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Abstract — Effective health monitoring is very important for 

individuals engaged in sports and physical activities due to 

the diverse physiological responses exhibited by each 

participant. Traditional methods often fail to deal with the 

complexity of individual health profiles, highlighting the 

necessity for personalized assessment methods. In this paper, 

a hierarchical fuzzy model is presented, which is intended to 

assess the risk level of the current physical activity. In order 

to personalize the evaluation statistics-based approach was 

used to tune the membership functions. The model presented 

provides both numerical and linguistic assessments of risk, 

demonstrating consistent trends between improved 

membership functions and medical recommendations. 

Extensions for future work are also included. 

Keywords: fuzzy logic, risk assessment, sports activity, patient 

monitoring, membership functions, statistical evaluation. 

1. INTRODUCTION 

In today's world, the positive outcomes of regular 
exercise in preventing illness, aiding in recovery, and 
promoting an active lifestyle in general are universally 
recognized. Engaging in sports promotes an active lifestyle 
and enhances the overall quality of life [1]. 

Regular physical exercise offers numerous benefits for 
overall health and well-being. It improves cardiovascular 
health by strengthening the heart and reducing the risk of 
heart disease and high blood pressure, while also aiding in 
weight management through calorie burning and muscle 
building. Exercise boosts mood by releasing endorphins, 
reduces stress, anxiety, and depression, and enhances 
energy levels by improving circulation and nutrient 
delivery. Additionally, it strengthens muscles and bones, 
promotes better sleep, and enhances brain health and 
cognitive function. Exercise also boosts the immune 
system, reduces the risk of chronic diseases, and increases 
longevity, ultimately leading to a higher quality of life 
through improved mobility, reduced pain, and increased 
independence [2]. 

However, these benefits depend on individual 
capabilities and medical advice. Failure to consider 
personal fitness levels and medical guidance can result in 
potential dangers, such as overexertion or injury. Engaging 
in activities beyond our current capabilities and exercising 
with incorrect duration, frequency, and intensity levels can 
be counterproductive and fail to yield beneficial results. 
Factors like chronic illnesses, age, and other relevant sub-

factors must be carefully evaluated to ensure that 
participating in sports remains a safe and beneficial 
activity, rather than exacerbating existing health issues. 

It is noticeable that in contemporary times, patient 
monitoring devices have become indispensable in our daily 
routines [3]. The widespread adoption of Internet of Things 
(IoT) technology has led to the development of increasingly 
sophisticated systems with broader functionality. 
Consequently, the continuous monitoring and recording of 
physiological data have become accessible to a wider 
audience. As a result, research focus has intensified on 
evaluating physiological parameters, aiming to enhance 
safety in everyday life by enabling prompt recognition of 
any health deterioration. This research field's significance 
has been particularly highlighted by the COVID-19 
pandemic, emphasizing the critical need for remote 
diagnosis. Utilizing such applications has played a pivotal 
role in curbing the spread of the virus by minimizing visits 
to medical facilities for less severe illnesses [4].  
IoT devices have the capacity to facilitate remote health 
monitoring and emergency notification systems. From 
basic blood pressure and heart rate monitors to 
sophisticated gadgets capable of overseeing specialized 
implants like pacemakers, Fitbit electronic wristbands, or 
advanced hearing aids, the spectrum of health monitoring 
devices is vast [5]. Specialized sensors establish a network 
of intelligent devices capable of gathering, processing, 
transmitting, and analysing crucial data across various 
environments. This includes linking in-home monitoring 
devices with hospital-based systems, enhancing 
connectivity and data utilization [6]. Nonetheless, health 
monitoring systems prove beneficial not solely for the 
elderly with chronic conditions but also for individuals 
coping with cardiac conditions [7][8]. Moreover, such 
systems can prove advantageous for healthy patients as 
well, aiding in monitoring their physical activity and 
assessing the risk or their performance level [9].  
The key features of health monitoring systems include 
utilization of wireless communication, portability, non-
invasiveness, ease of use, compactness, and minimization 
of device count [10]. Overall, the integration of IoT in 
healthcare plays a crucial role in managing chronic 
illnesses and in disease prevention and control. Remote 
monitoring becomes feasible through robust wireless 
solutions. This connectivity empowers healthcare 
professionals to capture patient data and employ 
sophisticated algorithms in health data analysis [11]. 
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A significant challenge of creating patient monitoring 
systems lies in medical applications, where numerous 
factors defy simple quantification and the boundaries 
delineating normal, increased, and abnormal values remain 
ambiguous and vague. Medicine frequently applies 
linguistic descriptions. Soft computing techniques prove 
highly valuable in addressing the challenges encountered in 
medical applications. The fuzzy approach demonstrates 
significant utility and efficiency in these domains and their 
counterparts, such as risk management. Its compatibility 
with human language and ability to manage uncertainty, 
imprecision, and subjectivity in both data and evaluation 
processes make it particularly valuable. Fuzzy-based 
methods typically yield more realistic results presented in a 
user-friendly format [12] [13]. 

