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Abstract

This dissertation presents novel machine learning solutions for modeling and automating pro-
cesses in healthcare, with a primary focus on diabetes management and medical image processing.
In the diabetes domain, the work introduces methods to detect patients physical activity from
both synthetic and real-world data, integrating continuous glucose monitoring (CGM) and heart
rate signals. By employing conservative machine learning algorithms alongside more advanced
recurrent neural networks (RNNs), the dissertation demonstrates how accurate exercise detec-
tion can be achieved even under real-life conditions thereby enhancing personalized feedback for
patients.

Beyond activity detection, the research also addresses the automated recognition of food
intake gestures using wearable sensor data. This solution is crucial for improving dietary records
in diabetes therapy, as it accurately identifies when carbohydrate consumption occurs. The
dissertation further proposes a reinforcement learning (RL) framework for insulin regulation,
wherein policy and value networks learn optimal dosing strategies based solely on CGM data.
Experiments show that this RL-based controller robustly maintains blood glucose within safe
limits, offering a foundation for more adaptive and patient-specific “artificial pancreas” systems.

In medical image processing, the dissertation I developed advanced architectures for seg-
menting and classifying magnetic resonance imaging (MRI) scans. Specifically, it introduces
refined U-net designs ranging from 2D to spatiotemporal 3D to segment infant brain tissues into
cerebrospinal fluid, gray matter, and white matter with high accuracy. Furthermore, a special-
ized “L-net” approach combines a U-net segmentation backbone with a convolutional neural
network (CNN) classifier to distinguish glioma, meningioma, and pituitary tumors. Extensive
experimentation reveals state-of-the-art performance in MRI tissue segmentation and tumor
classification, underscoring the potential of deep learning to enhance diagnostic precision.

Collectively, these contributions highlight how machine learning-driven methods can au-
tomate critical aspects of clinical management and medical imaging. By uniting algorithmic
innovations with real-world application needs, the dissertation underscores the transformative
potential of data-driven approaches in modern healthcare.
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Kivonat

Ez a disszertáció újszerű gépi tanulási megoldásokat mutat be az egészségügyben zajló folyama-
tok modellezésére és automatizálására, elsősorban a cukorbetegség kezelésére és az orvosi képfel-
dolgozásra összpontosítva. A diabétesz területén a munka olyan módszereket mutat be, ame-
lyekkel szintetikus és valós adatokból egyaránt detektálható a betegek fizikai aktivitása, inte-
grálva a folyamatos glükózmonitorozás (CGM) és a pulzusszám jeleit. A disszertáció egszerű gépi
tanulási algoritmusok alkalmazásával a fejlettebb rekurrens neurális hálózatok (RNN) mellett
bemutatja, hogyan érhető el pontos mozgásérzékelés akár valós körülmények között is, ezáltal
javítva a betegek személyre szabott terápiáját.

Az aktivitásérzékelésen túl a kutatás foglalkozik az étkezési gesztusok automatizált felis-
merésével is, viselhető szenzoradatok felhasználásával. Ez a megoldás kulcsfontosságú a dia-
béteszterápia diétás nyilvántartásának javításához, mivel pontosan azonosítja, mikor történik
szénhidrátfogyasztás. A disszertáció továbbá egy megerősítéses tanulási (RL) keretrendszert
javasol az inzulinszabályozáshoz, amelyben a politika és értékhálózatok kizárólag a CGM-adatok
alapján tanulják meg az optimális adagolási stratégiákat. A kísérletek azt mutatják, hogy ez
az RL-alapú szabályozó robusztusan tartja a vércukorszintet biztonságos határokon belül, ami
alapot kínál az adaptívabb és páciens-specifikusabb „mesterséges hasnyálmirigy” rendszerekhez.

Az orvosi képfeldolgozás területén a disszertáció fejlett architektúrákat fejleszt a mágneses re-
zonancia képalkotó (MRI) felvételek szegmentálására és osztályozására. Konkrétabban, a 2D-től
a térbeli 3D-ig terjedő, kifinomult U-háló terveket mutat be, hogy a csecsemők agyszöveteit nagy
pontossággal szegmentálja agy-gerincvelői folyadékra, szürkeállományra és fehérállományra. To-
vábbá egy speciális „L-háló” megközelítés az U-háló szegmentációs gerincet egy konvolúciós
neurális hálózat (CNN) osztályozóval kombinálja a glióma, a meningeóma és az agyalapi mirigy
daganatok megkülönböztetésére. A kiterjedt kísérletezés az MRI-szövetek szegmentálása és a
tumorok osztályozása terén a legmodernebb teljesítményt mutatja, kiemelve a mélytanulásban
rejlő lehetőségeket a diagnosztikai pontosság fokozására.

