissection varies significantly based on the procedure and the surgeon’s expertise but
can range from a few minutes to a considerable portion of the operation, especially in cases
requiring extensive tissue preparation [30, 60]. During Laparoscopic Cholecystectomy
(LC) procedures, blunt dissection is a commonly employed subtask to expose the Calot
triangle to avoid bile duct injuries [61].

3.3.2 The Peg Transfer Training Exercise
Peg transfer is probably the most frequently used exercise in MIS and RAMIS training
to improve hand–eye coordination and motor skills. It is also one of the five tasks of the
Fundamentals of Laparoscopic Surgery (FLS) exam [62]. The training task consists of a
pegboard, with two sets of 6 pegs, an 6 blocks (Fig. 3.1). The exercise as defined by FLS:

1. grasp each block with the non-dominant hand;
2. transfer the block mid-air to the dominant hand;
3. place the block on a peg on the opposite side of the pegboard.

Fig. 3.1. The peg transfer exercise is a core of the five tasks in the Fundamentals of Laparoscopic Surgery
(FLS) exam [62].
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Once all six blocks have been transferred to the opposite side of the board, reverse the
process and first grasp each block with the dominant hand, transferring mid-air to the non-
dominant hand, and place it on the original side of the pegboard. FLS scores the task as
follows: a penalty is applied if a block is dropped outside of the field of view; there is no
penalty for dropping the block within the field of view, if the block can be retrieved; also,
the task needs to be performed within a time limit (300 seconds for FLS exam).

Different variations can be defined for peg transfer. For instance, Hwang et al. [43]
defined three variations (Fig. 3.2):

• Unilateral Peg Transfer – Transfers executed by a single arm;
• Parallel Bilateral Peg Transfer – Transfers executed by two arms in parallel;
• Bilateral Handover Peg Transfer – Transfers executed by both arms, with a mid-air

transfer between the two arms.

Important to note that these variations have been defined for the purpose of automation
research, instead of surgical training. The Bilateral Handover method differs from the
Parallel Bilateral method in that it involves a transfer between the two arms mid-air, as
opposed to simultaneous parallel actions. This can have advantages in terms of precision
and flexibility, but introduces additional complexity and time due to the need for precise
coordination between the two arms. On the other hand, the Parallel Bilateral method is
more efficient, reducing the time required for the task.

Fig. 3.2. Variations of the peg transfer exercise by Hwang et al. (a) Unilateral: transfers executed by
a single arm; (b) Parallel Bilateral: transfers executed by two arms in parallel; (c) Bilateral Handover
transfers executed by both arms, with a mid-air transfer between the two arms [43].
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Chapter 4

METHODOLOGY FOR THE
AUTOMATION OF SURGICAL
SUBTASKS

4.1 Subtask Automation in Surgery
The first papers on RAMIS subtask automation appeared in the middle of ’00s, with focus
on knot-tying and suturing [LTNR1]. Currently, partial (or conditional) automation is the
most intensively researched domain of surgical automation. The workflow of RAMIS in-
terventions often contains subtask elements, that are time-consuming and repetitive, such
as blunt dissection or grasping and retracting tissues [30]. Partial automation—the automa-
tion of such subtasks—may reduce the cognitive load and fatigue on the human surgeon,
making possible them to pay more attention on the critical subtasks of the operation, re-
quiring complex decision-making and high SA, such as the clipping and cutting of vessels
or handling adverse events [63, 64, 65][LTNR5].

As the development of the technological background in the last couple of years offers
a rising potential, like deep learning or mechatronics, the automation of surgical subtasks
became a prevailing topic in the research of surgical robotics. A number of autonomous
surgical subtasks are already implemented, or being currently developed by various re-
search groups. A list of relevant subtasks in the research of surgical automation was pre-
sented in Table 2.2.

All of the mentioned surgical subtasks are to be performed on soft tissue, in a highly
deformable environment. In contrast to subtasks involving hard tissue, like bone cutting,
where the target organ can be fixed and registered to the surgical device via a naviga-
tion system, soft tissue presents new challenges from the aspect of automation, as the
robot has to operate in unpredictable environment. Probably the biggest challenge is the
development of perception algorithms; it is not trivial how the information, needed for
the execution of the current subtask can be extracted from the surrounding soft, reflec-
tive environment. Despite the fact that working implementations could be found e.g., on
instrument segmentation/pose estimation [66, 67] or organ segmentation and 3D recon-
struction [68, 69, 70], autonomous navigation inside the patient’s body still presents a
huge challenge and being under intensive research. As of today, shared control is a more



viable option for these clinical routines [71, 72]. Furthermore, the generation of required
motion patterns and the design of control methods for the manipulation of unknown soft
tissues are also problematic [73].

My aim was to develop a methodology and an open-source framework to support such
development projects; to provide software packages that contain already implemented
basic functionalities, eventually becoming universal building blocks in surgical subtask
automation. The architecture of this software package—the iRob Surgical Automation
Framework, or irob-saf—is presented here.

4.2 Granularity Levels of Surgical Motion
A key enabling approach to manage complexity is dividing the surgical workflow into
atomic elements. Identifying surgical subtasks makes it possible to guide the robotic in-
struments during soft tissue operations, following the decomposed surgical motions. This
can be performed on different levels of granularity, and can be used to compile a parame-
terizable motion library.

One of the fundamental tasks in the development of this surgical automation frame-
work was the hierarchical decomposition of surgical motion patterns. The workflow of
surgical interventions, as well as the motion of the surgeon, can be decomposed into ele-
ments on different levels of granularity [54], similar to behavior trees [74]. In the literature,
several different definitions of granularity levels of the surgical workflow have been found,
such as : Procedure, Task, Maneuver, Gesture by Vedula et al. [54]; Operation, Step, Sub-
task, Motion by Mackenzie et al. [75]; Task, Surgeme by Gao et al. [53]; Procedure, Phase,
Step, Action by Mascagni et al. [76]; Procedure, Task, Gesture by Ma et al. [30]. Although
these different definitions share similarities and contain analogies between the various vo-
cabularies, no consistent definition has been established for the entire domain. Also, most
of the definitions serve the need of surgical skill assessment and workflow analysis. To
decompose surgical motion and implement partial automation, it is necessary to define
these levels as precisely as possible. For that manner, the levels of granularity are defined
as follows (Fig. 4.1). Additionally, to better align with automation, an additional level was
introduced—Motion primitive—which serves as the foundation for implementing robotic
movements.
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Fig. 4.1. Overview of surgical motion’s granularity levels. Mapping of an example, Laparoscopic Chole-
cystectomy procedure onto different granularity levels.

1. Operation: The entire invasive part of the surgical procedure.
2. Task: Well delimited surgical activity with a given high-level target/goal to achieve.
3. Subtask: Circumscribed activity segments that accomplish specific minor land-

marks in completing the surgical task.
4. Surgeme: An atomic unit of intentional surgical activity resulting in a perceivable

and meaningful outcome.
5. Motion primitive: General elements of motion patterns, that can be directly trans-

lated into robot commands.

In most studies, the granularity level chosen for surgical automation is the level of
subtasks (Table 2.2). The execution of those subtasks usually leads to the accomplishment
of a specific milestone, which is in line with the term of partial automation. Subtasks can
be further divided into surgemes, which are universal to different subtasks. Thus, from the
viewpoint of automation, different subtasks can be built from a set of universal surgemes.
Those thoughts lead to the assembly of a motion library (irob-saf ), containing a set of
universal surgeme implementations.

To develop this motion library, a number of surgical subtasks had to be decomposed
into a set of universal surgemes. For that purpose, several features and events were defined
that separates subsequent surgemes from one another. A prime one is the overall shape of
motion; this distinguishes for example the cutting from free navigation. Another important
feature is the presence of tissue interaction during the surgeme; the instrument can move
freely in the abdomen, it can grasp a loose piece of tissue, or even manipulate a tissue
layer anchored to the anatomy. If the type of tissue interaction changes during the subtask
execution, it will surely mean the transition to another surgeme. The final aspect of de-
composition was the instrument required to be used during the procedure, e.g., a grasping
surgeme might not be performed using scissors, and a cutting might not be done using
grasping tools.
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4.3 The Architectural Design of a Framework for Surgi-
cal Subtask Automation

The ROS platform—used widely in robotics—offers solutions to build modular, reusable
software on a large scale. A ROS-based architecture consists of so-called nodes, intercom-
municating with each other over channels of three types:

• Topic: continuous data streaming;
• Service: request–response type communication with blocking behavior, has benefits

for e.g., requesting calculations;
• Action: request–response type communication with non-blocking behavior, useful

for environmental interactions.

Due to its advantages, the irob-saf framework was fully built on ROS, and tai-
lored for use alongside the DVRK. However, thanks to the implemented ROS interface,
the framework remains easily portable to other platforms. The control scheme of the de-
veloped framework operates as follows. Sensors and perception algorithms, managed by
ROS nodes, are used for the purpose of the measurement and estimation of the properties
of the environment. The information gained, including errors eventually, are all channeled
into the subtask-level logic node. This node is responsible for the processing of the in-
formation regarding the environment, and the commands originating from the surgeon.
Additionally, the surgical workflow is coded in this node; its elements are translated into
surgemes and sent to the surgeme server in the form of ROS actions. Propagating down
from the surgeme server, the robot motion is generated by a hierarchical network of nodes,
then sent to the robot (the ROS nodes from DVRK). It is important to note that, due to the
principle of partial automation, continuous monitoring by the surgeon remains essential
during the execution of the subtask (Fig. 4.2).

In the following, the details of the implemented framework’s packages are presented.
As an example, Fig. 4.3 illustrates a typical system built using the nodes of irob-saf,
including interfaces to robots and sensors.

Fig. 4.2. The control scheme of partial automation offered by the framework. Perception nodes gather
information from the environment. The subtasks-level logic contains the whole workflow of the subtask,
processes the incoming information, and also communicates with the surgeon. This node also sends com-
mands to the hierarchical set of nodes, appointing the surgemes to be executed. The generated motion is
executed by the robot under permanent monitoring of the surgeon.
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Camera image is one of the most important sources of information in the automa-
tion of RAMIS. The usage of the endoscopic camera image is undoubtedly the most ob-
vious choice, since it does not require the placement of any additional instrument into
the already crowded operating room. Nevertheless, in irob-saf, the video stream—
preferably stereo—can be provided by a wide range of cameras as long as it is interfaced
with a ROS topic. Example interfaces for USB webcameras and the stereo endoscope of
the da Vinci are implemented in the framework. The calibration of the cameras—either
mono or stereo—is performed by the built-in, easy-to-use camera calibration tool of the
ROS environment, using a checkerboard pattern [77]. Furthermore, the basic stereo image
processing algorithms, like disparity map calculation or the generation of the 3D point
cloud are also performed with one of the built-in libraries of ROS [78].

Fig. 4.3. An example of a system built of the ROS nodes offered by irob-saf.

37



The framework offers a pre-built infrastructure to run the algorithms usable for percep-
tion with the required input and output channels. These algorithms can be built using C++,
Python, or even MATLAB. To ease development, the framework contains examples such
as the detection of ChArUco markers [79]. As autonomous applications operate in increas-
ingly realistic environments, approaching clinical translation, environmental perception
becomes more critical. The implemented perception algorithms must handle dynamic soft
tissues, enabling real-time anatomy recognition, tissue surface reconstruction, and even
soft-tissue motion simulation [80]. Notably, additional sensor modalities, such as force
sensors or RGB-D cameras, can be seamlessly integrated into the existing infrastructure.

The structured information from the perception nodes is finally being submitted to the
subtask-level logic node, controlling the whole architecture. This node is subtask specific,
an individual node needs to be implemented for each different surgical subtask. Here
is where the information from the perception nodes is received and processed; all the
errors and exceptions regarding the autonomous system, and user (surgeon) interactions
are also channeled, and the surgeme level motion commands are generated. Subtask-
level logic nodes are designed to contain and perform the specific workflow of the current
subtask. The framework offers skeletons and also examples how to implement such nodes
for the specific surgical subtask. At this level, behavior trees would offer a very structured
representation of surgical knowledge and workflow [74], and it is planned to utilize this
model in the future development of the framework.

Based on the processed information and the implemented workflow logic, the subtask-
level logic node makes decisions on the execution of surgical actions—surgemes, and
sends commands to the robot through hierarchic chains of nodes (one chain per arm).
These chains communicate through ROS actions, making it possible for the higher-level
nodes to do further work during action execution, e.g., monitoring the environment, or
sending actions to other nodes. Moreover, actions provide the ability to send feedback and
the result of the action, or preempt the action with another, if any environmental change
makes it necessary, e.g., the location of the target changes or surrounding tissue moves
during the execution.

The commands regarding the execution of surgical actions first reach the surgeme-level
nodes. The surgical motion library, mentioned in Section 4.2, containing the implementa-
tion of universal surgemes, can be found in the package irob_motion of the framework.
This surgeme library offers surgemes as parameterizable ROS actions, such as: grasp, cut,
place object, release object, navigate, dissect, and manipulate tissue. The implemented
surgemes are able to do the necessary safety checks, e.g., the proper instrument is used for
the current surgeme. Further surgemes can be implemented based on the existing ones,
and then added to the library.