Another challenge in constructing patient-specific 
models stems from the system's behaviour is that it is 
influenced by numerous factors, some of which may be 
unidentified, with complex and often unknown interactions 
among them [14]. While the membership functions of the 
fuzzy model can be tailored in a patient-specific manner by 
accounting for the maximum number of relevant factors, it 
remains challenging to fully consider the combined effect 
of all significant factors unique to individual patients. 

Thus, various approaches aim to minimize the number of 
inputs while considering a wide range of influential factors. 

Patient specificity can be ensured through different 
methods which include utilizing personal medical 
recommendations [15] as well as establishing thresholds 
via equations or tables derived from statistical data on 
personal characteristics like age, sex, and fitness level, 
aggregating results from patients with similar traits 
[16][17]; finally, membership functions (MFs) can be tuned 
based on the input-output pairs with fuzzy-neural system 
[18] [19]. 

The main goal of this study is to develop a risk 
assessment model in which the evaluation is customized 
according to the patient’s characteristics. For this reason, 
statistics-based approaches are studied and built in the 
evaluation process. To handle this issue, authors focus on a 
specific subsystem, namely, the “Current physical status”, 
because it is where user-specific tuned membership 
functions are most crucially required.  

This paper is organized as follows, in section 2, the 
overall hierarchical model structure is presented. Section 3 
shows the investigated subsystem structure – ‘current 
physical status’. Section 4 presents the proposed statistics-
based evaluation followed by a case study in section 5. 
Section 6 discusses the results of the use of the personal 
statistics. Section 7 draws the conclusion. 

 

2. THE OVERALL MODEL STRUCTURE 

The overall model has a hierarchical multilevel clustered 
structure, which facilitates both model expansion and 
simplification of the evaluation process. The evaluation 
uses a Mamdani-type fuzzy inference system. The model's 
structure aligns closely with the logic of the evaluation 
process. The classification of input parameters relies on the 
logical connections between them. Three primary groups 
have been delineated, indicating whether they pertain to the 
patient's medical condition, characterize their sport activity 
behaviour, or describe the environmental conditions. 

Within the primary groups, further classification is 
possible based on the permanence of the parameters. These 
include permanent parameters (such as sex), quasi-
permanent or infrequently changing factors (such as 
chronic diseases and occupation), and real-time variables 
(for example, blood pressure and heart rate). The structure 
is derived from the model outlined in [20], depicted in 
Figure 1. 

On the left-hand side of the diagram are the identified 
risk factors influencing the calculated temporal risk level. 
The middle section of the figure delineates which 
parameters belong to each risk factor group through three 
blocks. The highest level of the hierarchy is situated on the 
right-hand side, responsible for computing the actual risk 
level based on input from the problem groups. The main 
groups constitute the subsystems of the model, with their 
contributions to the overall risk level computed separately 
during processing. The subsystems, along with their 
varying parameters, undergo real-time evaluation, while 
the remainder of the model is evaluated offline before real-
time assessment begins. 

The medical condition of the patient is characterized by 
the Medical Condition group, which represents the most 
crucial and intricate subsystem. Personal conditions 
primarily determine the patient's load capacity, and most 
interactions among input factors occur within this group. 
The first input factor in this group is Disease Condition, 
encompassing chronic diseases such as hypertension, 
diabetes, and cardiac diseases, among others. While these 
diseases are quasi-permanent factors, their severity may 
vary over time. The second input is the Current Physical 
Status subsystem, which offers information about the 
patient's current condition. This assessment is based on 
measured parameters such as heart rate, systolic and 
diastolic blood pressure. Additionally, associated metrics 
and factors influencing these parameters are utilized as 
input to construct patient-specific membership functions. 