Ezek a hozzájárulások együttesen rávilágítanak arra, hogy a gépi tanulás által vezérelt mód-
szerek hogyan automatizálhatják a klinikai kezelés és az orvosi képalkotás kritikus aspektusait.
Az algoritmikus innovációk és a valós alkalmazási igények egyesítésével a disszertáció kiemeli az
adatvezérelt megközelítések átalakító potenciálját a modern egészségügyben.
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1. Introduction

The convergence of artificial intelligence and healthcare has opened unprecedented opportuni-
ties for building intelligent systems that support clinical decision-making, optimize treatment
strategies, and personalize patient care. In this dissertation, I present novel machine learning
methodologies for modeling and automating medical processes, with a particular focus on dia-
betes management and medical image analysis. These two domains—though distinct—share a
common thread: the need for data-driven, adaptive, and reliable systems capable of operating
in real-world conditions.

The growing availability of medical data from wearable devices, imaging modalities, and
continuous monitoring systems has enabled the development of advanced computational models
that can learn from patient-specific patterns. Motivated by this potential, my research inves-
tigates both classical and deep learning methods to support and automate processes critical
to diagnosis and therapy. My overarching goal is not only to advance the state of the art in
algorithmic performance, but also to translate machine learning insights into clinically relevant
tools.

This dissertation is structured around two primary application areas:

1. Diabetes Informatics
In this domain, I address three interconnected challenges:

• Physical activity detection, using heart rate and continuous glucose monitoring (CGM)
data, to inform personalized insulin dosing and lifestyle recommendations.

• Food intake detection, by recognizing eating gestures from wearable motion sensor
data, which contributes to accurate carbohydrate logging and improved dietary ad-
herence.

• Insulin therapy optimization, via reinforcement learning models that learn adaptive
dosing policies using CGM data alone, contributing to the development of closed-loop
artificial pancreas systems.

2. Medical Image Analysis
In this domain, I focus on:

• Infant brain tissue segmentation from MRI scans using 2D, 3D, and spatiotemporal
U-Net variants, which supports neurodevelopmental assessment during early stages
of life.

• Brain tumor classification, by developing an L-net architecture that unifies segmenta-
tion and classification tasks to distinguish glioma, meningioma, and pituitary tumors
with high accuracy.

Across these contributions, my work emphasizes methodological rigor, practical deployment
considerations, and validation on real-world datasets. The models are evaluated using widely
accepted metrics and benchmarked against existing methods to highlight their strengths and
limitations.
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1. Introduction 1.1. Diabetes

By integrating clinical needs with machine learning innovations, this dissertation contributes
to the broader goal of transforming healthcare into a more intelligent, proactive, and personalized
discipline. I hope this work serves as a foundation for future research at the intersection of AI
and medicine, and as a practical step toward data-driven decision support in both therapeutic
and diagnostic workflows.

1.1 Diabetes
Diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose levels
resulting from defects in insulin secretion, insulin action, or both [R1]. Among the various types,
Type 1 Diabetes Mellitus (T1DM) is an autoimmune condition that typically manifests in
childhood or adolescence, where the immune system mistakenly destroys the insulin-producing
beta cells in the pancreas [R2, R3]. This leads to absolute insulin deficiency, requiring lifelong
insulin therapy. The condition can develop rapidly and is often detected due to sudden symptoms
such as frequent urination, extreme thirst, unintended weight loss, and fatigue. Without timely
intervention, T1DM can result in life threatening complications such as diabetic ketoacidosis.

In contrast to Type 2 diabetes, which develops due to insulin resistance and is often linked
to lifestyle factors, T1DM is primarily genetic and immunological in origin. However, the global
rise in diabetes cases across all types is undeniably influenced by modern lifestyles characterized
by poor diet, sedentary behavior, and increased stress. These factors contribute significantly to
the progression from prediabetes to full blown diabetes in genetically predisposed individuals.