Inside the surgeme-level nodes, the surgemes are translated into robot trajectories
based on the pose of the Tool Center Point (TCP) and the angle between the jaws of the
instrument. To ensure smooth robot movements, Linear Segments with Parabolic Blends
(LSPB) trajectories are utilized [81]. The LSPB trajectory is characterized by constant
velocity along a portion of the path, with acceleration and deceleration at the start and
goal positions, resulting in a trapezoidal velocity profile (Fig. 4.4). In general, an LSPB
trajectory is given by
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Fig. 4.4. Position, velocity, and acceleration trajectories during a Linear Segment with Parabolic Blends
(LSPB) motion profile in one dimension, illustrating the smooth transition from acceleration to constant
velocity and deceleration phases.
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(4.1)

where r represents the position, r0 is the initial position, rf is the final position, vmax is
the maximum velocity, a is the constant acceleration, t1, t2, and tf represent the times
corresponding to the transition points for acceleration, constant velocity, and deceleration,
respectively. Also, to ensure smooth orientation interpolation between different poses,
Spherical Linear Interpolation (SLERP) was employed [82]. SLERP is a technique used
to interpolate between two unit quaternions (or rotation matrices), ensuring smooth and
continuous rotational transitions. Given two quaternions q0 and q1, representing the initial
and final orientations, the SLERP interpolation is defined as follows:

q(t) =
sin((1− t)θ)

sin(θ)
q0 +

sin(tθ)

sin(θ)
q1 (4.2)

where q(t) is the interpolated quaternion at time t, θ is the angle between q0 and q1, and
t ∈ [0, 1] is the interpolation parameter.

From the surgeme-level nodes, the commands—containing motion trajectories—prop-
agate down to the high-level robot control nodes. The arms of the surgical robot are
interfaced with the framework through high-level robot control nodes, one node per arm.
These nodes are responsible for executing the trajectories generated by higher level nodes,
while checking for errors originating from the robot.

The framework also offers solution for hand–eye calibration; namely the coordinate
systems of the arms can be registered to the camera coordinate frame, that makes possible
the generation of the robot motion relative to the camera. Visual markers attached to
the instruments are used to estimate the tool positions based on the stereo or RGB-D
camera stream. The hand–eye calibration can be performed using a Python script, that
simultaneously records tool positions in the robot coordinate frame (received from DVRK
through ROS) and in the camera coordinate frame (estimated using the visual markers), in
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manually set positions. The hand-eye calibration process involves finding the optimal rigid
transformation (rotation and translation) that aligns the robot coordinate system with the
camera coordinate system [83, 84, 85]. This transformation is commonly represented as a
rigid transformation matrix Tbase,camera that consists of a rotation matrix and a translation
vector. The basic equation for this transformation can be written as:

rbase = Tbase,camera · rcamera (4.3)

where rbase is the position vector in the robot coordinate frame and rcamera is the position
vector in the camera coordinate frame; this equation holds for each pair of correspond-
ing positions {rbase, rcamera} recorded during the calibration process. The transformation
matrix Tbase,camera is computed by minimizing the sum of squared differences between the
transformed robot positions and the measured camera positions using least-squares opti-
mization. Once Tbase,camera is determined, it is saved to a yaml file (“YAML Ain’t Markup
Language”), that is loaded by the corresponding high-level robot control node, which thus
able to receive position commands in the camera coordinate frame from the higher-level
nodes of the system.

These high-level robot control nodes are robot-specific, but their interface with the
other framework nodes is universal. As a result, using a different robot arm only requires
the implementation of the corresponding high-level control node, while the other frame-
work nodes remain fully reusable.

4.4 Examples
The usage of the framework is explained through two examples on the automation of
subtasks. It was decided to implement subtasks that require simpler perception methods;
those algorithms are out of scope of the current work. The automation of a training exercise
and an actual surgical exercise is presented in the followings.

4.4.1 Implementation of Autonomous Blunt Dissection
The first subtask example implemented using the framework was blunt dissection (Subsec-
tion 3.3.1). The development and testing of this algorithm was performed using a silicone
phantom consisting of two harder layers of silicone connected with a softer, destructible
silicone layer. This soft layer simulates the connective tissue, which can be penetrated
and dissected with a blunt surgical tool. Naturally, the human abdominal space consists of
much more complex tissue structures, with varying properties.

In our test environment (Fig. 4.5), two calibrated web cameras were utilized, with fixed
focal length, attached onto a stable frame to provide the stereo image feed. The detection
of the dissection profile relies on the depth map of the camera scene, calculated from the
distance of each corresponding point pair on the rectified stereo pair.

The process presented in Fig. 4.6 is initiated by manually selecting a starting and an
end point of the blunt dissection line. The precise dissection profile, where the dissection
will be performed, is selected autonomously, by searching for the local minima of depth
in the environment of the points of the manually selected dissection line (Fig. 4.6). The
accuracy of the dissection line detection is further increased using Hampel filter to remove
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Fig. 4.5. The utilized automated blunt dissection test setup. The DVRK-enabled da Vinci Surgical System,
a dissection phantom and a camera were involved.

Fig. 4.6. Method for blunt dissection automation via computer vision. a) Image of blunt dissection phan-
tom; b) disparity map of the field of view (greyscale represents the points’ distances from the camera); c)
plot of disparity changes in vertical direction; d) blunt dissection profile from the local minima of the dis-
parity map.

outliers. To ensure to progress evenly inward between the tissues, the point with the lowest
depth of the dissection profile is used for the location of the next dissection movement.

To estimate the depth in the field of view with a stereo system, it is crucial to cali-
brate the cameras. The stereo camera calibration was performed with 19 image pairs of
a checkerboard pattern (with the checkerboard size being 25 x 25 mm). For every case,
the pattern was fixed to a flat surface, as distortions in the pattern can greatly affect the
calibration. To achieve better calibration accuracy, it is important for the checkerboard
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pattern to be kept on an equal distance from the camera, within the expected field of in-
terest. During the calibration, the pattern was placed at different orientations relative to
the camera, and besides, the center points of the pattern were moved close to the frame
edges as well to account for lens distortion. After the calibration the reprojection errors
were calculated, which consisted of the error between the reprojected point in the camera
and the detected point. MATLAB Stereo Camera Calibrator App calculated reprojection
errors by projecting the checkerboard points from world coordinates (determined by the
checkerboard) into image coordinates. The Camera Calibrator App then compared the re-
projected points to the corresponding detected points. Reprojection errors are acceptable
if they are closer than one pixel [86].

The success of this computer vision method depends on environmental factors such as
light, noises, etc. To avoid complications caused by these factors, built-in functions are
necessary. It may be important to know the earlier positions of the target objection and the
dissection line. For this reason, a segmentation method was developed to detect the Region
of Interest (ROI) on the image. This segmentation method is based on the depth of the start
and end points of the dissection line; this way, if the surgeon chooses the right points, the
ROI can be easily detected. The system keeps track of the last known position of the
dissection line and searches for the corresponding local environment around it. Invalid
disparity values are filtered to avoid inaccurate position coordinates.

As the subtask-level logic node receives the points of the dissection profile, so-called
dissect surgemes are performed by the arm of the DVRK controlled da Vinci, consisting
of the following primitives:

• Dissect:
1. navigate to the point of dissection (Fig. 4.7a)

2. slowly penetrate the tissue (Fig. 4.7b)

3. open the jaws to separate layers (Fig. 4.7c)

4. pull out the instrument in an open position (Fig. 4.7d)

Fig. 4.7. Motion primitives of the surgical subtask automation. a) The surgical instrument (large needle
driver) moves to the dissection target; b) the robot pushes the instrument into the phantom; c) the instrument
is opened; d) the robot pulls out the instrument.
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The system for autonomous blunt dissection is built using nodes from the irob-saf
framework. It operates with a single arm, with computer vision implemented in MATLAB.
The USB stereo camera pair is handled by the irob_vision_support package.

4.4.2 Implementation of Autonomous Peg Transfer
Another example for automation is a RAMIS training exercise, peg transfer (Subsec-
tion 3.3.2). This exercise is simple enough to present how an autonomous subtask exe-
cution can be built using my framework. In the followings, two versions of the implemen-
tation are shown, one with a custom peg transfer board and simple marker-based computer
vision; while in the advanced version, the benchmarking environment by Hwang et al. [43]
was utilized, and both the blocks and the board were detected markerless in RGB-D cam-
era stream. Solutions on autonomous unilateral and bilateral handover variations of peg
transfer were implemented of the peg transfer exercise both in the first end the second
setup.

In the first version (Fig. 4.8), the position of the training board was estimated by the
stereo camera stream of the built-in endoscope of the da Vinci. The video stream was
captured by a DeckLink Blackmagic (Blackmagic Design Pty. Ltd., Port Melbourne, VIC)
card, and forwarded to ROS using GStreamer [87]. The cameras were calibrated using
the ROS built-in camera_calibration package. The board was marked by ArUco
or ChArUco markers, that can be detected robustly by the camera, and can be used to
estimate the board’s position [79]. To start the nodes for computer vision, the launching
of two launch files from the irob_vision_support package is necessary:

• cam_blackmagic_raw.launch: starts the node for streaming the camera im-
age from one of the da Vinci’s cameras

• charuco_detector.launch: for the pose estimation of the peg transfer board
based on a ChArUco marker.

As it was mentioned in Section 2.3, since the 3D models are openly available, the
pegboard designed by Hwang et al. is a perfect candidate for benchmarking autonomous
peg transfer, as those can be printed by anyone. In the advanced version of the application,

Fig. 4.8. The setup for the first version of the application performing the peg transfer exercise autonomously.
The board is marked using a ChArUco marker for image-based pose estimation.
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Fig. 4.9. The pegboard and blocks used in the advanced example. The board was fabricated using 3D
printing, the blocks were moulded from silicone, to avoid snapping out of the jaws of the tools.

two modifications were made to this environment: the color and the material of the blocks
(Fig. 4.9). Instead of printing those on a 3D printer, the blocks were moulded from Rubosil
SR-20 silicone. For the moulding, inverse mould was designed using the original 3D
model of the blocks, printable by 3D printer. The soft silicone blocks better represent a
biological target, and unlike the rigid printed ones, are not prone to snapping out of the
grippers. The silicone was also colored different than the board, to make detection and
pose estimation easier.

The endoscopic stereo cameras used with the da Vinci Classic are typically more than
15 years old, those are now outdated; the image resolution and quality makes image pro-
cessing quite challenging. Thus, a more up-to-date Intel RealSense D435i (Santa Clara,
CA) RGB-D camera was utilized in the advanced version of the example.

The hand–eye registration for the surgical instruments was also performed by the 3D
printed fiducial marker—graspable by the tool—designed by Hwang et al. [43] (Fig. 4.10).
The colored spheres were segmented on the RGB-D camera stream by color, and their
3D position was estimated using the built-in triangulation function of the RealSense SDK.
From the positions of the four spheres, the position of the instrument’s TCP was calculated
in the camera frame. At the same time, the TCP position was also received from the DVRK
controller through ROS, in the coordinate frame of the robot. Moving the TCP to different
positions within the field of the camera, the TCP position was collected in both frames in
15 instances. Those points then could be registered to get the transformation between the
camera and the robot frame.

The first approach in developing the advanced version of the application was to esti-
mate the positions of the blocks and the pegboard by fitting their known 3D models onto
the 3D point cloud from the RealSense camera. Unfortunately, it was found that since the
camera performs best with larger objects and at greater distances, the quality of the depth
image—and consequently, the 3D point cloud—is insufficient for the scale of the blocks
and the pegboard, rendering this method implausible. Thus, in the case of the blocks,
I decided to use the 2D image as far as possible. The blocks were detected and their
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Fig. 4.10. The fiducial, graspable by the instrument, from the design of Hwang et al [43]. It is used to
estimate the arms Tool Center Point (TCP) in the camera frame during hand-eye registration.

Fig. 4.11. The detection of the grasp locations of the blocks on the 2D image using color-based segmenta-
tion and edge detection.

positions were estimated using a traditional computer vision method from the OpenCV li-
brary [88]. The blocks were segmented by color, then the three outer edges were detected
using Canny edge detector and lines were fitted using Hough transformation. Next, an
affine transformation was calculated between these triangles and the known model, that
also contained the grasp locations (Fig. 4.11). The 3D coordinates were only calculated
using the mentioned triangulation algorithm of the RealSense SDK5 after the grasp loca-
tions’ image coordinates were calculated. Afterwards, these 3D coordinates were sent to
the subtask-level logic node through ROS. The position of the pegboard was estimated
by a similar method to the blocks, extended by RANSAC plane fitting applied on the 3D
point cloud using the Open3D library [89], it was also forwarded to the top-level node of
the system. The robustness and adaptiveness of object recognition and pose estimation—
e.g., to variations in color and lighting conditions—could be enhanced by utilizing neural
network models [90].

The nodes responsible for the generation and execution of surgical motion are oper-

5https://www.intelrealsense.com/sdk-2/
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ating at 4 different levels of hierarchy. The uppermost level is the level of subtasks, with
nodes of the irob_subtask_logic package. This level is built on a single node, that
contains the workflow of the subtasks, receives the pose estimation of the peg transfer
board, and chooses the surgemes for execution. The execution of surgemes is requested
using ROS actions, that is sent to the proper node in the lower level. The second level
of hierarchy contains the implementation of the universal surgemes. At this level, one
surgeme server node is launched for each arm operating, receiving ROS actions from the
subtask level, and sending ones to the lower, third level. This third level is responsible
for the high level control of the arms, and consists of robot server nodes; one such node
is responsible for the handling of one arm. These nodes accept ROS action commands
for robot movements, and are also connected to the appropriate DVRK node at the fourth,
lowermost level to execute the requested movements.