The input factor, Basic Physical Information, serves to 
characterize the fundamental attributes and living 
circumstances of the patient. Mental stress holds particular 
significance within this subsystem. Despite exerting a 
weaker influence on physiological parameters compared to 
physical activity, it can notably elevate heart rate. To 
delineate the sport activity habits of the patient, the Activity 
Load subsystem is employed. Its subfactors delineate the 
intensity, duration, and frequency of the patient's activity, 
specifying how vigorously (Intensity), how long per 
occasion (Duration), and how often per week (Frequency) 
the activity is performed. Finally, the third main subsystem 
Environmental condition uses combined subfactors to 
characterize the environment. The temperature is combined 
with the actual humidity (TH) and wind (TW) because of 
their influence on thermal sensation. This group has more 
importance in the case of outdoor sports, but humidity and 
temperature together can influence the risk level indoors 
too [21]. 

The parameters of the group “Current physical status” 
subsystem, which is the main topic of this paper, changes 
in real-time. Monitoring these values ensures continuous 
control. Therefore, there is a need to customize it for each 
patient separately, i.e., a flexible risk assessment 
framework is required. 
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Figure 1. The fuzzy model structure 

  

3. THE CURRENT PHYSICAL STATUS SUBSYSTEM  

The initial parameter that was considered is the heart 
rate, which represents the number of myocardial 
contractions per minute. It is influenced by various external 
and internal factors, with numerous interactions among 
them. Patient-specific membership functions related to this 
parameter can be defined based on the maximum heart rate, 
representing the highest attainable value under physical 
exertion.   Approximately 30 factors can affect this 
threshold, including age, sex, weight, time of day, 
environmental conditions, physical fitness, activity 
intensity, mood, medications, and certain medical 
conditions [22]. Instead of relying solely on the maximum 
heart rate, it is customary to utilize a predictive maximum 
heart rate estimated by the OwnZone function of the Polar 
heart rate monitoring device. This prediction is derived 
from personal parameters such as age, sex, and the patient's 
resting heart rate [23]. The OwnZone function leverages 
heart rate variability, which can be assessed using the Polar 
device or an oscillometric blood pressure monitor [24]. 
Obtaining the predicted maximum heart rate requires only 
a brief 5-minute test before monitoring, unlike traditional 
methods such as progressive exercise testing or VO2max 
measurement, which are typically conducted in laboratory 
settings and may not be feasible for all individuals, 
especially those with cardiovascular conditions or elderly 
individuals on medications affecting heart function and 
circulation. Additionally, this method offers the advantage 
of daily or multiple daily assessments, allowing for 
consideration of fluctuations in the maximum heart rate 
during evaluation. 

Understanding the training target is crucial, as it 
determines the optimal heart rate and associated risk level. 
The target heart rate zone, expressed as a percentage of the 
maximum heart rate, is detailed in figure 2. This represents 
the original Polar zone where Vlow (<50%), light (50-
60%), medium (60-70%), mhigh (70-85%), high (85-95%), 
vhigh (>95%). 

 
Figure 2. Target zones 

This percentage indicates the permissible intensity level 
for the individual. It varies based on the activity's objective 
(rehabilitation or prevention), the individual's athletic 
background (regular athlete or beginner). Consequently, 
personalized zone limits can be computed, and membership 
functions can be adjusted to accommodate the specific 
characteristics of the individual patient. 

Nevertheless, limits can be specified depending on the 
patient’s condition. Figure 3 shows a case for a patient 
under medical treatment, debilitated, cardiovascular 
disease, respiratory disease or rehabilitation; here, from the 
original target zones, vlow would be the appropriate one 
based on the table, that’s why it became the target (<50%), 
mhigh is the original light zone (50-60%), vhigh is the 
merge of the rest (medium, mhigh, high, vhigh) (>60%)).  

Figure 4 shows a case for a beginner level sports individual; 
here, from the original target zones, light or medium would 
be the appropriate one based on the table, that’s why target 
zone is created merging the vlow, light and medium zones 
(<70%), mhigh is the original mhigh zone (70-85%), vhigh 
is the merge of the rest (high, vhigh) (>85%). Figure 5 
shows a case in which a person exercises regularly; here, 
from the original target zones, mhigh would be the 
appropriate one based on the table, that’s why the target 
zone defined as a merge of the vlow, light, medium and 
mhigh zones (<85%), mhigh is the original high zone (85-
95%), vhigh is the original vhigh (>95%). 