Recent data suggest a concerning increase in the global prevalence of diabetes. Over the
past four decades, more than 320 million people worldwide have been diagnosed with the dis-
ease [R4, R5]. In Hungary alone, a 2022 survey revealed that over 1.1 million individuals are
affected by diabetes or prediabetes [R6, R7], with projections indicating further growth. The pri-
mary contributing factors include excessive consumption of sugars and processed foods, physical
inactivity, and genetic susceptibility [R4, R5, R6].

Diabetes disrupts the body’s ability to properly utilize glucose, the primary energy source
for cells. Under normal physiological conditions, insulin—a hormone produced by beta cells
in the islets of Langerhans in the pancreas—facilitates glucose uptake into cells by activating
specific glucose transporters (notably GLUT-4) located in the cell membrane [R8, R1]. Once
inside, glucose is either used immediately for energy production via the St. George-Crebs cycle
or stored as glycogen for later use.

These insulin-responsive GLUT gates are predominantly present in the liver, muscle, and
adipose tissue, the major sites of glucose metabolism. Insulin thus plays a pivotal role not only in
glucose regulation but also in broader metabolic pathways. When insulin binds to its receptor on
the cell surface, it initiates a cascade of reactions that result in glucose uptake, thereby lowering
blood sugar levels and supplying the cell with energy [R8].

Glucose homeostasis in the human body is tightly regulated by hormones. While insulin low-
ers blood glucose levels, its antagonist, glucagon, increases them by promoting gluconeogenesis
in the liver—i.e., the synthesis of glucose from non-carbohydrate sources [R9, R3].

Several types of diabetes exist, classified based on etiology and treatment approach:

• Type 1 diabetes mellitus (T1DM)

• Type 2 diabetes mellitus (T2DM)

• Maturity-Onset Diabetes of the Young (MODY)

• Gestational Diabetes Mellitus (GDM)

• Pancreatogenic diabetes

• Drug-induced diabetes
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As T1DM is both prevalent and clinically distinctive, it was chosen as the focus of my
research. This form of diabetes results in a complete lack of insulin due to immune-mediated
destruction of pancreatic beta cells [R2, R3]. Exogenous insulin therapy is therefore essential
for survival.

Normal fasting blood glucose levels in a healthy individual typically range between 4.0–5.4
mmol/L, rising to no more than 7.8 mmol/L two hours post-meal. In diabetics, these values
can escalate, causing hyperglycaemia. Extremely high levels, such as above 25 mmol/L, can
rapidly induce cellular dehydration, cognitive impairment, and potentially coma. Conversely, in-
appropriate insulin dosing may lead to hypoglycaemia, where glucose drops below 2.2 mmol/L,
necessitating immediate intervention through rapid glucose intake to prevent seizures or uncon-
sciousness [R10].

Hence, precise monitoring of blood glucose is essential. Insulin can be administered through
syringes, pens, or insulin pumps. Regardless of method, effective insulin therapy hinges on
regular glucose checks, which inform dosage adjustments and prevent extreme fluctuations.

Both T1DM and T2DM patients are typically advised to measure their blood glucose levels
multiple times daily. This practice helps determine appropriate basal insulin dosing and is
vital to avoid both hyper- and hypoglycaemia. In insulin pump users, continuous monitoring
is preferred to align with the device’s constant insulin delivery. This is best achieved using
Continuous Glucose Monitoring (CGM) systems, which provide real-time glucose readings
via a sensor inserted under the skin [R10].

Figure 1.1: Artificial Pancreas [R11]

Unlike traditional fingerstick methods where glucose is measured via blood droplets using col-
orimetry or amperometry CGMs offer convenience and accuracy. They are especially beneficial
during the early stages of therapy or when erratic blood glucose patterns are observed.
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1. Introduction 1.2. Magnetic resonance imaging

1.2 Magnetic resonance imaging

Figure 1.2: MRI machine [R12]