While the nodes of the three lower levels are universal for different subtasks, the up-
permost, subtask-level logic node is unique. This node contains the workflow, basically a
sequence of surgemes to execute, however, in the case of more complex subtasks, a state
machine implementation can be useful as well. The motion—both in the case of one and
two armed solutions—is composed of four surgemes: grasp, navigate, place, and release
(Fig. 4.12). All surgemes of the framework including these four, are built of two motion
primitives: spatial navigation of the instrument’s endpoint, and the movement of the in-
strument’s jaws. These motion primitives can be described well by only a few parameters,
and based on the given parameters, the robot trajectories can be easily generated. These
three surgemes are built up as follows:

• Grasp:
1. navigate to approach position (waypoints can be added)

2. navigate to grasp position

3. close jaws
• Navigate:

1. navigate to target position (waypoints can be added)
• Place:

1. navigate to approach position (waypoints can be added)

2. navigate to place position
• Release:

1. open jaws

2. navigate to leave position

The execution of these surgemes is requested by sending parameterized actions for
to the surgeme server representing the chosen arm. The parameters of these surgeme
action requests are calculated by the measured or estimated properties of the environment,
received from the computer vision module. Such parameters can be the size of the object
to grasp, the compression rate during grasping, or the approach and grasp positions of the
instrument endpoint.

This hierarchy can be assembled by launching the following instances, in the case of
bilateral handover execution:
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Fig. 4.12. The workflow used in the automation of bilateral handover variation of peg transfer. a) Setup
before starting peg transfer. b–d) Left arm grasps the object. e) The object is lifted to the passing location.
f–h) The object is grasped by the right arm. i–j) The object is released by the left arm. k–l) The object is
placed on the target peg. m–n) The object is released by the right arm.

• peg_transfer_dual.launch from package irob_subtask_logic
• surgeme_server.launch from package irob_motion, in two instances,

parameterized for each arms
• dvrk_server from package irob_robot, also in two instances, parameterized

for each arms
• DVRK console, with the arms to be operated.

4.5 Summary of the Thesis
A methodology for the automation of surgical subtasks, based on the hierarchical decom-
position of human surgical motions was proposed. Furthermore, an open-source, ROS-
based software package was presented, which is based on the proposed methodology and
able to ease surgical subtask automation research. This framework interfaces sensory in-
puts, perception algorithms and robots, and contains a surgeme-level motion library. The
whole system can be controlled by a subtask-level logic ROS node, tailored to the needs of
the current subtask to be automated. The iRob Surgical Automation Framework is avail-
able at https://github.com/ABC-iRobotics/irob-saf, and is being contin-
uously developed and updated.

The framework can help in the implementation of further, more complex subtasks. In
such development, it is straightforward to add new, necessary surgemes—like clipping or
suturing. The implementation of new subtasks can be added to the motion library easily.
Based on my experience, the most challenging aspect in automating more complex sub-
tasks is the perception estimation of the environment, as computer vision usually struggles
with light reflections or moving, deformable, and hardly recognizable tissue, even in phan-
tom environment, or ex vivo.

The applicability of the framework was shown by the implementation of autonomous
blunt dissection and an autonomous training exercise, the peg transfer, including the uni-
lateral and the bilateral variations.
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Chapter 5

ESTABLISHING STANDARD
METHODS FOR THE EVALUATION
OF AUTONOMOUS SURGICAL
SUBTASKS

5.1 Introduction
As it was mentioned in Chapter 2.3, many research groups are working on partial automa-
tion in surgery currently. Despite how intensively researched surgical subtask automation
is, there is no consensus on the choice of evaluation metrics on certain implementations
yet, thus it is hard to compare those methods to each other or even the technique of human
surgeons. Fontana et al. phrase the following on autonomous robotics: ”Within computer
science, autonomous robotics takes the uneasy role of a discipline where the features of
both systems (i.e., robots) and their operating environment (i.e., the physical world) con-
spire to make the application of the experimental scientific method most difficult.” [91].
According to their study, the difficulties caused by the large factor of uncertainties often
lead to a methodological problem. Namely, it is practically challenging to perform accu-
rate experimentation, thus methodological soundness often takes secondary role in robotic
studies, detaining repeatability and reproducibility. The absence of those aspects forces
even the best research works into the category of ”proof of concept”.

In this chapter, a contextual characterization model for surgical automation and evalua-
tion metrics and techniques are presented, usable to compare autonomous surgical subtask
execution to the performance of human surgeons, and to compare those autonomous meth-
ods to each other.

5.2 Characterization of Autonomy
Before the discussion of the evaluation metrics takes place, it is important to define the
contextual classification for the automation of surgical tasks. The Autonomy Levels for
Unmanned Systems (ALFUS) Ad Hoc Workgroup of National Institute of Standards and
Technology paid a significant effort to define a framework for the characterization of Un-



manned Systems (UMS) from the aspect of autonomy. The resulted ALFUS Framework
concerns a broad spectrum of UMS, including unmanned aerial, ground, maritime vehi-
cles, and unattended ground sensors which are applicable in areas like military, manufac-
turing, search and rescue, or medical domains. Within the ALFUS Framework, a three-
axis representation—the Contextual Autonomous Capability (CAC) model—was defined
to characterize UMS from the perspectives of requirements, capabilities, and levels of dif-
ficulty, complexity, or sophistication. The individually established scores (1–10) along
those three axes, namely Human Independence, Environmental Complexity, and Mission
Complexity are used to give a standard and straightforward characterization of certain au-
tonomous applications [19].

In this chapter’s context, a specialized version of the CAC model, Surgical Contextual
Autonomous Capability (SCAC), is introduced and customized to the domain of surgical
robotics. SCAC extends the Level of Autonomy (LoA, Section 2.2) concept of RAMIS,
presented in [7], offering a more detailed classification of autonomous surgical applica-
tions. The other foundation of the SCAC model is the Level of Clinical Realism (LoCR)
scale for surgical automation, defined in [92] as:

• LoCR 1 – Training tasks with rigid phantoms;
• LoCR 2 – Surgical tasks with simple phantoms;
• LoCR 3 – Surgical tasks with realistic phantoms, but little or no soft-tissue interac-

tion;
• LoCR 4 – Surgical tasks with soft-tissue interaction;
• LoCR 5 – Surgical tasks with soft-tissue topology changes.

The LoCR concept (Fig. 5.1) can be interpreted as a composite scale, as it includes
the complexity of both the environment and the surgical task. Thus, in this work it is
decomposed to two individual scales: Level of Environmental Complexity (LoEC, Sub-
section 5.2.2) and Level of Task Complexity (LoTC, Subsection 5.2.3). LoA, LoEC, and
LoTC are chosen to be the three aspects in the specialized, SCAC model (Fig. 5.2), match-
ing the original concept of the ALFUS Framework. The SCAC model is formulated as a

Fig. 5.1. The Level of Clinical Realism (LoCR) scale for Robot-Assisted Minimally Invasive Surgery
(RAMIS) with examples. LoCR 1: 3D printed board for the peg transfer training task, designed by Hwang
et al. [43]; LoCR 2: Fundamentals of Robotic Surgery (FRS) training dome; LoCR 3: 3D printed bone
phantom for drilling tasks; LoCR 4: anatomically relevant silicone pelvis phantom [93]; LoCR 5: in vivo
human surgical environment [94].
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Fig. 5.2. The three-axis model of Surgical Contextual Autonomous Capability (SCAC). The x, y, and
z axes represent the key characterizing aspects of autonomous surgical applications: Level of Autonomy
(LoA), Level of Environmental Complexity (LoEC), and Level of Task Complexity (LoTC), respectively.
The characterization of three example applications are illustrated: (a) autonomous peg transfer surgical
training exercise [LT4] (SCAC = F{LoA = 2|LoEC = 1|LoTC = 1}); (b) autonomous multi-throw
multilateral surgical suturing [11] (SCAC = F{LoA = 2|LoEC = 2|LoTC = 3}); (c) autonomous bone
drilling for total hip replacement surgery, performed by the TSolution One system (THINK Surgical Inc.,
Fremont, California) [95] (SCAC = F{LoA = 3|LoEC = 3|LoTC = 3}).

function of the aforementioned key factors, thereby providing a structured approach to
evaluate the capabilities of autonomous surgical systems. It is formally defined as follows:

SCAC = F{LoA|LoEC|LoTC} (5.1)

The proposed SCAC model is able to characterize autonomous surgical applications
from the perspectives of human independence and difficulty levels regarding the task and
the environment. Although this thesis focuses on surgical subtask automation, my model
concerns the whole domain of automation in surgery.

5.2.1 Level of Autonomy
Establishing objective conditions for autonomy has been a historical challenge for the
robotics community [96]. First, the Degree of Autonomy (DoA) was introduced in ISO
8373:1994 Robots and robotic devices — Vocabulary, but was defined properly only de-
cades later in IEC/TR 60601-4-1: Medical electrical equipment – Part 4-1: Guidance
and interpretation – Medical electrical equipment and medical electrical systems employ-
ing a degree of autonomy as ”taxonomy based on the properties and capabilities of the
medical electrical equipment or medical electrical system related to autonomy”. IEC/TR
60601-4-1:2017 recommends the parameterization of DoA along four cognition related
functions of a system, affecting options of a medical electrical system: Generate an op-
tion; Execute an option; Monitor an option; and Select an option [97]. The LoA concept
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Fig. 5.3. The Level of Autonomy (LoA) concept for surgical robotics proposed by Haidegger [7] with a
scale 0–5; from no autonomy to full autonomy.

of RAMIS—originating from the field of autonomous vehicles [LTNR6]—was proposed
in [7], modified from [24], simplifying DoA to offer a taxonomy to generally assess the
development phases of surgical robotics (Fig. 5.3). The proposed 6-grade scale is coherent
to the mainstream standardization efforts, and defined as the following:

• LoA 0 – No autonomy;
• LoA 1 – Robot assistance;
• LoA 2 – Task-level autonomy;
• LoA 3 – Supervised autonomy;
• LoA 4 – High-level autonomy;
• LoA 5 – Full autonomy.

5.2.2 Level of Environmental Complexity
The common surgical environment can be described more accurately than the broad range
of areas included in the ALFUS Framework. The proposed scale reading as follows:

• LoEC 1 – Training phantoms: made for the training of surgical skills (e.g., hand–eye
coordination), no or limited, highly abstract representation of the surgical environ-
ment, e.g., peg transfer;

• LoEC 2 – Simple surgical phantoms: made for certain surgical subtasks, modeling
one or few related key features of the real environment, e.g., silicone phantom for
pattern cutting;
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• LoEC 3 – Rigid, realistic surgical environment: realistic surgical phantoms or ex/in
vivo tissues/organs, little or no soft-tissue interaction, e.g., ex vivo bone for ortho-
pedic procedures;

• LoEC 4 – Soft, realistic surgical environment: realistic surgical phantoms or ex/in
vivo tissues/organs, soft-tissue interaction, e.g., anatomically accurate phantoms for
certain procedures or ex vivo environment;

• LoEC 5 – Dynamic, realistic surgical environment: realistic surgical phantoms or
ex/in vivo tissues/organs, soft-tissue topology changes, e.g., in vivo environment
with all relevant physiological motions.

5.2.3 Level of Task Complexity
The LoTC represents the Mission Complexity from the ALFUS Framework in the surgi-
cal domain. Two components of complexity were compiled into the proposed scale: is it a
training or an actual surgical task, and what are the Situation Awareness (SA) requirements
of the execution. SA is defined on 3 levels based on the cognitive understanding of the
(past–present–future) environment, and can be categorized into the following classes: spa-
tial (locations), identity (salient objects), temporal, goal, and system awareness [98, 99]:

• Level 1 SA – perception of the environment;
• Level 2 SA – comprehension of the current situation;
• Level 3 SA – projection of future status.

Based on the mentioned considerations, the following LoTC scale is proposed:

• LoTC 1 – Simple training tasks: no or limited, distant representation of surgical
task, no or Level 1 SA required, e.g., peg transfer;

• LoTC 2 – Advanced training tasks: no or distant representation of surgical task,
basic reasoning and Level 2 or 3 SA required, e.g., peg transfer with swapping rings;

• LoTC 3 – Simple surgical tasks: no or Level 1 SA required, e.g., debridement;
• LoTC 4 – Advanced surgical tasks: Level 2 SA, spatial knowledge and understand-

ing of the scene required, e.g., suturing;
• LoTC 5 – Complex surgical tasks: Level 3 SA, clinical and anatomical knowledge

required, e.g., stop acute bleeding.

5.3 Performance Metrics
For the purpose of validation of an autonomous surgical subtask, the most obvious idea
would be to compare it with the task execution of human surgeons—even with varying
skill levels. It is also viable to compare the performance of the autonomous system to
another, already validated one. For both methods, i.e., human–machine and machine–
machine comparison, the proper choice of performance metrics that describes how well
the subtask is executed is crucial [100].

Since the research domain of surgical subtask automation is still in its infancy, no
standard set of metrics has been established yet. In the case of surgical skill assessment,
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the standard practice is to appoint a ground truth for that skill level, e.g., the number of
surgeries performed, years of practice or manual scoring by an expert surgeon. Then, the
metrics measured in the experimental study are correlated to the ground truth to find out
which metrics are best related the surgical skill [100, 101]. To extend this methodology
of finding the metrics best represent the quality of autonomous surgical subtask execution,
there are three possibilities to correlate the metrics of the autonomous execution:

a) to the ground truth utilized in the case of human surgeons;
b) to the metrics from human execution that are found to be correlated with surgical

skill;
c) to new ground truth for autonomous execution.