 

 
Figure 3. Illness, rehabilitation 
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Figure 4. Beginner 

 
Figure 5. Regularly do sport              

The second parameter under consideration is blood 
pressure, recognized as the most critical cardiovascular risk 
factor. Blood pressure signifies the force exerted by blood 
against vessel walls, notably in arteries. This force 
fluctuates rhythmically due to the heart's cyclic 
contractions. Systolic pressure denotes the peak pressure 
generated by the contracting left ventricle, while diastolic 
pressure refers to its lowest point during relaxation. To 
comprehensively evaluate blood pressure, both systolic and 
diastolic readings are essential, thus constituting the two 
additional input parameters in the Current Physical Status 
subsystem. Typically, systolic pressure rises during 
progressive exercise, while diastolic pressure remains 
steady or experiences a slight decline. The response at 
maximal or submaximal effort levels varies based on 
factors such as age, gender, and physical fitness. Older 
patients generally exhibit higher blood pressure readings, 
but this relationship inversely correlates with physical 
fitness, with better fitness levels associated with lower 
measured values. Additionally, men tend to have higher 
maximum systolic blood pressure compared to women. The 
blood pressure thresholds referred to in this paper stem 
from maximum values linked to age and gender, as detailed 
in [25], notwithstanding adjusted according to target zones, 
which also influence optimal blood pressure. Figure 6 
shows the systolic blood pressure with the following 
parameters: low (<187), normal (187-204), increased (204-
220), abnormal (>220). Figure 7 illustrates the diastolic 
blood pressure with the following constraints: Low (<80), 
normal (80-84), increased (85-90), abnormal (>90).       

Table 1 illustrates the maximum systolic and diastolic 
blood pressure values categorized by age and sex [25]. 

 
Figure 6. Systolic blood pressure

 
Figure 7. Diastolic blood pressure             

1. TABLE: NORMAL BLOOD PRESSURE RESPONSE 

 

The output membership functions (risk levels) are: vsafe 
(<0,2), msafe (0,2-0,4) medium (0,4-0,6), mdangerous 
(0,6-0,8), vdangerous (0,8-1) as illustrasted in figure 8. 
(vsafe represents the smallest, while vdangerous the highest 
risk). 
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Figure 8. Risk level 

The structure of the Current Physical Status subsystem is 
depicted in Figure 9, with input factors positioned on the 
left side and influential factors, crucial for refining 
membership functions, situated at the top of the figure. 
Input factors encompass heart rate (HR), systolic blood 
pressure (SBP), and diastolic blood pressure (DBP), while 
influential factors include disease condition, which 
transcribes whether the individual is diseased or someone 
who is a beginner or advanced in terms of sports, basic 
physical information which includes age and sex, and 
finally, the training target. This subsystem elaborates on the 
"Current Physical Status" input within the overarching 
model, as illustrated in Figure 1. 

 
Figure 9. Current physical status subsystem   

4. STATISTICS-BASED EVALUATION 
 

4.1. Membership functions construction – an 
overview 

Deriving membership functions from training data is a 
core challenge in fuzzy set theory. There are no definitive 
guidelines for selecting the appropriate method for 
generating these functions. Additionally, the task is 
complicated by a lack of consensus on how to define and 
interpret membership functions. For instance, Dubois and 
Prade [26] discuss the complexities and differing 
interpretations involved, underscoring the subjective nature 
of defining membership functions in fuzzy set theory. 
Therefore, various methods can be employed to generate 
membership values based on the desired interpretation. 

Extensive literature focuses on creating membership 
functions to reflect subjective perceptions of vague 
concepts. However, these methods often cannot be directly 
applied to practical problems like fuzzy logic applications, 
which require modelling uncertainty in input data. There 
are no standard measures to evaluate the accuracy of 
generated membership functions, particularly for abstract 
concepts. Therefore, models must be flexible and easily 
adjustable to optimize algorithm performance. Given the 
importance of membership functions, multiple methods 

may be necessary, tailored to specific problems and data 
types. 