Magnetic Resonance Imaging (MRI) Figure 1.2 is one of the dynamically evolving modern imag-
ing techniques that play a prominent role in medical diagnostics and scientific research. The
first MRI image was presented to the scientific world in 1973 [R13], and four years later, in 1977,
the first MRI image of a human body was published. Since then, MRI technology has evolved
considerably and is now widely used in health care, disease diagnosis and research. The MRI
technique is based on exploiting the magnetic properties of the hydrogen atoms in the body
to produce images for detailed examination of the inside of the body. MRI allows doctors and
researchers to obtain detailed images of organs, tissues and nervous structures without the need
for surgical intervention. It thus contributes to the early detection and effective treatment of
diseases and to the advancement of medical research. MR imaging is used to study changes in
the magnetism of nuclei in a material, such as biological tissue [R14, R15]. The technique is
based on the phenomenon of nuclear magnetic resonance (NMR), which is based on the idea
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that when a nucleus with magnetic properties interacts with a strong magnetic field, the energy
levels of the nuclei spin are split. The protons in living organisms have their own magnetic
moment, as if they were small magnets. Because of this, they create a magnetic magnetic core
resonance phenomenon that can be easily measured in the magnetic field. In the MRI process,
these nuclei are manipulated by magnetic pulses and magnetic fields directed at them, and the
magnetic signals emitted are detected and processed into images. The result is detailed and con-
trasty images of the area under investigation, which help doctors diagnose diseases and examine
tissues in detail. MRI technology is an excellent way of imaging without the use of ionising
radiation, making it a safe and very useful tool in modern medicine and research. Perhaps the
best known MR imaging technique is proton MRI, which is based on the detection of the spin
of hydrogen nuclei in water, fats, proteins and carbohydrates in humans and animals, mainly
in two orientations (parallel or antiparallel). Placed in a stationary magnetic field (B0, the
direction of the magnetic field of the MR machine), the spins are aligned parallel (low energy)
or (a smaller fraction, one millionth of a millionth) antiparallel (high energy) to the direction of
the magnetic field. The spin of the nuclei precesses (rotates around its own axis) with Larmor
frequency around the magnetic field B0 induced. The appearance of the reconstructed struc-
tural MR image, such as brightness and contrast, is influenced by a number of factors. These
include the water-to-fat ratio of the region under investigation, which is a tissue characteristic
and depends on the subject’s health status. In addition, the density and movement of protons,
the relaxation time of the tissue, as well as the sequence settings and contrast agents used, if
any, also play a significant role in the formation of the images [R16]. The MR image Figure
1.3 is called T1- or T2-weighted, depending on whether the contrast of the image is mainly
determined by the T1 or T2 relaxation time. In a T1-weighted image, the white matter will be
of high signal intensity, the grey matter of medium signal intensity and the CSF of low signal
intensity, whereas in a T2-weighted image, the white matter will be of low signal intensity, the
grey matter of medium signal intensity and the CSF of high signal intensity. The appearance of
pathological lesions is mainly determined by their physicochemical properties [R14, R15]. These
image parameters and contrasts allow doctors to differentiate between different tissue regions of
the body and to map possible lesions during MRI scans. Such information is extremely useful
for diagnosis and disease monitoring.

Figure 1.3: MRI captures types [R17]

These image parameters and contrasts allow doctors to differentiate between different tis-
sue regions of the body and to map possible lesions during MRI scans. Such information is
extremely useful for diagnosis and disease monitoring. One such type of MRI is functional MRI
(fMRI), which allows the activity of the brain areas being studied to be tracked. fMRI helps to
monitor brain functions such as speech, movement or memory continuously and to map brain
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activity. MRI can also be used to obtain metabolic information, such as MR spectroscopy. This
technique helps to study metabolic processes and identify the presence of different substances in
tissues. Other specialised types, such as diffusion-weighted imaging (DWI) and diffusion tensor
imaging (DTI), provide information on the diffusion movement of water molecules in tissues.
These techniques can be useful in diagnosing brain injuries or neurological diseases, for example.
MRI is therefore a versatile tool for studying not only the anatomy of the body, but also its
functions, metabolism and diffusion processes, which contribute to more accurate and complex
medical diagnoses. To summarise, the measurement of MR signal intensity, the accurate spatial
localisation of signals of different intensities from different parts of the body, and the representa-
tion of signal intensity using a grey scale are the basis of MR imaging. Thanks to the increasing
use of imaging techniques, complete MRI atlases are now available not only for humans but also
for many animal species, such as the dog [R18].

1.2.1 Advantages of MRI
Magnetic resonance imaging does not use ionising radiation, so its harmful effects on the body
are currently unknown. Therefore, as far as possible, MRI is recommended in all cases where
unnecessary radiation exposure can be avoided. MRI offers many advantages:

• It has good spatial and temporal resolution.

• It is an objective test method suitable for both static and dynamic tests with standard
techniques and documentation.