All of these options are found to be quite problematic: in the case of a), the ground truth
metrics (e.g., years of practice) could not be interpreted for autonomous surgery; in the
case of b) relies on the statement, that the same metrics represent the quality of both
human and autonomous execution—which is not only not proved, but it is easy to see the
opposite e.g., for metrics like distance traveled or jerk. The only viable solution appears
to be option c) correlate to the new ground truth for autonomous execution. Unfortunately,
there is nothing analogous to the population of human surgeons for autonomous agents to
conduct such a study.

Although, it is not possible to experimentally prove which metrics represent the qual-
ity of an autonomous system or the clinical outcome best, a set of metrics can still be
recommended based on their various properties. In the following subsections, the area of
MIS skill assessment is reviewed briefly in terms of performance metrics, then the candi-
dates for standard performance metrics will be presented, organized by modality. Those
metrics are scored and evaluated along different aspects, and finally a recommendation
on standard validation metrics is proposed. Also, it is important to note that choosing the
fitting metrics to evaluate the performance of the given application greatly depends on the
system’s SCAC, the relationship of the metrics to choose and SCAC is also discussed.

5.3.1 Performance Metrics in Surgical Skill Assessment
The principle of RAMIS subtask automation is to take inspiration from human surgical
actions as a reference for skillful execution. Thus, the search for metrics to evaluate the
performance of an autonomous surgical application should start in the area of MIS skill
assessment. Finding the metrics that best correlate with the surgical skill is far from trivial,
and already has an extensive literature [100, 101]. For example, one could think that
mortality rate after the surgery would somehow relate to the surgical skill; the better the
surgeon the lower the mortality rate would be. However, there are a number of different
factors contributing to this metric. For instance, a beginner surgeon may not undertake
the operation of patients with poor health condition, and does low-risk surgeries instead,
resulting in low mortality rate. In contrast, an expert surgeon may be more willing to
undertake high-risk interventions, but that could result in higher mortality rate despite
how well the interventions are performed [102].

One of the most widely used standard surgical skill assessment techniques is the Global
Evaluative Assessment of Robotic Skills in Endoscopy (GEARS-E) [103], in which the

53



following aspects of execution are scored: depth perception, bimanual dexterity, effi-
ciency, tissue handling, autonomy, and endoscope control. A quite similar, and also preva-
lent technique is the Robotic Objective Structured Assessments of Technical Skills (R-
OSATS) [104], scoring depth perception/accuracy of movements, force/tissue handling,
dexterity, and efficiency of movements. Both methods utilize manual scoring 1 to 5 using
the Likert scale [105], thus being subjective, making it hard to be used in the validation of
autonomous applications. Raison et al. [106] compiled their surgical simulation training
study using a custom score set divided to general scores: time to complete, economy of
motion, master working space, instruments out of view, excessive force, instrument col-
lision, and task specific scores: blood loss, broken vessels, misapplied energy time, and
missed target, dropped instrument.

The above mentioned metrics are all representing the technical skills of surgery. How-
ever, the outcome of the surgical procedure is also dependent on the non-technical skills
of the surgeon, and those cannot be interpreted in the case of an autonomous applica-
tion [100, 107]. Those skills are typically rated using a questionnaire filled by the subject,
like the NASA Task Load Index (NASA-TLX) [108], evaluating mental demand; physical
demand; temporal demand; performance; effort; and frustration. Non-technical skills are
not discussed in more details due to the lack of their usefulness in automation, unless an
adverse event occurs.

5.3.2 Metrics by Modality
In the followings, various performance metrics are overviewed, and their usability is dis-
cussed. Those metrics are collected from the literature of surgical subtask automation,
and also from the fields of autonomous robotics, autonomous vehicles, and surgical skill
assessment, and are organized into subsections by the modality of the measured val-
ues [100, 101, 109].

Temporal Metrics

Completion time is one of the most commonly used metric both in surgical skill assess-
ment [100, 101] and in surgical subtask automation [10, 32, 40, 43, 49, 110, 111]. It
characterizes the whole execution of the subtask, and could be defined in a number of
ways, e.g., in the case of peg transfer, completion time can be taken as the average of each
individual transfer, or as the average for whole subtask executions. For humans, temporal
metrics tend to correlate with skill level, or give a measure of hesitation. In the case of
automation, those connect more loosely to the quality of the execution. However, as the
lower time requirement of surgical interventions is beneficial—for the patient, surgeon, or
the hospital—, near-human, or even superhuman completion time is still an important fac-
tor in automation. For instance, Sen et al. [11] measured completion time for autonomous
suturing and compared it to manual executions from the JHU—ISI Gesture and Skill As-
sessment Working Set (JIGSAWS) database [53]. Also, Ginesi et al. [41] validated their
autonomous task planning algorithm for peg transfer by measuring the task planning time
in different scenarios.

Temporal metrics could also be used to evaluate the elements of the whole system.
Time to compute is one of the most important metrics in the field of computer science,
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and could describe e.g., perception algorithms, trajectory generation, or planning in au-
tonomous systems [41]. Completion time and time to compute become extremely useful,
when working on benchmarks, then it can be quite a strong factor of comparison between
different solutions, offering inter-comparability for different research groups.

Time is also critical in the reaction to adverse events. Current research efforts in the
area of RAMIS typically targets LoA 2, where the surgeons’ supervision is essential, as
they need to recognize and solve adverse events. The reaction time of autonomous surgi-
cal systems becomes important—if not crucial—at LoA 3+, where the autonomous sys-
tem have to recognize and react to unexpected events either by solving the emergency
autonomously, or by sending a handover request to the human surgeon.

Outcome Metrics

Outcome metrics assess the end result of the whole procedure—or in this case subtask—or
its elements individually, ignoring the way it is performed completely. Such metrics are
e.g., number of errors, quality of the outcome, and success rate. Success rate is probably
the most universal and easy to measure, thus utilized frequently in surgical subtask au-
tomation [10, 32, 39, 40, 43, 46, 110, 111]. McKinley et al. [39] evaluated autonomous
tumor resection by end-to-end success rate, while Hwang et al. [43] defined it for the peg
transfer training exercise as the percentile value of the ratio of Success/Attempts for
each individual transfer. Attanasio et al. [13] utilized visible area as outcome metric in
autonomous retraction. Nguyen et al. [52] measured the accuracy of pattern cutting next
to autonomous tensioning. In the study of Shademan et al. [8] autonomous end-to-end
anastomosis is presented and validated in vivo on porcine, where number of sutures, num-
ber of suturing mistakes, leak pressure, luminal diameter reduction, weight at surgery, and
weight at sacrifice were measured and compared to manual execution.

It is important to note that outcome metrics are highly task-specific, thus, making any
comparison between different subtasks is very difficult. On the other hand, the implemen-
tation of the mentioned metrics requires less effort than most of the others.

Motion-based Metrics

Motion-based metrics utilize the position (and sometimes orientation) of the surgical in-
strument, the surgeon’s hands, or other tracked object, as a trajectory or motion pro-
file [100, 106, 112, 113, 114]. Some of the simplest ones are distance traveled, economy
of motion, and number of movements, but it is also common to use hidden Markov models
or other machine learning algorithms to compare the movement patterns to expert sur-
geons. Those metrics offer an objective way to assess the skill of human surgeons, hence,
those give a measure of hesitation, dexterity, and motor skills. However, their usefulness
is limited in the field of surgical subtask automation. For example, distance traveled could
be decreased or increased programmatically without major effects on the quality of ex-
ecution. Additionally, for the more advanced metrics, comparing the motion pattern to
experts could also be misleading in the case of autonomy; the motion patterns of human
experts contain the restraints and characteristics of human anatomy, but an autonomous
robot could possibly execute the same task through different—even more beneficial or
optimized—trajectories.
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Velocity and Acceleration Metrics

Velocity and acceleration metrics are calculated as the first and second derivatives of
the motion profiles mentioned regarding motion-based metrics [113, 115]. Those are
widespread in surgical skill assessment, to name some without being exhaustive: peak
speed, normalized speed, number of changes in velocity over time, number of acceler-
ations and decelerations, mean acceleration, or the integral of the acceleration vector.
Those are related to similar traits as the motion-based metrics, and thus their usefulness in
automation is questionable.

Jerk Metrics

Jerk is a metric that derives from the third derivative of the motion profile. As it has a
quite broad literature from surgical skill assessment [113, 116, 109] to the diagnostics
of neurodegenerative diseases [117, 118], it deserves to be mentioned separately. Jerk
metrics also tell us about the motor skills; motion patterns are usually become smoother
by practice. However, its usage in automation is quite insignificant, since it is a highly
human-specific metric.

Force-based Metrics

The amount of force applied to the tissues is a significant characteristics of surgery; it is
important not to cause damage by excessive force, but it is also crucial to provide enough
tension e.g., during tightening a knot [119][LTNR9]. Also, Trejos et al. [109] have shown
in their experimental study that force-based metrics correlate better with experience levels
than temporal metrics in manual MIS. Unfortunately, sensorizing MIS or RAMIS instru-
ments is still very challenging, due to the small dimensions or sterilization requirements,
and thus, the usage of force-based metrics is not prevalent in skill assessment or in the
evaluation of automation. However, currently, there are a number of solutions to measure
or estimate forces and torques on the shaft or the tip of the instruments [120, 121], the
phantoms, or even to measure the applied grasping force [122, 123]. Using such devices,
the metrics of the force utilized, e.g., grasp maximum, grasp integral, Cartesian maximum,
or Cartesian integral could be included to the validation of surgical subtask automation.
Such an example can be seen in the work of Osa et al. [124], where the applied force was
measured during autonomous thread tightening.

Accuracy Metrics

Accuracy is a minor problem in surgical skill assessment, but it is extremely important in
many areas of automation. Accuracy metrics usually characterize one or few subcompo-
nents or aspects of the autonomous system, such as the positioning accuracy of the uti-
lized robots and low-level controllers, accuracy of hand–eye registration, pose estimation,
or object detection. It is the current best practice to measure the accuracy of the system’s
components in surgical subtask automation in order to validate the application. For in-
stance, Lu et al. [125] validated their knot-tying application by measuring the tracking
error on the instruments. Also, Lu et al. [111] measured the tracking error of the grasping
point in their study on autonomous suture grasping. Sen et al. [11] measured the accuracy

56



of needle detection in their study on autonomous suturing. Elek et al. [LT1] measured
depth error of the camera, positioning error, and accuracy of dissection profile extraction
among automation metrics in their autonomous blunt dissection study. Besides validation,
accuracy metrics could also help localizing problems during the implementation phase.

Although, measuring metrics such as the robot positioning accuracy, the accuracy of
hand–eye registration, the instrument tracking error, or the accuracy of pose estimation
can be highly beneficial, especially during the implementation phase, these properties and
errors all contribute to the end-to-end positioning accuracy. Thus, for the purpose of
validation, these measurements could be substituted by testing and measuring end-to-end
positioning accuracy, or application accuracy, that can even tell more about the accuracy
of the whole system, than the accuracy of its components [126].

The application accuracy could be measured most precisely by incorporating a high
precision external system, such as industrial robots or tracking systems (visual or electro-
magnetic). While this method is highly recommended, in some cases this is not a viable
option due to the high cost of such devices, and low fidelity methods need to be utilized.
Pedram et al. [127] measured the error of pose estimation of the needle, then used this
pose estimation to measure the application accuracy of the needle in their study on au-
tonomous suturing. Seita et al. [10] used the following method to fine-tune the end-to-end
positioning of their system for autonomous debridement: the tool was sent to points on
some kind of grid, using positions from their computer vision solution, then the tool po-
sition was adjusted manually to the desired position on the grid, and from the kinematic
data of the robot, the application accuracy was calculated. As this method, especially by
utilizing a grid with physical constraints to help accurate manual positioning (e.g., holes
or dips for the tool endpoint) offers a simple yet accurate method for the measurement of
the application accuracy. The utilization of such methods is also viable for the validation
of autonomous systems in RAMIS, but only recommended if the errors of the ground truth
system are known and error propagation is taken into account.

5.3.3 Conclusions on Performance Metrics
The main scope of this chapter is to introduce a criteria set for the evaluation and validation
of subtask-level automation in RAMIS. The most characteristic and meaningful metrics
are compiled into Table 5.1, and scored for usability in the targeted area of the assessment
of systems at LoA 2 in three aspects: Task Independency, Relevance with Quality, and
Clinical Importance. The metrics with the best overall scores are highlighted with dark
gray, those are highly recommended for the validation of autonomous subtask execution
in RAMIS. The metrics highlighted with light gray were found to be moderately useful,
the utilization of those could be considered in a number of subtasks as well.

