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This paper presents a gradient descent based calculation method with an adaptive learning 

rate for the maximum efficiency calculation of an electrical machine. The method is applied 

to an permanent magnet synchronous machine, thus the machine equations are described. 

Of course the method could be applied to other machine types as well. The presented method 

reduces some problems, which occur while the usage of a gradient descent based method 

without learning rate adaption. The results are presented and conspicuous features are 

discussed.  
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1 Introduction 

Because of the increasing integration and thus the limited possibilities for heat 
dissipation the importance of efficiency calculation of electrical machines is 
growing. Therefore the power losses and the resulting efficiency have to be studied. 
The principle calculation of efficiency maps is a well known topic [1], [2], [3], even 
with saturation effects [4]. The calculations are mainly based on curve- and surface 
fitting methods to obtain an algebraic equation describing e.g. the dependency of 
flux linkage and current in direct and quadrature axis ψ(Id,Iq). 

 

As an alternative approach in comparison to an exhaustive search a method is 
presented in [5]. It is based on a gradient descent (GD) optimization function. The 
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main objective is a tuning of the input parameters torque T and rotational speed n 

of an electrical machine to find the maximum efficiency. The presented method 
shows good results, with little problems in the optimization process. Because of the 
chosen learning rate an overtuning for T0 = 150 Nm and n0 = 1000 rpm (Figure 1 
yellow dotted ellipse) can be observed. The yellow arrows mark the evolution of 
the predicted efficiency. There was stated, that a fixed learning rate of αf = 5∙104 
was chosen, because learning rates of α ≥ 8∙104

 led to convergence problems.  

 

Figure 1 

Efficiency map with a comparison of the evolution of η during the optimization process for 

T0 = 150 Nm and different rotational speed starting values n0 [5]. The overtuning for n0 = 1000 rpm is 

marked with an yellow dotted ellipse. 

 

As a solution this paper presents an improved GD method with a learning rate 
adaption, which is further called the GDa (a for alpha – learning rate) method. 
Therefore in section 2 the machine and loss models are presented. Section 3 includes 
an overview of the optimization process and the learning rate adaption. In section 4 
the results are shown and conspicuous features are discussed. 

6



Science in Practice 2018  

 

2 Machine Model 

2.1 Main equations 

The Torque T of a permanent-magnet synchronous-machine (PMSM) can be 
described using (1), based on flux linkage and currents in direct and quadrature axis 
directions as well as the number of pole pairs p [5]. 

 T = 
32 ⋅ p ⋅ (ψd ⋅ Iq + ψq ⋅ Id) (1) 

The electromagnetic power Pem is further calculated by T and the mechanical 
angular speed ωMech. 

 Pem = T ⋅ ωMech (2) 

2.2 Power loss calculation 

An electrical machine’s power losses can be divided into copper, iron, eddy current, 
windage and bearing losses. The copper losses are calculated by (3) with Rph as the 
phase resistance and IS as the stator phase current. 

 Pl,Cu = 3 ⋅ I  S2 ⋅ Rph (3) 

The iron losses are calculated with default settings in ANSYS Maxwell® and 
described as a 3D surface depending on the torque T and the rotational speed n. The 
mechanical losses are adapted from [1] and [6], where measurements with a dummy 
rotor were performed, including bearing and windage losses. As a simplification the 
eddy current losses in magnets are neglected. The total losses Pl can be calculated 
by (4). 

 Pl = Pl,Cu + Pl,Fe + Pl,Mech (4) 

The efficiency η is calculated by (5) from the electromagnetic power Pem and the 
total power loss Pl. 

 η = 
lem+l (5) 
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Based on (5) the efficiency for a given operating point can be calculated. In Figure 2 
the efficiency map of the machine is shown with an ellipse highlighting an area with 
η ≈ 90.8 %. This area is further called the area of maximum efficiency. The target 
of the optimization (section 3) is to find results within this area. This simplification 
is assumed on the basis of the calculation effort and further described in section 3. 