• Intravenous contrast administration is less frequently required (25%).

• It can be used to examine any organ, allowing the investigation of many types of dis-
eases and reactions to certain drugs, as well as the early, non-invasive diagnosis of certain
diseases.

• Because of the safety of the tests, a sufficient number of subjects can be collected and the
tests can be extended to include juvenile subjects.

• Even if conventional and/or less expensive imaging techniques cannot establish a diagnosis,
it is still worthwhile to perform an MR scan.

• The combination of different MR modalities has good differential diagnostic ability.

• Functional MRI is capable of replicating the results obtained with positron emission tomog-
raphy (PET) and is currently more accessible than PET for (veterinary) medical practice
in our country. The use of functional MRI instead of PET replaces the very expensive use
of a cyclotron for isotope production. fMRI can be used to localise brain activity in near
real time, which is useful before or even during surgery.

1.2.2 Disadvantages of MRI
• MRI is more expensive than the commonly used procedures, costing 50 000-60 000 HUF

per scan (which only covers the costs), so it is still a diagnostic method with a low level
of use in practice.

• There are currently relatively few MRI machines in our country, mainly for human exam-
inations, which further complicates its use for veterinary purposes.

• Subjects undergoing MR examination must comply with safety requirements due to the
high magnetic field (not applicable in case of implants or accidental metallic materials).
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• The spatial resolution of fMRI does not allow measurements at the cellular or cell group
level.

• Detection during fMRI is slow compared to neural activity.

• Different brain areas may have different hemodynamic responsiveness, and detailed regu-
latory processes are still intensively studied. fMRI measures brain activity only indirectly
(indirect signal), since it can only examine the circulatory response to neuronal activity.
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2. Performance Evaluation Metrics for Ma-
chine Learning and Deep Learning Mod-
els

In this dissertation, a standardized set of evaluation metrics is applied consistently across all ex-
perimental studies and analytical comparisons [R19]. Introducing these metrics comprehensively
at the outset enables a unified and coherent interpretation of results and avoids unnecessary rep-
etition in subsequent sections.

Within the fields of machine learning and artificial intelligence, evaluation metrics are in-
dispensable for assessing model performance. They provide essential insights into how well a
predictive system generalizes to unseen data, handles imbalanced classes, and aligns with real-
world expectations. These metrics are not merely numerical summaries—they serve as critical
tools for validating the correctness, reliability, and robustness of models. Consequently, this
chapter presents each metric employed in this dissertation in detail, including their theoretical
foundation, computational formulas, practical relevance, and illustrative visualizations.

2.1 Area Under the Curve (AUC) and ROC Curve
To evaluate classifier performance, two key metrics are used: accuracy and the Area Under
the Curve (AUC) [R20]. In addition to these, Receiver Operating Characteristic (ROC)
curves are employed for a more comprehensive analysis [R21]. While accuracy and AUC reduce
classifier performance to a single scalar value, the ROC curve provides a richer representation
by illustrating the trade-off between the true positive rate (sensitivity) and the false positive
rate at various decision thresholds.

Each point on the ROC curve corresponds to a different classification threshold, making
it a powerful tool for examining how a model performs under varying operational settings.
The AUC metric, which calculates the area under this curve, reflects the model’s ability to
distinguish between classes—an AUC of 1.0 denotes a perfect classifier, whereas 0.5 represents
random guessing.
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2. Performance Evaluation Metrics 2.2. Confusion Matrix

Figure 2.1: AUC metric [R22]

2.2 Confusion Matrix
The Confusion Matrix [R23] is a foundational tool in classification evaluation. It presents
a tabular summary of the prediction results of a classification algorithm, with actual labels on
one axis and predicted labels on the other. Each cell indicates the frequency of a particular
combination of actual and predicted outcomes.

This matrix enables the calculation of several performance indicators, including recall, pre-
cision, specificity, and F1-score. For each test sample, the true label and predicted label are
compared, and the outcome is recorded accordingly. An ideal classifier would produce a con-
fusion matrix with values concentrated along the main diagonal, indicating perfect agreement
between predictions and ground truth.