Based on the overall scores, outcome and accuracy metrics (accuracy of object detec-
tion, accuracy of pose estimation, and application accuracy) were found to be the best
amongst all for the validation of autonomous surgical systems, in general. Important
to note that accuracy metrics perform slightly better in task independency, since, unlike
outcome metrics, those offer inter-comparability between different tasks. Temporal and
force-based metrics also received good overall scores, with reaction time and Cartesian
force in the ”highly recommended” category. Although the measurement of force-based
metrics requires additional sensors, unlike other metrics, those metrics tell a lot about the
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TABLE 5.1
CHARACTERISTIC PERFORMANCE EVALUATION AND COMPARISON METRICS FOR RAMIS SUBTASK

AUTOMATION, GROUPED BY MODALITY. THE METRICS ARE SCORED IN THREE ASPECTS ON A SCALE

1–3: Task Independency (1–USABLE ONLY FOR SPECIFIC TASKS; 2–CAN BE USED FOR ANY TASK, BUT

NOT INTER-COMPARABLE; 3–CAN BE USED FOR ANY TASK, DIFFERENT TASKS ARE COMPARABLE);
Relevance with Quality OF TASK EXECUTION (1–IRRELEVANT; 2–RELEVANT, BUT MAY NOT

CORRELATES WITH QUALITY; 3–RELEVANT AND CORRELATES WITH THE QUALITY OF TASK

COMPLETION); AND Clinical Importance (1–NOT IMPORTANT; 2–MODERATELY IMPORTANT; 3–VERY

IMPORTANT). THE SCORES ARE SUMMED IN THE LAST COLUMN FOR EACH METRIC AND THE ONES

WITH THE BEST SCORES ARE HIGHLIGHTED WITH LIGHT GRAY (6–7) AND DARK GRAY (8–9).

Modality Metric Task Relevance Clinical Overall

Independency with Quality Importance Score

Temporal

Completion Time 2 2 2 6

Time to Compute 2 2 2 6

Reaction Time 3 2 3 8

Outcome

Rate of Errors 2 3 3 8

Quality of the Outcome 2 3 3 8

Success Rate 2 3 3 8

Motion-based

Distance Traveled 2 2 1 5

Economy of Motion 2 2 1 5

Number of Movements 2 2 1 5

Vel. and Acc.

Peak Speed 2 1 1 4

Number of Accelerations 2 1 1 4

Mean Acceleration 2 1 1 4

Jerk Jerk 3 1 1 5

Force-based
Grasp Force 1 3 3 7

Cartesian Force 2 3 3 8

Accuracy

Acc. of Pose Estimation 3 3 3 9

Acc. of Object Detection 3 3 3 9

Application Accuracy 2 3 3 8

quality of execution and also the utilized force is very important clinically. Motion-based,
velocity, acceleration, and jerk metrics received relatively low scores, the usability for the
performance assessment of autonomous surgical subtasks were found questionable.

The choice of metrics greatly depends on the certain subtask and the experimental
setup. Thus, a flowchart is supplied that can be used to compile a list of metrics for the
validation of the given autonomous surgical application (Fig. 5.4). The list of metrics
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Fig. 5.4. Flowchart to compile a list of performance metrics for the validation of different autonomous
applications. The proposed method requires different properties of the autonomous surgical application, the
task, and the validation environment as input, and outputs the list of recommended validation metrics.

depends on, without being exhaustive, the type of benchmarking environment, the hand-
ing of soft tissues or the LoEC and LoA of the system. For example, the validation of
an instrument pose estimation algorithm for surgical videos using a benchmark dataset
requires completion time, accuracy of object detection, and accuracy of pose estimation,
while the validation of a system performing autonomous peg transfer should be validated
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using completion time, application accuracy, success rate, accuracy of pose estimation,
and accuracy of object detection. Important to note that accuracy of pose estimation and
accuracy of object detection are suggested to be added to the list in any case, since these
can be used for the validation of almost any application in the field of surgical subtask
automation, and also received the highest overall scores.

5.4 Benchmarking Techniques
The recommended metrics could make possible the comparison of different autonomous
applications. Additionally, testing and evaluating autonomous applications in a bench-
mark environment—a standardized problem or test that serves as a basis for evaluation
or comparison—offers an even more solid basis for both human–machine and machine–
machine comparison [128]. Currently, the usage of benchmarking techniques is not preva-
lent in the field of surgical subtask automation, still it is used intensively in the area of
autonomous driving. The development of autonomous vehicles is considered to be anal-
ogous to surgical subtask automation due to the high complexity of the environment and
the presence of potentially life-threatening risks [LT9].

As the development of autonomous subtask execution in surgery progresses, and gets
closer to clinical use, the need for evidence on the autonomous system’s capabilities will
rise. In [129], Fiorini states the followings: ”Benchmarks will be the key to build a solid
confidence on the robots’ capabilities to understand and react to clinical situations as a
human surgeon would do, and the process of medical certification for surgical robots will
need to be developed.” Next to low LoEC it is relatively convenient to create benchmarks,
but unfortunately, as LoEC increases, meaning realistic or even dynamic environments,
the development of benchmarks will be considerably more difficult.

In the research of self-driving, benchmarking techniques can be compiled into three
categories: benchmark datasets to test system components like object detection accu-
racy [130, 131, 132, 133]; standard simulated environments like the scenarios developed
for the CARLA Car Simulator [134, 135]; and physical test towns like mCity [136].

Autonomous surgical subtasks could also be evaluated using those types of bench-
marks. Benchmark datasets for instrument segmentation are already available within the
yearly MICCAI Challenges, including ground truth for training and evaluation of accu-
racy [137, 138]. Among the surgical simulators, the Asynchronous Multi-Body Frame-
work (AMBF) [139] is worth to emphasize, being open source, offers da Vinci and Raven
robot arms, and supports the simulation of deformable objects. Moreover, AMBF contains
a built-in peg transfer board that could already serve as benchmark. Important to note the
2021 AccelNet Surgical Robotics Challenge, also based on the AMBF simulator, offering
a simulated setup to develop autonomous suturing applications [140].

Benchmarking physical setups presents a bigger challenge to implement [141]. Thanks
to 3D printing technology it is possible to create and distribute some standard physical
benchmarks, such as training phantoms, or rigid surgical phantoms. The peg transfer
board (Fig. 2.3b) presented in [43], whose design files are freely available, is a perfect
candidate for a standard physical benchmark. By defining a standard execution of the ex-
ercise and standard evaluation metrics a simple benchmark could be compiled to measure
and compare the performance of different autonomous algorithms.
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The utilization and spread of benchmarks alongside the standard performance met-
rics in RAMIS subtask automation would potentially make performance of different au-
tonomous systems much more comparable. Since a number of challenges offer benchmark
datasets, even standard simulated environments, the authors highly recommend those uti-
lizations. In terms of physical benchmarks, 3D printing technology makes the sharing and
reproducing of phantom environments and other objects easier and cheaper than ever [93],
and hopefully the practice of using 3D printable surgical phantoms will soon spread in the
research community.

5.5 Human–Machine Interface Quality
The quality of the HMI has an important role in clinical usability of autonomous surgi-
cal systems, especially between LoA 1 and LoA 4, where the human surgeon and the
autonomous system perform the surgical intervention together. In the field of RAMIS
subtask automation, it is quite uncommon to test and validate the HMI of the autonomous
system. However, in related research fields, such as self-driving vehicles or image guided
surgery, the HMI is validated much more frequently [142, 143]. Usually, the quality of the
HMI is assessed using the performance metrics seen in Section 5.3, like time to complete,
or success rate; the aim of those tests is to assess the performance of the human surgeon
and the autonomous system together.

Another important aspect of HMI quality is the system’s handover capability, espe-
cially at LoA 2–4 systems. During a handover, as it is described in Subsection 5.3.2, time
is the most crucial factor. First, the autonomous system should recognize the adverse event
and have to initialize a handover request to the surgeon as soon as possible, then the au-
tonomous system has to yield the control safely. Secondly, in the case of surgeon initiated
handovers, the system has to yield the control to the surgeon again, safely and with the
lowest possible delay [LTNR10].

The assessment of general HMI quality and hand-over capabilities is rarely found in
surgical subtask automation-related current studies. However, such tests could enhance
the clinical relevance, and could also improve the trust in those systems, of the public and
the relevant authorities.

5.6 Robustness
Robustness is defined in a number of ways [144], the followings are the best fitting to
surgical subtask automation:

• The ability...to react appropriately to abnormal circumstances (i.e., circumstances
”outside of specifications”). [A system] may be correct without being robust. [145];

• Insensitivity against small deviations in the assumptions [146];
• The degree to which a system is insensitive to effects that are not considered in the

design [147].

Reaching higher LoA, LoEC, and LoTC robustness of autonomous surgical systems be-
comes crucial. It is conclusive that LoA cannot be increased without higher robustness,
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hence unexpected events may result in unwanted human handover request, potentially
causing a dangerous scenario. The surgeon’s SA might decrease during autonomous exe-
cution, effecting handover performance negatively. Furthermore, as LoEC and LoTC are
increasing, the number of uncertainties, not considered circumstances also rises.

To measure the robustness of an autonomous system, additional methods should be
utilized, the performance of the system should also be tested next to unexpected events.
In the case of autonomous training task, it might be relatively simple to even manually
generate such events (e.g., accidentally dropping grasped objects). Another example of
robustness testing can be seen in the work of Elek et al. [LT1], where the performance
of the perception algorithm was measured on different textures. However, in the case of
higher complexity, the utilization of automatic robustness testing software may be neces-
sary [148].

It is also common in deep learning to add noise to the input to increase robustness and
avoid overfitting, like in the autonomous soft-tissue tensioning application by Nguyen et
al. [52].

5.7 Legal Questions and Ethics
During the academic research phase, legal and ethical aspects of an autonomous surgical
application or system are usually less emphasized issues. However, at the point when
development approaches clinical trials, those aspects become critical. Since autonomous
surgical systems could potentially endanger the life of the patient, the introduction of new
standards and regulations in the field can be extremely difficult and must be elaborated.
The availability of best practices for the validation of such systems could support those
processes.

In the field of automation, liability is usually a prickly issue, but in general, as LoA
increases, the liability in RAMIS is gradually shifting from the surgeon to the manufacturer
of the system. The regulating authorities, such as the European Commission in the case of
the European Union, are to protect citizens from harm caused by, in this case, autonomous
surgical applications. Thus, in order to commercialize such solutions, the manufacturer
need to demonstrate adequately that the autonomous system is capable of performing the
intervention with equal or better performance as a human surgeon would do [129]. Proper
characterization model and standard evaluation metrics would probably be quite useful
during the procedure of legal approval.

The effect of automation on the surgeons’ performance is also a significant concern.
The utilization of autonomous functions in surgery may increase the reliance on them, and
could lead to a decrease of skills of human surgeons. This lack of skills can be crucial,
and may even risk the life of the patient in cases when the autonomous system fails, and
the human surgeon need to take over the execution suddenly—especially if such failure is
infrequent.

The definitions and safety requirements of surgical robotics are established in the stan-
dard IEC 80601-2-77 [97]. The future standardization of the SCAC model, metrics, bench-
marks or even autonomous surgical applications could be initiated through the following
organizations:
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• International Organization for Standardization (ISO);
• International Electrotechnical Commission (IEC);
• Institute of Electrical and Electronics Engineers (IEEE)
• Strategic Advisory Group of Experts (SAGE), advising World Health Organization

(WHO);
• European Society Of Surgery (ESS) in Europe;
• Food and Drug Administration (FDA) in the USA.

In addition to the medical ethics, like the Hippocratic oath of ”do no harm”, Artificial
Intelligence ethics are also touching on autonomous surgery. Such as, the FAST Track
Principles (Fairness, Accountability, Sustainability, and Transparency) should be consid-
ered during development. Ensuring fairness, like avoiding algorithmic or statistical biases
is essential, since in the case of autonomous surgery those biases may lead to fatal conse-
quences. Also, for example, in the case of deep learning methods, transparency could not
be ensured; although the result of the network shows good accuracy, those it learned could
not be interpreted by humans, and no one could predict its output for inputs yet unseen by
the network [149].

Concepts, such as sustainability, from roboethics, a research field, concentrating on
ethics in robotics [150], should also be applied to the development of autonomous surgical
systems. Moreover, regulations on safety and privacy must be followed, like the Medical
Devices Regulation (EU) 2017/745 (MDR), the General Data Protection Regulation (EU)
2016/679 (GDPR), or the EU AI Act within the European Union. Furthermore, the con-
tents of the recently published standard IEEE P7007™ - Ontological Standard for Ethically
Driven Robotics and Automation Systems is also going to be of critical significance in the
development of surgical subtask automation.

5.8 Examples
The principles of the proposed standard evaluation are shown on the two example applica-
tions presented in Section 4.3: autonomous blunt dissection and autonomous peg transfer.

5.8.1 Validation of Autonomous Blunt Dissection
The implementation of the autonomous blunt dissection subtask presented in Subsec-
tion 4.4.1 is validated as follows. According to the SCAC model, the implemented ap-
plication can be classified as SCAC = F{LoA = 2|LoEC = 2|LoTC = 3}:

• Level of Autonomy (LoA) 2 – Task-level autonomy;
• Level of Environmental Complexity (LoEC) 2 – Simple surgical phantoms, made

for certain surgical subtasks, modeling one or few related key features of the real
environment;

• Level of Task Complexity (LoTC) 3 – Simple surgical tasks, no or Level 1 SA re-
quired.
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The application was validated in silico, and the perception in ex vivo as well. According
to the flowchart in Fig. 4.2, the following metrics should be measured:

• Completion Time, optional;
• Application Accuracy;
• Cartesian Force;
• Grasp Force;
• Quality of the Outcome;
• Rate of Errors;
• Accuracy of Pose Estimation;
• Accuracy of Object Detection.