An overview of some of these methods can be found in 
[27]. The authors provide a solid background on the various 
techniques available for generating membership functions. 
The discussed key techniques encompass Heuristic 
Methods, rooted in expert knowledge and intuitive grasp of 
problem domains, where the construction of membership 
functions relies on rules derived from human expertise and 
experience. Probability-Possibility Transformations 
involve converting probabilistic data into fuzzy 
membership functions, utilizing the interplay between 
statistical data and fuzzy sets to manage uncertainty. 
Cluster Analysis, exemplified by methods like fuzzy c-
means (FCM), identifies natural data groupings to construct 
membership functions, assigning data points to clusters 
with varying membership degrees for smoother function 
creation. Neural Networks employ artificial neural 
networks to learn membership functions dynamically, 
particularly adept for complex pattern recognition tasks. 
Genetic Algorithms optimize membership functions by 
emulating natural selection, searching for optimal 
parameters to enhance fuzzy system performance. 
Histograms and Density Estimation employ statistical 
methods to estimate data density distributions, aiding in 
precise membership function creation through visual 
representation of data distribution. More details on the 
histogram method will be outlined in the next section, as 
this is the method used in this paper.  

Although these methods were originally proposed for 
pattern recognition purposes, they can still be relevant to 
patient monitoring, and there is potential to combine them 
to create robust and accurate membership functions tailored 
to medical data.  

A further contribution was introduced by Medaglia [28], 
who proposed an innovative method for constructing 
membership functions in convex normal fuzzy sets using 
Bézier curves. This technique offers significant flexibility 
and efficiency. The Bézier curve-based mechanism allows 
users to intuitively manipulate the shapes of membership 
functions to fit given data sets with minimal discrepancy. 
The paper includes several numerical experiments 
comparing this method to conventional approaches, 
demonstrating its superiority in producing accurate and 
reliable membership functions. One key advantage of this 
method is its ability to handle various data shapes 
intuitively. Traditional methods often require complex 
calculations and are less adaptable to different data 
distributions. In contrast, the Bézier curve-based approach 
simplifies the process, making it accessible even for those 
with limited technical expertise in fuzzy set theory. By 
harnessing these techniques, researchers and practitioners 
can develop more sophisticated monitoring systems that 
improve diagnostic accuracy, adapt to dynamic patient 
conditions, and support personalized patient care, 
ultimately leading to better health outcomes and enhanced 
quality of care for patients.  

In the literature, fuzzy sets are frequently represented 
using triangular, trapezoidal, and bell-shaped membership 
functions [29][30]. 

A trapezoid shape input membership function is given 
by: 
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  𝜇𝑣(𝑥) =

{
 
 

 
 
0,                     𝑥 < 𝑣1
𝑥−𝑣1

𝑣2−𝑣1
, 𝑣1 ≤ 𝑥 ≤ 𝑣2

1,             𝑣2 ≤ 𝑥 ≤ 𝑣3
𝑣4−𝑥

𝑣4−𝑣3
, 𝑣3 ≤ 𝑥 ≤ 𝑣4

0,                      𝑥 > 𝑣4

  (1) 

where, 𝑣1, 𝑣2, 𝑣3, 𝑣4 are the parameters of the membership 
function. 

In the method proposed by Devi and Sarma [31], a 
parametric representation of the histogram is utilized to 
estimate fuzzy membership functions. This is achieved 
through the rational function approximation, where the 
parameters of the function are derived by applying least 
squares fit to the histogram values. Once obtained, these 
parameters are normalized to ensure that the function's 
maximum value is one. To determine the membership 
value for any given sample, these normalized parameters 
are substituted back into the rational function. This 
approach is particularly useful for classifying unlabelled 
samples. For each feature within each class, histograms are 
constructed, and the parameters representing the 
membership function are determined accordingly. 

To obtain the desired results, the input MFs are tuned 
according to the personal characteristics of the patient. For 
simplicity, these values are represented by trapezoidal MFs. 

4.2 Membership function fitting to the Histogram 

Due to the complex interactions between input factors, it 
is difficult to precisely evaluate their effects on the 
measured values.  

The data collected and recorded during monitoring can 
be used to assess the patient's current condition. 
Furthermore, these data can be recorded in a personal 
profile to personalize the evaluation in the future. 
According to the current state of the patient, the previous 
measurements performed under the approximately same 
conditions can be considered. Statistics, such as 
histograms, can be created based on these values to provide 
further insights. This histogram represents the normal 
reaction of the patient under the given conditions. 