Figure 2.2: Confusion Matrix [R24]

As shown in Figure 2.2, a binary classifier yields a matrix with four fundamental components:

• True Positives (TP)
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• False Positives (FP)

• False Negatives (FN)

• True Negatives (TN)

2.3 Derived Metrics: Recall, Precision, Accuracy, FPR, F1 Score,
Specificity

To derive more nuanced insights from the raw output of classification models, several secondary
metrics are computed based on the values in the confusion matrix. These metrics are especially
important in real-world applications where the class distribution is often imbalanced, and differ-
ent types of errors carry different consequences. The following subsections detail each of these
evaluation metrics:

• Recall (Sensitivity, True Positive Rate)

Recall measures the model’s ability to correctly identify all relevant instances of the posi-
tive class. It is defined as the ratio of true positives to the sum of true positives and false
negatives:

Recall =
TP

TP + FN

High recall is essential in scenarios where missing a positive case is costly or dangerous—
for instance, in medical diagnoses (e.g., detecting cancer or diabetic complications) where
false negatives can lead to missed treatment opportunities.

• Precision (Positive Predictive Value)

Precision quantifies how many of the predicted positive instances are actually positive.
It is given by:

Precision =
TP

TP + FP

This metric is particularly valuable when the cost of a false positive is high. For example,
in spam detection, high precision ensures that legitimate emails are not misclassified as
spam.

• Accuracy

Accuracy reflects the overall correctness of the model across both classes. It is calcu-
lated as the ratio of correctly predicted instances (both positive and negative) to the total
number of predictions:

Accuracy =
TP + TN

TP + FP + TN + FN

Although widely used, accuracy can be misleading in imbalanced datasets where one class
dominates. In such cases, a high accuracy might still correspond to poor predictive power
for the minority class.

• False Positive Rate (FPR)

The false positive rate indicates the proportion of actual negative cases that were in-
correctly classified as positive:

FPR =
FP

FP + TN
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This metric is critical in domains where false alarms have significant consequences, such
as fraud detection, where incorrectly labeling a legitimate transaction as fraudulent may
lead to customer dissatisfaction.

• F1 Score

The F1 Score is the harmonic mean of precision and recall:

F1 = 2 · Precision ·Recall

Precision+Recall

It is especially useful when a balance between precision and recall is needed, and when the
class distribution is uneven. A high F1 score indicates that the classifier performs well in
identifying both positive samples and minimizing false alarms.

• Specificity (True Negative Rate)

Specificity measures the proportion of actual negative cases that were correctly classified:

Specificity =
TN

TN + FP

This metric complements recall and is important in contexts such as disease screening,
where it helps assess the model’s ability to correctly rule out healthy individuals and avoid
unnecessary treatments or tests.

2.4 Boxplot
The Boxplot [R25] is a graphical representation of the distribution of a dataset. It visualizes
key descriptive statistics: the median, quartiles, and potential outliers. The position and size of
the box help assess skewness, spread, and symmetry of the data, providing an intuitive overview
of performance variation across different model runs or experimental conditions.
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Figure 2.3: Boxplot [R26]

2.5 Control Variability Grid Analysis (CVGA)
The Control Variability Grid Analysis (CVGA) [R27] is used to evaluate extreme varia-
tions in blood glucose concentrations. The X-axis represents the minimum, and the Y-axis the
maximum blood glucose value within the monitored interval. Each point on the graph typically
corresponds to a subject or a specific monitoring period.

The plot is divided into nine zones that represent varying degrees of risk. Zone A is considered
the safest and is centered around a minimum glucose level of 90 [mg/dl], ensuring optimal
regulation. This tool is particularly useful for analyzing control strategies in diabetes treatment.
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Figure 2.4: CVGA diagram and zone description

2.6 Time in Range (TIR)
Time in Range (TIR) [R28] refers to the percentage of time that a patient’s glucose levels
remain within a target range—typically 70 to 180 [mg/dl]. This metric offers a comprehensive
view of glycemic control and is widely used in clinical diabetes management.

Time Below Range (TBR) and Time Above Range (TAR) capture instances of hypoglycemia
and hyperglycemia, respectively. For optimal regulation, it is generally recommended that TIR
exceed 70% and TBR remain below 4%.
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Figure 2.5: Time in range plots [R29]
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Thesis group 1: Diabetes research

Thesis I.1
I developed methods to detect physical activity of diabetes patients using artificial intelligence
methods.

Thesis I.1.1
I have developed different methods using conservative artificial intelligence methodologies to
detect physical activity in case of synthetic patient data. The results shown that recognition
of physical activity in this scenario is possible using only blood glucose level.