The camera calibration accuracy was validated with the mean pixel error from 10
calibrations. The average of the mean pixel errors was 0.104 px, with standard deviation
of 0.0165 px. In each of the 10 calibration sessions 19 image pairs were used of whom
averagely 2.2 pairs were rejected (checkerboard detection or outlier).

One aspect of the accuracy of pose estimation, the accuracy of the depth estimation
of the system was tested on a planar white and a checkerboard pattern paper. The depth
of these objects was measured on different distances from the camera pair (Fig. 5.5). The
mean error and the average of the standard deviation was 4.1 and 0.7 mm respectively.

Application Accuracy was derived from 10 test cases, an average of 2.2 mm accuracy
was achieved with a standard deviation of 0.5 mm in the camera view’s plane. In the depth
axis the algorithm achieved 1 mm accuracy with standard deviation of 0.6 mm.

The rate of errors, characterizing the overall performance of the system was measured
on the silicone-based custom designed phantom. Single dissections were made on 25
different locations on the dissection profile, of whom 21 succeeded; in 4 of the locations,
the tool missed the dissection profile by a maximum of 3 mm, resulting in a 16% rate of
errors.

The accuracy of the dissection line detection method (accuracy of object detection)
was measured in three different setups: on the silicon phantom next to different rotations;
on surfaces with different textures; and on ex vivo tissues. The algorithm’s sensitivity to

Fig. 5.5. Depth error of the objects with known surface on different distances from the stereo camera.
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Fig. 5.6. Absolute error of the dissection line extraction method, demonstrating sensitivity to rotation.
Boxplot showing the distribution of absolute errors, with the median indicated by the central line, the in-
terquartile range (IQR) as the box, whiskers representing the range within 1.5 times the IQR. Rotation did
not significantly influence the algorithm.

rotation was measured as follows. The silicon phantom was rotated 0− 60 ◦relative to the
camera. It was found that my method is not significantly sensitive to rotation, as it worked
acceptable in every cases (Fig. 5.6).

The dissection line detection method’s sensitivity to texture was measured on four
types of paper (plain white, checkerboard pattern, rough surfaced, and kraft paper) and the
dissection phantom. The phantom and the papers were held in opened state to simulate
retraction. In all of the cases, the algorithm had to find a linear dissection profile. The start
and end points on the objects were chosen manually with 100 mm distance of each other;
these points were the ground truth of the dissection line points. The objects placed from
the stereo system approximately 500 mm distance. It was found that the tested method is
highly sensitive to the texture and the pattern of the objects. The method worked well on
feature-rich objects (with the checkerboard pattern, kraft paper, and the dissection phan-
tom), but it failed on feature-poor objects (plain white paper and rough surface paper)
(Fig. 5.7).

The accuracy of the algorithm was also measured in ex vivo environments—on chicken
breast, pork shoulder, and duck liver. The sensitivity test was performed on the ex vivo
objects: 6 points were selected as the basis of comparison between the ground truth points
and the detected points. Based on the results, the method is sensitive to the texture of the
object and to the lighting conditions. The method worked well on the pork shoulder, and
it worked acceptable on the chicken breast and the duck liver. The reason is that pork
is feature-rich, but the liver and the chicken breast are feature-poor and create reflections
(Fig. 5.8).

The evaluation of the application would be full with measurements on Cartesian force
and grasp force, since soft tissues were involved in the subtask. As it was mentioned,
the measurement of the applied forces meets obstacles quite often due to the requirements
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Fig. 5.7. Absolute error of the dissection line extraction method, demonstrating sensitivity to texture.
Boxplot showing the distribution of absolute errors, with the median indicated by the central line, the in-
terquartile range (IQR) as the box, whiskers representing the range within 1.5 times the IQR. The number of
features and the shining of the objects are crucial in the detection of the dissection line.

Fig. 5.8. Dissection line detection tests in vitro and ex vivo environment. a) Blunt dissection surgical
phantom; b) duck liver; c) chicken breast; d) pork shoulder. The method is very sensitive to shining (see
liver), and feature-richness (see chicken breast).

of additional, special devices. Sadly, the measurement of those metrics was not possible,
since at the time of the measurements no sensors were available to measure these force
values.
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5.8.2 Validation of Autonomous Peg Transfer
The implementation of the autonomous peg transfer training exercise presented in Subsec-
tion 4.4.2 is validated and its performance is evaluated in the followings. The implemented
application can be classified as SCAC = F{LoA = 2|LoEC = 1|LoTC = 1}:

• Level of Autonomy (LoA) 2 – Task-level autonomy;
• Level of Environmental Complexity (LoEC) 1 – Training phantoms, no or limited,

highly abstract representation of the surgical environment;
• Level of Task Complexity (LoTC) 1 – Simple training tasks, no or limited, distant

representation of surgical task, no or Level 1 SA required.

The application was validated on the mentioned benchmarking environment. According
to the flowchart in Fig. 4.2, the following metrics should be measured:

• Completion Time;
• Application Accuracy;
• Cartesian Force;
• Grasp Force;
• Success Rate;
• Accuracy of Pose Estimation;
• Accuracy of Object Detection.

The application was validated by completing 20–20 full unilateral and bilateral handover
peg transfers. Completion time was expressed as mean transfer time—the mean of times
for each individual transfers—to follow the convention by Hwang et al. [43]. Success rate
is also expressed for individual transfers. The results, compared to the results of Hwang et
al. are shown in Table 5.2.

The application accuracy of the shown implementation was measured as follows. The
tip of the instruments were navigated to the key points of the scene. The navigation was

TABLE 5.2
THE PERFORMANCE OF THE IMPLEMENTED AUTONOMOUS PEG TRANSFER SOLUTION, INCLUDING

COMPLETION TIME AND SUCCESS RATE, COMPARED TO THE WORK OF HWANG ET AL. [43].

Solution Mean Transfer Time [s] Success/Attempts Success Rate [%]

Unilateral peg transfer by
Hwang et al. [43] 5.2 120/120 100.0

Bilateral handover peg transfer by
Hwang et al. [43] 8.1 111/118 94.1

Unilateral peg transfer
using irob-saf 11.2 114/120 95.0

Bilateral handover peg transfer
using irob-saf 16.3 109/120 90.8
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TABLE 5.3
THE application accuracy OF THE IMPLEMENTED PEG TRANSFER SOLUTION, EXPRESSED IN

POSITIONING ERROR.

RMSE SD Max

Positioning error, Blocks [mm] 3.8 1.7 11.1

Positioning error, Board [mm] 3.1 1.2 7.3

performed based on the output of the implemented perception node, using the RGB-D
camera stream. Then, the error of the positioning were corrected by manually moving the
arms to the desired positions, while the difference of the two positions were recorded. By
using the grasping points on the blocks and the top of the pegs, both the error regarding the
blocks and the board were measured in 60–60 instances. The results of this measurement
are shown in Table 5.3.

The evaluation of the application performing peg transfer autonomously would also be
complete with measurements of Cartesian force and grasp force due to the involvement of
soft tissues, and accuracy of pose estimation and accuracy of object detection. At the time
of the measurements nor applicable force sensors nor additional tracking devices were
available.

5.9 Summary of the Thesis
In this chapter, standard evaluation methods, metrics, and benchmarking techniques were
proposed for performance evaluation and validation of systems executing surgical subtasks
autonomously. A 3-axis SCAC model was proposed to represent more detailed character-
ization of the autonomous capabilities in RAMIS, and also in the wider field of surgery.
This SCAC model uses the five and six grade scales of LoA, LoEC, and LoTC to represent
autonomous surgical systems from a broad view.

Based on the review of literature, a set of performance metrics were presented and
grouped by modality. After scoring the metrics by the aspect of usability of RAMIS sub-
task automation, the metrics were ranked, their properties were discussed. In the field of
surgical subtask automation, I found the most widely used, and also the most meaning-
ful metrics to be the outcome and accuracy metrics. Outcome metrics, like success rate
are easy to implement, but—especially as SCAC increases—specific outcome metrics can
also be defined to the given subtask. Accuracy metrics are also quite useful to validate
components of the autonomous system, as accuracy of pose estimation and accuracy of
object detection are among the ones that could and should be used for the validation of
almost any autonomous surgical system, or their subsystems. The measurement of tem-
poral metrics is very common, but as long as it is similar as at human execution, it is less
informative, except in the case of benchmarks, where those become a good basis of com-
parison. Currently, the utilization of force-based metrics is quite uncommon, but as LoEC
increases, the validation of delicate tissue handling will probably become critical issue.

A clear recommendation for the universal list of metrics cannot be given, since the
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metrics best represent the quality of the autonomous execution greatly depend on the task
and the validation environment. Instead, I proposed a methodology of choosing met-
rics for the validation of certain autonomous applications, and illustrated it in a flowchart
(Figure 5.4). The principles of the proposed standard evaluation were presented on two
examples: autonomous blunt dissection and autonomous peg transfer.

A review of current, and a proposal for further benchmarking techniquees are pre-
sented for surgical subtask automation. Benchmarks are going to have significant role in
the future, during the introduction of subtask-level autonomy to the clinical practice by
supporting the authorities’ and the patients’ trust in the autonomous systems. At present,
a significant portion of research involves the automation of the peg transfer training task,
hence, it serves as an adequate model to act as a foundation for surgical subtask automa-
tion. Additionally, the design files necessary for the 3D printing of the board and the pegs
are available online [43]. In terms of benchmark datasets and simulations, the materials
for a number of challenges are available, and even when the challenge is over, these could
still serve as a good benchmark for future research projects.

The matter of HMI quality, robustness, legal and ethical issues were also discussed in
brief. One of the most serious concerns regarding autonomous surgical systems—below
LoA 5, full autonomy—is how a handover process could be performed in the case of emer-
gency or malfunction. This concern is further strengthened by the trends in other areas,
like self-driving vehicles, where automation led to increasing reliance on autonomous sys-
tems, bypassing the human operator.

The mentioned numerous concerns and fears related to autonomous surgical systems
put an increasing need on the research community to perform through validation and test-
ing on their developed applications. The proposed methodologies and recommendations
could help the community to quantitatively and soundly measure the quality of the au-
tonomous executions, and to provide a ground to compare the results of various research
groups. At the point, when surgical subtask automation will break into the clinical prac-
tice, the proposed methodologies could also be used as the basis of emerging standards.
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Chapter 6

ANALYSIS OF THE EFFECT OF
AUTONOMOUS SUBTASK
EXECUTION ON THE OPERATOR’S
SITUATION AWARENESS

6.1 Introduction
Autonomous driving is often referred to as an analogous area to surgical automation, due
to their similar complexity. This field is already one or two steps ahead of surgical automa-
tion. In this chapter, the effect of partial automation is analyzed in the field of self-driving,
using a simulator interfaced to the DVRK-enhanced da Vinci Surgical System.

In the past few years, automotive technologies got a huge focus in research and devel-
opment [26]. Fully automated vehicles are probable in the near future, however, there are
still large milestones pending in development and safety [151]. Vehicle driving requires
different skills from the driver, thus for autonomous solutions, new approaches are re-
quired, making it necessary to keep the human partially involved in control as well (when
needed). The required skills on the HMI side depend on the level of automation. In auto-
mated driving technologies, there is a widely accepted classification of autonomy, which
was introduced by the Society of Automotive Engineers (SAE) International (Fig. 6.1),
and used in other research areas as well [7, 152]:

• Level 0: No automation. The vehicle is only permitted to send warning signals to
the driver, it cannot interfere any of the controls. The human driver is responsible
for controlling the vehicle in all aspects.

• Level 1: Driver assistance. The vehicle is allowed to control either steering or
acceleration in cooperation with the human driver.

• Level 2: Partial automation. The vehicle performs complex actions by controlling
both steering and acceleration in limited use-cases. The constant monitoring of the
environment by the human driver is still required.

• Level 3: Conditional automation. The vehicle is prepared for the dynamic driving
task by limited perception and decision-making abilities. The human driver is al-



lowed to divert its attention, in such a manner that he/she is able to take control back
at any time if a fall-back event occurs.

• Level 4: High automation. The vehicle is equipped to perform the dynamical driv-
ing task in pre-defined driving modes. No real-time human–machine interaction is
required, as the vehicle is able to move to a safe state from an emergency, at all
possible conditions. In this safe state, the human driver could take over the control.

• Level 5: Full automation. The vehicle is able to accomplish the dynamic driving
task in all the driving modes, regardless of the environment conditions.

The bold leap forward lies in between LoA 2 and LoA 3, not just in the technological
terms, but in safety as well. LoA 2 still belongs to the well-known Advanced Driver
Assistance Systems (ADAS), which means that the user is fully responsible for the driving
and for the possible damages. In the case of LoA 3, the driver is partly responsible for
the decision making: if the system gives a signal indicating it cannot handle the situation,
the driver has to continue the process immediately and make decisions. Naturally, this
solution requires much more advanced technologies to handle the different environments,
such as AI, to manage diverse environments effectively [17, 153]. The main issue with
LoA 3 is that the essential functions of driving are automated, and because of it the driver
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Fig. 6.1. Level of Autonomy (LoA) concept for automated vehicles introduced by the Society of Automo-
tive Engineers International [152].
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can easily be distracted—which can be crucial under critical conditions. Studies show that
the human mind is not effective in long inactive monitoring tasks, and usually over-trust
the automated system [154, 155, 156, 157, 158, 159, 160]. Because of these reasons, in
LoA 3 safety considerations are indispensable.