When a histogram is available, a membership function 
(MF) can be defined based on it. This function is piecewise 
linear whose highest point corresponds to the domain with 
the maximum value in the histogram and the rest of the 
function is created based on the remaining histogram 
values. Further details on this method can be found in 
[32][33]. 

This is how the membership functions of the inputs HR, 
SBP and DBP are created. After the histogram-based 
functions are available, original membership functions can 
be tuned accordingly. The functions tuned in this way are 
more reliable since the patient's normal reactions and the 
medical recommendation are taken into account together. 
These functions are the ‘improved MFs’ that can be 
obtained by simply calculating the mean of the 
correspondent parameters of the histogram-based functions 
and the tuned original membership functions. 

5. CASE STUDY 

In this section, the membership functions representing 
the medical recommendation for an ‘Advanced Male 20-
29’ are presented, as well as the measurement-based 
statistics for a specific patient. The Mamdani-type 

inference system was implemented in MatLab Fuzzy Logic 
Designer alongside the rule base. 

In order to define the membership functions for heart 
rate, consideration should be given to the predicted 
maximum heart rate and the recommended intensity (as 
outlined in Figure (2). Three antecedent fuzzy sets are 
applied: "target," representing the ideal heart rate zone for 
the patient; "mhigh," indicative of an elevated heart rate; 
and "vhigh," denoting a very high heart rate that is not 
advisable for the patient. These zones and the actual input 
value are delineated as a percentage of the individual's 
maximum heart rate. Figure 10 illustrates the heart rate 
antecedent sets for the group ‘Advanced Male 20_29’ 
which features males aged between 20-29 years who 
regularly do sports at an advanced level. 

The membership functions for systolic blood pressure 
are also depicted in Figure 11. The thresholds establish the 
antecedent fuzzy sets: "low," representing hypotonic 
values; "normal," indicating the desired SBP value; 
"increased," signifying a somewhat higher but still 
acceptable value; and "abnormal" which is not 
recommended for the patient due to increased risk. 
Similarly, the antecedent sets for diastolic blood pressure 
are presented in Figure 12. 

 

 
Figure 10. Heart rate zones for Advanced Male 20-29         

 

Figure 11. Systolic blood pressure for Advanced Male 20-29 
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Figure 12. Diastolic blood pressure for Advanced Male 20-29 

Utilizing the influential parameters described above, the 
membership functions can be adjusted to align with patient 
characteristics. Figures 13-15 show the statistics-based 
membership functions of a 21-Year-Old elite badminton 
athlete. His personal parameters are as follows: resting 
heart rate, HRrest=60bpm, maximum heart rate, 
HRmax=195bpm, systolic blood pressure, 
SBP=120mmHg, maximum systolic blood pressure, 
SBPmax=235mmHg, diastolic blood pressure, 
DBP=55mmHg, maximum diastolic blood pressure, 
DBPmax=82mmHg, weight=175kg. The athlete performed 
an incremental treadmill running test for the evaluation of 
maximal oxygen consumption (VO2max), anaerobic 
threshold, and time to exhaustion. He started exercising at 
a treadmill speed of 2.7 km/h and an inclination of 10% 
gradient for 3 min, and the speed and inclination were 
gradually increased every 3 min until he was exhausted or 
fatigued volitionally. Heart rate variability was examined 
using the Polar heart rate monitor over a period of 5 min at 
rest in the supine position [34]. In all cases, the examined 
HR, SBP and DBP were incrementally generated from the 
resting values to close to the maximum parameters. The 
graphics presented from this point forward in this chapter 
are dedicated to the profile of the 21-year-old elite 
badminton athlete. 

 

 
Figure 13. Stats-based fuzzy set representing the personal statistics for 

HR 

 

 
Figure 14. Stats-based fuzzy set representing the personal statistics for 

SBP 

 

 
Figure 15. Stats-based fuzzy set representing the personal statistics for 

DBP 

Next, the statistics-based MFs were compared to the 
medical recommendations and then aggregated to the 
‘improved MFs’ as shown in figures 16-18. These new 
membership functions (figures 19-21) were then used to 
evaluate the risk level of the patient (see table 2). 