 

Figure 2 

Efficiency map of the electrical machine 

 

3 Optimization 

3.1 Gradient Descent Method 

The gradient descent optimization function is described in [7]. The main purpose of 
this function is the reaching of a minimum. To apply this to the problem of finding 
the maximum efficiency a (optimization) loss function is necessary. A common loss 
function is the Mean Squared Error (MSE) function (6) [7].  

 l(w) = 
1ே ⋅ ∑ �ݔ,ܟ�predߟ� − tar,j�2ே=1ߟ  (6) 

The calculated loss is used for the weight update process. Therefore the update rule 
(7) [8] is applied. 

௧ܟ  = ௧−1ܟ  − ߙ ⋅  (7) (௧−1ܟ )݈∇
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Equation 7 includes the learning rate α with the purpose of an adaption of the 
gradient’s slope. Like mentioned in [5] there is a large effect on the behaviour of 
the optimization process. Hence there are more details in section 3.2. 

Within the iterative process the (optimization) loss is calculated and the weights are 
updated. To avoid protracted calculation times, a specific stop criteria has to be 
defined. It is calculated by the change of loss (8) and compared to the stop criteria 
of  ∆݈ < 1݁−12. This realizes an applicable trade-off between accuracy and 
optimization time. 

 ∆݈ = |݈௧−1 − ݈௧| (8) 

3.2 Learning Rate Adaption 

During some research about the GD method there was pointed out, that the stability 
problems as well as the so called overtuning strongly depends on the learning rate. 
Especially for learning rate of α ≥ 8∙104 there occurred problems e. g. no 
convergence of the calculated efficiency. Further there could be detected the 
mentioned overtuning. It was assumed that this behaviour of the GD method is 
mainly depending on the chosen learning rate, especially within the first epochs. 
Thus the GDa method with a learning rate adaption was implemented. 

To explain the GDa method a comparison with the GD method is presented. 
Therefore the GD method with a fixed learning rate αf = 15∙104 is applied. The 
results can be seen in Figure 3 a) and Figure 4 a) for different start values of torque 
T0 and rotational speed n0. During the optimization the learning rate αf is constant. 

While the optimization process with the GDa method the learning rate αa is adapted 
and defined by (9). For the example αa depends on the number of the actual epoch 
while optimization process Nepoch.  

�aߙ  eܰpoch� = � 5000, eܰpoch < 200

150000, eܰpoch ≥ 200
 (9) 

As defined by (9) the learning rate for the first 199 epochs is αa = 5∙103, within 
epoch 200 the learning rate is adapted to αa = 15∙104. Beside the chosen definition 
of αa there could be applied functional dependencies like linear, quadratic or 
exponential equations. Further an adaptive learning rate method like ADADELTA 
[9] could be implemented. The results of the GDa method with the discrete learning 
rate change (9) are presented in section 4 in comparison to the original GD method.  
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4 Results 

In Figure 3 and Figure 4 the evolutions of η are shown for different starting values. 
The results are shown for a) a fixed learning rate (GD method) and b) an adaptive 
learning rate (GDa method) respectively.  

 

a) GD method b) GDa method 

  
Figure 3 

Efficiency map with a comparison of the evolution of η during the optimization process for T0 = 50 Nm 

and different rotational speed starting values n0. With a) GD and b) GDa method defined by (9).  

 

a) GD method b) GDa method 

  
Figure 4 

Efficiency map with a comparison of the evolution of η during the optimization process for 

T0 = 150 Nm and different rotational speed starting values n0. With a) GD and b) GDa defined by (9).  
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In Table 1 the optimization results are compared for different starting values and 
both methods. There are shown the maximum predicted efficiency ηpred,max, the 
torque Tηmax and rotational speed nηmax at maximum predicted efficiency as well as 
the number of epochs Nepochs until fulfilment of the stop criteria. 