SA is a key factor of driving safety, thus an important notion in LoA 3. SA is defined
on 3 levels [98, 99, 161, 162][LTNR6]:

• Level 1 SA: Perception of the environment;
• Level 2 SA: Comprehension of the current situation;
• Level 3 SA: Projection of future status.

In the cases of LoA 0, 1 and 2 SA is obviously important: the driver has to constantly
monitor and understand the environment, and estimate the future. The SA aspect of LoA 2
appears in the aviation automation: the pilot has to handle at least one function of the
cruising, which can help not to lose SA [18, 99]. In LoA 3, SA is more special: while
the autonomous functions are working well, the driver can easily lose SA, and when it is
necessary, he/she cannot react well or acceptably fast [163, 164, 165, 166]. This situation,
when the driver has to take back the control is called handover, and the necessary time for
it is called takeover [164]. Under non-critical situations takeover is usually between 1.9 to
25.7 seconds, but it can be much more under critical conditions [167].

Situation awareness can be decomposed into 5 components (Fig. 6.2):

• Spatial awareness: knowledge of object locations;
• Identity awareness: knowledge of salient items;
• Temporal awareness: knowledge of the dynamic states;
• Goal awareness: knowledge of the maneuvering plan;
• System awareness: knowledge of the environment.

Fig. 6.2. Hierarchical representation of Situation Awareness blocks in automotive solutions. For each level
of autonomy, the quantitative metrics must fulfill the requirements for each block.
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The aim of this research was to assess the relationship between SA levels and perfor-
mance during emergency situations, drawing on existing literature on the measurement of
SA in similar contexts. Specifically, two research hypotheses were investigated:

• Hypothesis 1: SA can be accurately measured at participants during simulated
emergency scenarios using a combination of freeze probe technique, self-rating, and
performance measures.

• Hypothesis 2: The level of SA at participants during critical handover situations
affects their performances, higher SA leads to better task performance during emer-
gencies.

In the following sections, a measurement framework is introduced, designed to ex-
amine SA at self-driving technologies under critical conditions. To objectively measure
handover, a novel system architecture was created, using the Master Console of the da
Vinci Surgical System as HMI alongside the CARLA Simulator [57, 134]. The da Vinci
system is capable of providing the limited view of the environment, which is critical in
SA. Using the developed platform, the handover process can be modeled under emer-
gency with different situations. Furthermore, an experimental study is presented, where
the SA is measured and evaluated in the designed environment [LT11][LTNR6].

6.2 Measurement Framework to Assess Situation Aware-
ness During Handover

In this section, the methodological principles for assessing SA during handover situations
are introduced, forming the foundation of the proposed measurement framework. This
framework integrates both a structured methodological approach and a purpose-built ex-
perimental platform to systematically evaluate the transition from autonomous to manual
control under critical conditions. The framework builds on established techniques from
the literature, incorporating both qualitative and quantitative methods to ensure a compre-
hensive assessment of SA in dynamic, high-stakes scenarios.

6.2.1 Measurement Methodology
The transition from automated to manual control represents a critical phase in which the
driver must rapidly regain situational awareness and respond appropriately to dynamic
environmental conditions. Given the complexity of SA as a cognitive construct, its assess-
ment requires a combination of complementary techniques that capture both subjective
and objective indicators of awareness and performance. The methodology adopted in this
framework draws from established approaches in SA measurement, integrating elements
from the literature to ensure objective evaluation.

One of the primary methods employed is the freeze probe technique, a widely rec-
ognized approach for assessing real-time cognitive processing. Originally developed as
part of the Situation Awareness Global Assessment Technique (SAGAT) [168], the freeze
probe method involves interrupting a task at predetermined points to assess the partici-
pant’s awareness of critical situational elements. By temporarily halting the simulation
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and requiring participants to recall specific environmental details, this technique provides
a direct measure of SA at the moment of handover. Research has demonstrated that the
freeze probe approach mitigates the limitations of post-hoc recall biases, offering a more
reliable indicator of real-time cognitive processing [98].

In addition to the freeze probe method, self-rating scales were employed to capture
participants’ subjective perceptions of their SA during the handover scenarios. Self-
assessment techniques such as the Situational Awareness Rating Technique (SART) [169]
have been widely used in the literature to evaluate perceived cognitive workload and situ-
ational comprehension. While subjective measures are inherently influenced by individual
biases, these provide valuable insight into participants’ confidence in their understand-
ing of the situation, as well as their perceived ability to respond effectively. Research
has shown that self-rating scales can serve as a useful complement to objective measures,
particularly when combined with performance-based assessments [170].

To further substantiate the assessment of SA, objective performance metrics were es-
tablished, focusing on key behavioral indicators of effective response during the handover
process. These metrics included reaction time, the accuracy of responses, and the effec-
tiveness of decision-making in resolving the simulated emergency [154]. Studies have
found that task performance can serve as an indirect indicator of SA, as individuals with
higher levels of awareness tend to exhibit faster and more effective responses to dynamic
scenarios [161, 171]. However, it is important to recognize that performance alone does
not fully encapsulate SA, as a participant may achieve successful outcomes through com-
pensatory strategies rather than an accurate mental model of the situation. To address
this limitation, performance data were analyzed in conjunction with the freeze probe and
self-rating measures to provide a more comprehensive evaluation of SA.

By integrating these three complementary methods—freeze probe assessments, self-
rating scales, and performance metrics—this measurement framework adopts a multi-
faceted approach to measuring SA during critical handover situations. The combination
of real-time cognitive assessment, subjective self-evaluation, and objective performance
analysis allows for a more nuanced understanding of how SA is maintained and influences
decision-making in high-stakes scenarios.

6.2.2 Measurement Platform
Building upon the methodological considerations introduced earlier, this section outlines
the design of a measurement platform, aimed at objectively and quantitatively assess-
ing SA during the handover process at autonomous driving. The platform integrates the
da Vinci Surgical System, traditionally used in teleoperated robot-assisted surgery, with
modifications tailored for driving simulation. The da Vinci system is enhanced by the
DVRK platform, allowing the system’s HMI to be repurposed for handover experiments
in autonomous vehicles (Fig. 6.3) [2].

In the Master Console, the da Vinci provides a fixed head position, where the operator
can only see the display, but cannot see the environment around him, and vice versa,
when his head is not inside the required area, he cannot see the display (Fig. 6.4a). The
stereo monitors of the console makes possible to display the simulated environment in 3D
enhancing immersion and realism in the driving experience. Furthermore, the da Vinci
has a head presence sensor (IR-beam) to detect if the user is looking into the display or

74



Fig. 6.3. Measurement platform with the DVRK-enhanced da Vinci Surgical System to examine situational
awareness under critical conditions. The da Vinci master provides the display, the head sensor, the wheel,
and the pedals to imitate a driving environment, and the setup is linked to the CARLA driving simulator
with ROS components.

Fig. 6.4. The da Vinci Master Console modified for SA measurements in self driving handover situations.
a) The da Vinci Master Console’s stereo display with an integrated CARLA car simulator setup; b) the da
Vinci Surgical System master arms amended with 3D printed wheel segments to imitate a steering wheel.

not (in the case of RAMIS it is a critical factor). With the fixed head position and built-
in head sensor, attention can be monitored (at large). This setup mirrors a key aspect of
the autonomous vehicle handover scenario, where the driver must be engaged and ready
to take control at receiving a handover alert. Furthermore, the Master Tool Manipulators
(MTMs) are well-suited for simulating a steering wheel and foot pedals in this context.
By modifying the MTMs with 3D-printed components, a flexible and reproducible system
can be created for use in other research laboratories (Fig. 6.4b). This approach facilitates
rapid prototyping and offers consistent results across studies. The software for the da
Vinci system supports impedance control, which limits the movement of the manipulator
arms to a circular path, mimicking the motion of a steering wheel [172]. This approach
enables accurate tracking of steering inputs and replicates the physical interaction that a
driver would have during a handover in an autonomous vehicle.
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The da Vinci pedals, originally designed for controlling medical equipment in surgery,
were also modified for this experiment to provide continuous state readings for accelerator
and brake inputs. Hall-effect sensors and magnets were incorporated into the pedals to
detect precise input levels, which were then connected to an Arduino board (Arduino Co.,
Somerville, MA) [173] to track pedal movements.

The core software components of the experimental setup were the DVRK [57] and the
CARLA Simulator6. CARLA is an open-source driving simulator, in this study it was
interfaced to the da Vinci master. To link the components of the system, ROS was used,
which is well-known library for robotic research [56]. DVRK, CARLA, and Arduino
support ROS communication [134].

The core software architecture is designed to manage the interaction between these
components. The CARLA server runs the simulation environment, while a CARLA
client implemented in Python communicates with the server using Remote Procedure
Calls (RPCs). The client forwards steering angles and pedal values received through ROS
to control the driving simulation in real-time. Additionally, a second ROS node adjusts
the impedance control gains to ensure smooth, realistic steering responses. The MTMs,
through the DVRK software, are also programmable via ROS, providing fine-grained con-
trol over the manipulator arms (Fig. 6.3).

The developed measurement platform provides an immersive simulation environment,
and also offers a framework to measure driver engagement and situational awareness dur-
ing handover situations.

6.3 Experimental Study
This section presents an experimental study investigating the effects of partial automation
on drivers’ SA and handover performance in critical scenarios. Specifically, the study
examines how drivers regain control and assess their surroundings after a period of auto-
mated driving, focusing on the cognitive and behavioral aspects of SA during the transition
from automation to manual control. The study is supported by the previously introduced
measurement framework.

6.3.1 Experimental Protocol
To analyze driver responses in emergency situations requiring a handover from automa-
tion, four distinct driving scenarios were developed. Each scenario required participants
to react to an emergency auditory alarm signaling an imminent hazard. The study involved
15 participants, all of whom held a valid driver’s license. Each participant completed only
one experiment.

Before the experiment, a minute was given to the participants to get acquainted with
the driving simulator. After each scenario, they completed a questionnaire assessing their
awareness of the event, confidence in their response, and overall perception of the situa-
tion.

Each scenario began with a period of autonomous driving at LoA 3 automation. Dur-
ing this phase, participants were instructed to disengage from monitoring the road by per-

6http://carla.org/
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forming a secondary task—typing a text message on a mobile phone. This ensured that
their attention was diverted, reflecting a realistic challenge of driver re-engagement in
automation-reliant conditions. The duration of the autonomous phase was randomized be-
tween 40 and 60 seconds, maintaining consistency across participants while introducing
unpredictability.

At the end of the autonomous phase, an emergency audio alarm was triggered, sig-
naling a critical event and initiating the handover process. Participants were required to
assume manual control and respond to the situation, as the vehicle was no longer capable
for handling the event autonomously. To discourage overly cautious responses, partici-
pants were informed that unnecessary braking would incur a penalty.

All scenarios were conducted at the same simulated location under clear weather con-
ditions to ensure environmental consistency. The scenarios varied based on two key fac-
tors: the presence of a pedestrian emergency and the presence of oncoming traffic. Ad-
ditionally, the validity of the pedestrian-related alarm varied, some alarms correctly indi-
cated danger and others were false alarms. The four scenarios were constructed as follows:

• True alarm: The pedestrian stepped in front of the car from behind a vending
machine (Fig. 6.5), close enough to hit him/her (alarm raised 3 seconds before the
vehicle would reach the pedestrian).

• False alarm: The pedestrian was moving on the sidewalk, with safe distance from
the car (alarm raised 3 seconds before the vehicle would reach the pedestrian).

• Car arriving: There was oncoming traffic.
• No car arriving: There was no oncoming traffic.

Fig. 6.5. Simulation screenshot of one scenario (true alarm, no oncoming traffic).
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From the combinations, 4 different scenarios were compiled:

1. True alarm, No car arriving;
2. False alarm, Car arriving;
3. True alarm, Car arriving;
4. False alarm, No car arriving.

Before the experiment and after each scenarios, subjects were asked to fill a Google
Forms (Google LLC., Mountain View, CA) questionnaire about their experiences (Ta-
ble 6.1.). Before the filling, they agreed the terms of the experiment and the data was
anonymous.

6.3.2 Results
There were 15 subjects, 13 males and 2 females, mostly young adults (ages 21–34). The
subjects have never driven a car with ADAS before, except for one, who was unsure.

The number of scenarios with collisions for each participants is shown in Fig. 6.6.
There were relatively high number of collisions, most of the time the participants have
collided with the curb. The number of collisions per scenarios are shown in Fig. 6.7. The
number of collisions increased during the second scenario, probably due to the car coming
from the front lane, regardless of the fact that there was a false alarm. The number of
collisions was smaller at the last two scenarios, which were repeated scenarios in a sense
that the participants had experienced front traffic and true and false alarms as well (i.e., all
the components of the scenarios), and the participants had larger SA.

The SA of the subjects was calculated based on their answers concerning the envi-
ronment in the questionnaire. Good answers gained 1 point, wrong answers resulted in
-1 point, neutral answers 0 points. In the question about the direction of the road, the
right answer was left, but straight was accepted as a correct answer with 0.5 point as well,
since the left turn was not directly after the place of the potential accident. The mean
SA for non-collision cases was 3.873, whereas for collision cases, it was, lower at 2.785
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Fig. 6.6. The number of scenarios with colli-
sions for each participants.
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Fig. 6.7. The number of collisions for each sce-
nario.
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(Fig. 6.8), however, the difference was not statistically significant (t-test [174], p = 0.078,
SA values follows the normal distribution). The correlation between SA and collisions
was analyzed using Pearson’s correlation coefficient [175]. For the whole dataset, SA and
collisions shown weak negative correlation, but the result was not statistically significant
(correlation coefficient r = −0.229, p = 0.078). The four scenarios were also analyzed
separately; significant strong negative correlation was found between SA and collisions in
scenario 3 (r = −0.596, p = 0.019) and scenario 4 (r = −0.551, p = 0.033).