 

 
Figure 16. Comparison between the statistics-based (Input Values: [0, 0, 

0.62, 0.77]) and the medical recommendation MFs for HR (Input Values: 

[0, 0, 0.82, 0.88]) 

   The HR input domain for the statistics-based function 

ranges from 0 to 0.77, while the medical recommendation 

function ranges from 0 to 0.88. The significant difference 

occurs in the mid-to-high range values, specifically from 

0.62 to 0.88. In the range [0.62, 0.77], the statistics-based 

function provides a more detailed classification of HR 

values. This range is crucial as it indicates moderate risk 

levels where the athlete’s HR is elevated but not yet in the 

high-risk category. The medical recommendation function 

does not start this categorization until a higher range [0.82, 
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0.88], suggesting that the athlete-specific model is more 

sensitive to increases in HR, thus providing earlier 

warnings and potentially better risk management during 

physical activity. The personalized statistics-based 

function allows for a broader range of HR values to be 

classified as "moderately safe" before reaching 

"moderately dangerous," reflecting the athlete's higher 

tolerance for elevated heart rates during intense physical 

activity. The parameters of the ‘improved’ MFs for HR are 

[0 0 0.74 0.825] which were obtained by taking the mean 

of the corresponding parameters of the statistics-based 

function and the medical recommendation function. 

 
Figure 17 . Comparison between the statistics-based (Input Values: [130, 

140, 180, 190]) and the medical recommendation ([130, 140, 188, 198]) 

MFs for SBP 

   The range of interest here is [180,190] for the statistics-

based function versus [188,198] for the medical 

recommendation. In the range [180, 190], the statistics-

based function identifies SBP values within this interval as 

moderate to high risk. This is significant because it 

indicates that the athlete-specific function flags elevated 

SBP values earlier than the medical recommendation 

function, which only starts this categorization at higher 

SBP values [188, 198]. By focusing on this range, it is 

evident that the personalized model is tailored to detect 

potential cardiovascular strain at lower thresholds. This 

early detection capability enables better prevention and 

management strategies during high-intensity exercise. 

Similar to the previous analysis, the parameters of the 

'improved' MFs for SBP are [0, 0, 184, 194]. 

 

 
Figure 18.  Comparison between the statistics-based (Input Values: [55, 

67, 76, 82]) and the medical recommendation (Input Values: [53, 65, 77, 

89]) MFs for DBP 

   The input domain includes values from resting diastolic 

pressure to the peak DBP observed during the athlete’s 

maximal activity levels. In the range [76 82], the statistics-

based function assigns higher risk levels compared to the 

medical recommendation, which considers values up to 89 

before assigning similar risk levels. This indicates that the 

athlete-specific function is more conservative and 

sensitive to increases in DBP. The range [76 82] is critical 

as it represents values where the athlete’s diastolic pressure 

is elevated but still below the extreme high-risk category. 

This sensitivity helps in the early detection and 

management of cardiovascular risks specific to the 

athlete's physiology. Analogously, the parameters of the 

'improved' MFs for DBP are [54, 66, 76.5, 85.5]. 

 
Figure 19. Improved MFs for HR 

 

 
Figure 20. Improved MFs for SBP 
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Figure 21. Improved MFs for DBP 

   Our analysis of the input domains where statistics-based 

functions and medical recommendation functions differ 

highlights the significant impact of personalized modelling. 

The specific ranges of [0.62, 0.77] for HR, [180, 190] for 

SBP, and [76, 82] for DBP illustrate areas where the 

statistics-based functions offer more detailed and early risk 

categorization. These distinctions underscore the critical 

importance of personalized health monitoring, enabling 

timely and precise interventions tailored to individual 

physiological responses, especially for athletes. 

   Moreover, incorporating the improved MFs into our 

analysis demonstrates the value of a balanced approach. 

The improved MFs, which are calculated as the means of 

the adjacent statistics-based and medical recommendation 

functions, provide a smoother and more adaptive risk 

assessment. These functions offer early warnings similar to 

the personalized statistics-based functions while gradually 

aligning with the thresholds set by medical 

recommendations. This comprehensive and timely health 

monitoring approach is particularly beneficial for 

managing the cardiovascular health of athletes, ensuring 

their safety, and optimizing performance. 

6. RESULTS 

The risk evaluation of personal statistics is illustrated in 
Table 2. The table presents a comprehensive risk evaluation 
of a 21-year-old male elite badminton athlete, focusing on 
heart rate (HR), systolic blood pressure (SBP), diastolic 
blood pressure (DBP), and their corresponding risk levels 
both numerically and in linguistic terms. The comparison 
of risk levels derived from improved membership functions 
(MFs) and medical recommendations offers valuable 

insights into the athlete's cardiovascular status under 
varying physiological conditions.  