Table 1 

Comparison of the optimization results for different starting  

values for the GD method and the GDa method 

T0 n0 
GD method GDa method 

ηpred,max Tηmax nηmax Nepochs ηpred,max Tηmax nηmax Nepochs 

50 1000 0.9091 98.8 2437 7804 0.9091 98.6 2414 7887 

150 1000 - - - - 0.9090 98.5 2397 7691 

50 2000 0.9091 98.7 2428 4639 0.9090 98.6 2409 4730 

150 2000 0.9090 98.5 2399 4142 0.9090 98.5 2405 4421 

50 3000 0.9094 103.8 2999 11 0.9094 103.8 2999 207 

150 3000 0.9094 103.9 3000 10 0.9094 103.8 3000 208 

50 4000 0.9086 107.8 3503 6304 0.9087 107.7 3488 6740 

150 4000 0.9087 107.7 3493 6474 0.9086 107.9 3524 6616 

50 5000 0.9086 107.9 3519 14470 0.9087 107.7 3489 15132 

150 5000 0.9087 107.5 3458 15449 0.9087 107.8 3492 15595 

 

As shown in Figure 3 a) the GD method with constant αf = 15∙104 leads to an 
overtuning of the evolution of ηpred. Further in Figure 4 a) can be seen that for 
T0 = 150 Nm not just an overtuning exist, but also for n0 = 1000 rpm ηpred does not 
convergence. This approves the statement in [5] and the limitation of αf < 8∙104.  

The results of the GDa method are presented in Figure 3 b) and Figure 4 b) as well 
as in Table 1. At first it is obvious that all the evolutions of ηpred result in the area of 
maximum efficiency ηmax > 0.9086. Thus the GDa method is approved. Further it 
can be seen that the overtuning is reduced.  

A comparison of the resulting values for Tηmax and nηmax (Table 1) shows that the 
values vary in a little range, which is presumed admissible. The number of epochs 
until fulfillment of the stop criteria Nepochs is increasing with the GDa method, which 
is the consequence of the reduced learning rate for the first 200 epochs. Nevertheless 
is has to be mentioned that the difference of Nepochs GD and GDa method is not 
exactly the chosen number of 200 epochs. This results from the optimization 
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process, which leads to results with a small variation. Thus the calculations were 
repeated multiple times and the presented results could be proved. 

5 Discussion 

Usually while an optimization process at first a high learning rate is chosen and at 
a certain point the learning rate is reduced to fine tune the results. The application 
within the GDa method is different. The GDa method starts with a small learning 
rate which further is  increased. This mainly depends on the equations (7) and (8) 
and the chosen stop criteria. The loss between the actual epoch and the previous one 
is calculated by (8). The result is compared with the stop criteria. If the absolute 
diffrence in the loss between two epochs is too small, the stop criteria is fulfilled 
and the optimization process is finished. Actually this should happen in the area of 
maximum efficiency, since the gradient in this area is small.  

Especially around the path of maximum gradient [5], where the evolutions of ηpred 
are located on, the gradient is high. Based on the gradient calculation in (7) the 
weights are updated strongly. This actually leads to the described overtuning or 
even no convergence. The reduced learning rate for the first 199 epochs 
compensates the high gradient calculation and prevents overtuning as well as no 
convergence. Afterwards the high learning rate allows a computational efficient 
reaching of the area of maximum efficiency, without a premature finish of the 
evolution because of the chosen stop criteria. 

 

Conclusions 

In this paper the application of the GDa method for calculating the maximum 
efficiency area ηmax of an electrical machine was presented. It is a further 
development of the GD method and has the main benefit of an adaptive learning 
rate. The GDa method is applied to a PMSM, nevertheless it could be applied to 
other machine types as well. The power and power loss calculations are based on 
the equations in section 2. The gradient descent optimization function, the 
(optimization) loss function and the learning rate adaption are presented in 
section 3. The GDa optimization results show, that the area of maximum efficiency 
ηmax > 0.9086 can be found. The described overtuning or not converging evolutions 
are reduced. Further the results are discussed and features of the GDa method are 
explained. 

Within further research the presented method could be applied to other machine 
types. Further additional power losses e. g. eddy current losses in magnets should 
be considered. The method could also be applied to electrical drive systems 
including power electronics. 
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