The post-scenario questionnaire results further highlight gaps in awareness:

• Scenario 1 (True Alarm, No Oncoming Traffic):
– 80% correctly identified the pedestrian as the cause of the emergency;

– Only 40% remembered the pedestrian’s pant color;

– 53.3% correctly identified the road’s leftward turn.
• Scenario 2 (False Alarm, Oncoming Traffic):

– 73.3% recognized that the emergency was due to the automation system;

– 86.7% correctly recalled that a forest was on the right;

– Only 26.7% identified the correct speed limit.
• Scenario 3 (True Alarm, Oncoming Traffic):

– 80% correctly identified the pedestrian as the cause of the emergency;

– Only 33.3% placed correctly the bus stop location;

– 73.3% realized there was no pedestrian crosswalk.
• Scenario 4 (False Alarm, No Oncoming Traffic):

– 60% identified the automation system as the cause of the emergency;

– 93.3% correctly noted the absence of oncoming traffic;

– 93.3% correctly identified houses on the left.

These findings indicate progressive improvement in SA but also highlight areas where
SA remained inconsistent, such as recognizing road infrastructure details. Fig. 6.9 illus-
trates the SA scores across the four scenarios, demonstrating the mentioned increasing
trend. This learning effect was evaluated using linear regression analysis [176] and Co-
hen’s d [177]. The SA score increased by 0.27 per scenario (p = 0.044, significant), the
effect size was small (Cohen’s d = 0.467). This suggests that the subjects’ ability to assess
and respond to the environment improved with exposure to the task. Such improvements
could be attributed to increased familiarity with the task, reduced cognitive load, or greater
confidence in decision-making as subjects progress through the experiment.

The observed increase in SA across scenarios, along with the correlation between SA
and collisions emerging only in the final two scenarios, suggests that a minimum thresh-
old of SA might be necessary for effectively managing emergency situations. Given the
nature of the scenario, this threshold is likely at SA Level 2. However, quantifying SA
levels based on questionnaire responses is not straightforward. A potential approach to
determining this threshold is to identify the SA level at which the number of collisions de-
creases significantly. This could be achieved through a repeated study with a larger sample
size to enhance statistical reliability.
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Fig. 6.8. The SA score distribution of the par-
ticipants in the four scenarios, with and without
collision. Boxplot showing the distribution of
absolute errors, with the median indicated by the
central line, the interquartile range (IQR) as the
box, whiskers representing the range within 1.5
times the IQR.
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Fig. 6.9. The SA score of the participants in
the four scenarios. Boxplot showing the dis-
tribution of absolute errors, with the median
indicated by the central line, the interquartile
range (IQR) as the box, whiskers representing
the range within 1.5 times the IQR, and outliers
beyond this range.
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Fig. 6.10. The takeover times of the 15 subjects
during the four scenarios, with and without col-
lision. Boxplot showing the distribution of ab-
solute errors, with the median indicated by the
central line, the interquartile range (IQR) as the
box, whiskers representing the range within 1.5
times the IQR.
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Fig. 6.11. The takeover times of the 15 sub-
jects during the four scenarios. Boxplot showing
the distribution of absolute errors, with the me-
dian indicated by the central line, the interquar-
tile range (IQR) as the box, whiskers represent-
ing the range within 1.5 times the IQR.

Fig. 6.10 and Fig. 6.11 show the takeover times for scenarios with and without collision
and for each scenario across all participants, respectively. The mean takeover time for
collision cases was 2.82 seconds, while for non-collision cases, it was slightly lower at
2.7 seconds. However, no significant correlation was revealed between takeover time and
collision occurrence (r = 0.093, p = 0.489) or between takeover time and SA (r =
0.139, p = 0.297) by statistical analysis. Moreover, as takeover time did not correlate
with the number of collisions, while the SA score did, that might suggest that Level 2
SA of the driver (comprehension of the current situation) has a decisive role in handover
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Fig. 6.12. The satisfaction of the 15 subjects
during the four scenarios, with and without col-
lision. Boxplot showing the distribution of ab-
solute errors, with the median indicated by the
central line, the interquartile range (IQR) as the
box, whiskers representing the range within 1.5
times the IQR.
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Fig. 6.13. The satisfaction distribution of
the participants in the four scenarios. Boxplot
showing the distribution of absolute errors, with
the median indicated by the central line, the in-
terquartile range (IQR) as the box, whiskers rep-
resenting the range within 1.5 times the IQR.

performance, while Level 1 SA (perception of the environment) itself may not be enough
for a proper reaction.

Additionally, the analysis of the effect of practice showed no significant impact on
takeover time. These findings suggest that while SA increases and the number of collisions
decreases over repeated scenarios, takeover time remains relatively stable. This implies
that repetition does not necessarily decrease takeover time, but it improves SA which
decreases the chance of collisions [178].

The satisfaction level of the subjects, based on the questionnaire, is shown for scenar-
ios with and without collision and for each scenario across all participants in Fig. 6.12 and
Fig. 6.13. The mean satisfaction level for the cases with no collision is 3.35, while the
mean satisfaction level with the cases with collision is 1.93. The results imply strong, sta-
tistically significant negative correlation between satisfaction and collisions (r = −0.512,
p = 0.000029), thus collision decreased the satisfaction of the participants. Also, the sat-
isfaction did not improve with the scenarios, so gaining SA does not improve satisfaction.

The potential correlation between driving experience and key performance metrics,
including SA, takeover time, and the number of collisions, was analyzed. The results
indicated no statistically significant relationships, with correlation values of (r = 0.0445,
p = 0.875) for SA, (r = 0.185, p = 0.51) for takeover time, and (r = 0.0488, p = 0.863)
for collisions. One possible explanation is that automation levels the playing field, as all
participants were disengaged from the driving task during autonomous operation, reducing
any potential advantage of prior driving experience. Additionally, handover performance
may depend more on automation-specific learning and cognitive adaptation rather than
traditional driving skills [179].
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6.4 Summary of the Thesis
In this chapter, a measurement framework was presented, which included methodological
approaches and a measurement platform based on the DVRK-enhanced da Vinci Mas-
ter Console and the CARLA driving simulator for the quantitative analysis of SA during
LoA 3 handover scenarios. The current state of autonomous driving was reviewed, focus-
ing on safety and the impact of SA on the driver’s handover performance. An experimental
study was conducted within the proposed framework, involving 15 test subjects who per-
formed emergency handover tasks during autonomous driving.

The chapter proposed two primary hypotheses: first, SA could be accurately mea-
sured at participants during simulated emergency scenarios using a combination of the
freeze probe technique, self-rating, and performance measures; and second, the level of
SA at participants during critical handover situations would affect their performance,
with higher levels of SA leading to better task performance during emergencies.

The results support the first hypothesis, demonstrating that SA can be measured ef-
fectively using the proposed combination of methods during the handover process. The
freeze probe technique provided valuable insights into the participants’ cognitive state dur-
ing specific moments of the emergency scenarios, while the self-rating measures captured
their subjective awareness of the situation. Additionally, performance measures offered
objective data regarding task execution, enabling a holistic assessment of SA. By com-
bining simulated driving environments, performance metrics, subjective self-assessments,
and realistic, stress-inducing scenarios, the presented approach aligns with proven method-
ologies for SA measurement. The integration of controlled experimental design with ad-
vanced technology (e.g., CARLA simulator, DVRK system) ensures that the data col-
lected is reliable, valid, and replicable—critical for understanding how SA influences
human performance in the context of autonomous driving. Despite these strengths, dis-
crepancies were noted between participants’ subjective self-ratings and their objective
performance, suggesting that while these methods provided a reliable measure of SA,
there might be a need to integrate additional tools, such as physiological sensors or real-
time situational monitoring, to capture a more accurate picture of SA in future research.
The open-source implementation of the measurement platform is available at https:
//github.com/ABC-iRobotics/dvrk_carla.

Regarding the second hypothesis, the results partially support the notion that higher
SA improves task performance in handover situations. The takeover time of the partici-
pants was shown to not decrease significantly in the four successive scenarios. In contrast,
the SA scores, derived from the questionnaire responses, showed an increasing trend, in-
terpretable as a learning curve, while the number of collisions decreased. These results
suggest that the success of the handover maneuver is strongly influenced by the driver’s
SA. Additionally, the analysis revealed no correlation between takeover time and the num-
ber of collisions, while the SA score showed a partial correlation (notably in the last two
scenarios). This implies that Level 2 SA (comprehension of the current situation) plays a
crucial role in handover performance, while Level 1 SA alone may not be sufficient for an
appropriate response.

These findings underline the crucial role that SA—particularly the higher-level cog-
nitive processes associated with understanding and predicting the unfolding situation—
plays in handover scenarios next to partial or conditional automation. The results suggest
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that training drivers to develop and maintain this level of awareness could enhance their
ability to safe transition control in emergency situations. Future research should further
explore the measurement of SA, particularly by refining the existing methods and intro-
ducing more nuanced performance metrics, while also investigating the effects of real-time
feedback and adaptive training systems on SA and handover performance.
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Chapter 7

CONCLUSION

7.1 Summary of Contributions
This thesis investigates the automation of surgical subtasks in RAMIS, with a focus on
recent advancements in surgical robot motion planning, perception, and human-machine
interaction, while addressing the limitations of task-level autonomy. A framework to sup-
port the automation of RAMIS subtasks is proposed, alongside a characterization model
for surgical automation, as well as a method for the performance evaluation and com-
parison of automated surgical subtasks. Additionally, the effects of automation on the
performance of both surgeons and vehicle drivers are framed and explored.

A standardized methodology for automating surgical subtasks is presented, based on
the hierarchical decomposition of human surgical motions. This methodology serves as
the foundation for a framework designed to facilitate surgical subtask automation research.
The framework integrates sensory inputs, perception algorithms, and robotic systems, and
includes a surgeme-level motion library. The presented framework allows for the easy
integration of new surgical subtasks into the motion library, such as clipping or suturing.
The development of more complex subtasks remains a challenge, particularly regarding
the perception and estimation of the environment, as computer vision techniques struggle
with issues such as light reflections and the recognition of deformable or moving tissues,
even in controlled phantom or ex vivo environments.

Standard evaluation methods, metrics, and benchmarking techniques were proposed
for performance evaluation and validation of systems executing surgical subtasks au-
tonomously. A 3-axis model of surgical autonomy is proposed to enhance the character-
ization of surgical automation. The thesis also reviews the existing metrics and proposes
additional promising techniques for evaluating, comparing, and benchmarking automated
surgical systems. The discussion includes the critical need for robustness in these systems,
alongside considerations of legal and ethical implications in the field.

Finally, a measurement framework for the quantitative analysis of SA during LoA 3
handover scenarios is introduced. By combining the da Vinci Surgical System with the
CARLA driving simulator, the research investigates how SA influences performance dur-
ing emergency handover tasks at autonomous driving. An experimental study demon-
strates that the SA has a key role in the drivers performance during emergency handover
tasks.



7.2 New Scientific Results

Thesis 1
I developed a method to support the automation of surgical subtasks in RAMIS. The pre-
sented methodology is based on the hierarchical decomposition of human surgical mo-
tions, enabling high modularity. Additionally, based on the developed method, I have de-
signed a system architecture and implemented a software framework, capable of realizing
autonomous surgical applications effectively.

Related publications: [LT1, LT2, LT3, LT4, LT5, LT6]

Thesis 2
I developed a method for the validation of autonomous applications in the field of surgical
subtask automation, originating from the human surgical skill assessment techniques. I
created a model to represent the capabilities of autonomous surgical systems. I have re-
viewed, organized, and graded the metrics from the field of capability and performance
evaluation in surgical subtask automation and related research areas, like autonomous
robotics or surgical skill assessment. Additionally, I compiled a method to choose the
metrics best describing the performance of applications performing surgical subtasks au-
tonomously.

Related publications: [LT7, LT8]

Thesis 3
I addressed the objective monitoring and quantification of Situation Awareness (SA) and
evaluated its impact within the context of partial automation.

Thesis 3/I: I conceived a measurement framework for the quantitative analysis of ve-
hicle driver’s SA during LoA 3 handover scenarios using the DVRK-enhanced da Vinci
Surgical System. I showed that the proposed framework effectively enables the objective
measurement of SA through the combination of methods during the handover process.

Thesis 3/II: I analyzed the effect of SA on the handover performance during LoA 3
emergency situations in the proposed measurement framework. I showed that the success
of such handover maneuver highly depends on the driver’s SA. Furthermore, I showed that
SA exhibits an increasing trend across successive scenarios, suggesting that the subjects’
ability to assess and respond to the environment improved with exposure to the task.

Related publications: [LT9, LT10, LT11]

Other publications related to the Ph.D. thesis and the accompanying research work: [LTNR1,
LTNR2, LTNR3, LTNR4, LTNR5, LTNR6, LTNR7, LTNR8, LTNR9, LTNR10, LTNR11]
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