 

 2. TABLE: RISK EVALUATION OF A 21-YEAR-OLD MALE 

BADMINTON ATHLETE 

 

At lower heart rates and blood pressure values the risk 
level is predominantly categorized as ‘very safe’. The 
medical recommendations are very similar with the 
improved MFs, suggesting a low risk for cardiovascular 
events. Which means that in this zone the statistics-based 
approach is reliable as it presents similar results as the 
medical recommendation. For moderated heart rates and 
blood pressure values the risk level varies from ‘very safe’ 
to 'moderately safe’ with a slight variation between the 
improved MFs and the medical recommendation. For 
higher heart rates and blood pressure values we notice an 
increase in cardiovascular risk in both the improved MFs 
and the medical recommendation. 

The consistency between improved MFs and medical 
recommendations validates the reliability of the model, 
particularly at higher heart rates where risk levels are more 
pronounced. This approach emphasizes the importance of 
personalized risk assessment models, ensuring the patient’s 
safety and optimal performance management. 

 

7. CONCLUSION  

In sports and physical activity, ensuring health 
monitoring is crucial for participants across all levels. Each 
individual engages in sports with varying physiological 
responses and health profiles, making personalized 
assessment methods essential. Traditional approaches to 
health monitoring do not always take that into account.  

Integrating fuzzy logic into health monitoring systems 
can be advantageous in dealing with such challenges as it 
can handle uncertainty, imprecision, or subjectivity of the 
input data. It can offer more accurate and personalized 
results, leading to safer practice of physical activity.  

In this paper, the authors analysed the risk levels of the 
current activity using a hierarchical fuzzy model structure 
with a focus on the current physical status subsystem. To 
assess the patient's current condition data (which includes 
but is not limited to HR, SBP, DPB values as well as 
sampling frequency, duration, sex, and activity type) is 
collected and recorded during monitoring. This data can be 
recorded in a personal profile to personalize the evaluation 
in the future and the previous measurements performed 
under the approximately same conditions can be 
considered. The statistics-based approach was used. 
Histograms were created representing personal statistics, 
i.e., the normal reaction of the patient under the given 
conditions. When the histogram is available, a membership 
function (MF) can be defined based on it. This function is 
piecewise linear whose highest point corresponds to the 
domain with the maximum value in the histogram and the 
rest of the function is created based on the remaining 
histogram values. This way, the membership functions of 
the inputs HR, SBP and DBP are created. After the 
histogram-based functions are available, original 
membership functions can be tuned accordingly. The 
functions tuned in this way are more reliable, since the 

    Improved MFs Medical recommendation  

HR 

(bpm) 

% of  

HRmax 

(bpm) 

SBP 

(mmH

g) 

DBP 

(mmH

g) 

Risk Level 

(numerical) 

Linguistic 

 terms 

Risk Level 

(numerical) 

Linguistic 

 terms 

60 0.31 120 55 0.108 Very safe 0.111 Very safe 

70 0.36 130 58 0.226 

Moderately 

safe 0.121 Very safe 

80 0.41 140 61 0.21 

Moderately 

safe 0.193 

Moderately 

safe 

90 0.46 150 64 0.153 Very safe 0.131 Very safe 

100 0.51 160 67 0.106 Very safe 0.106 Very safe 

110 0.56 170 70 0.106 Very safe 0.106 Very safe 

120 0.62 180 73 0.106 Very safe 0.106 Very safe 

130 0.67 190 76 0.361 

Moderately 

safe 0.224 

Moderately 

safe 

140 0.72 200 79 0.561 Medium 0.539 Medium 

150 0.77 210 82 0.692 

Moderately 

dangerous 0.698 

Moderately 

dangerous 
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patient's normal reactions and the medical recommendation 
are taken into account together. 

This study shows that there is consistency between the 
improved MFs and the medical recommendations, which 
validates the reliability of the model, particularly at higher 
heart rates where risk levels are more pronounced. This 
approach emphasizes the importance of personalized risk 
assessment models, ensuring the patient’s safety and 
optimal performance management. 

In the future, authors aim to develop different 
mathematical methods that can be used to represent the 
patient’s statistics and for fitting the membership functions.  
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