Thesis I.1.2
I have developed methods to recognize physical activity in case of real patient data using
artificial intelligence solutions. I have compared the results to the results of Thesis I.1.1 and it
turned out that in case of real data the usage of only the blood glucose level is not sufficient.
I successfully extended the physical activity detection solutions to consider heart rate data as
well. Combining blood glucose and heart rate data provided satisfactory rate of recognition
of physical activity.

Thesis I.1.3
I have demonstrated that using recurrent neural networks can produce much better results
than simple machine learning algorithms to detect physical activity while they consider the
blood glucose level data, heart rate data, and other derived modalities. I have proved that
these networks do not require any preprocessing.

Thesis I.2
I have developed an artificial intelligence-based solution that can detect eating gestures using
only accelerometer data. This solution is useful to determine when the patient is taking in
carbohydrates, which knowledge is essential for any dietary decision support system or blood
glucose control systems.

Thesis I.2.1
I have demonstrated that it is possible to create a personalised gesture detection model for
the patients based on the given patient’s dataset. According to the tests, this approach is
sufficient to provide sophisticated results in eating gesture recognition for the given patient.

Thesis I.2.2
I have demonstrated that it is sufficient to use only one day of data to create an artificial
intelligence-based method that can detect eating gestures with accurate results.
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Thesis I.3
I have developed reinforcement learning-based blood glucose control methods for diabetes pa-
tients. The developed solutions use only blood glucose values from continuous blood glucose
sensors with satisfactory results according to the defined metrics.

Thesis I.3.1
In experiments using several models, I have demonstrated that the PPO model performs best
for the blood glucose regulation problem and administering the best working insulin schemes
to regulate blood glucose level. I have demonstrated even if the model was trained only on a
limited time horizon in terms of data, it successfully extrapolates the control to a larger time
horizon if the training data covered a good representation of blood glucose data under regular
conditions.

Thesis I.3.2
I demonstrated that the usage of the mixture of bump reward function and ELU activation
function in the last layer of neural networks provides the best results for blood glucose regu-
lation. I also proved that deeper networks performed better in this case without overfitting.

Publications relevant to the theses: [C1, C2, C3, C4, J1, C5, J2, C6, J3, J4].
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Diabetes mellitus is a chronic disease affecting millions worldwide, characterized by dysregu-
lation of blood glucose levels due to insulin deficiency or resistance. Managing diabetes requires
continuous monitoring, timely insulin administration, and tracking of lifestyle factors such as
physical activity and dietary intake. In recent years, intelligent systems powered by machine
learning have shown promise in assisting both patients and healthcare providers in managing
these complex variables more effectively.

This chapter presents my research on developing machine learning solutions for various di-
abetes related challenges. The focus is on creating intelligent, patient-centered models that
support personalized monitoring and automated decision making. The systems developed here
aim to enhance glucose control, reduce patient burden, and contribute to the broader goal of
building an artificial pancreas system.

3.1 Chapter Overview
The chapter is organized into three major research directions:

• Physical activity detection: Accurate recognition of physical activity is critical for un-
derstanding blood glucose fluctuations and for safe insulin dosing. I developed models that
detect physical activity from synthetic and real world data using a combination of CGM
(Continuous Glucose Monitoring) and heart rate signals. Both traditional ML models and
advanced recurrent neural networks (RNNs) were employed.

• Gesture detection for food intake: Carbohydrate intake timing is a crucial input for
insulin regulation. I designed an activity recognition pipeline using data from inertial
sensors (accelerometers, gyroscopes) to automatically detect eating gestures. The models
are optimized for deployment in wearable devices such as smartwatches, making real world
use feasible.

• Reinforcement learning for insulin control: I proposed a reinforcement learning
based control system to automate insulin dosing decisions using only CGM data. The
system learns optimal insulin policies through simulated interactions with a virtual patient,
offering a foundation for closed loop glucose regulation.

3.2 Novel Contributions
The innovative aspects of this research chapter include:

• Multimodal data integration: The physical activity detection models integrate CGM
and heart rate data, highlighting how heterogeneous data sources can complement each
other in improving performance, especially under real life conditions.

• Recurrent neural networks for temporal modeling: I demonstrate that RNNs,
particularly GRU and LSTM architectures, outperform classical ML models for detecting
activity patterns from time series data. This is especially relevant in noisy, real world
environments.

• Wearable based food intake recognition: The proposed solution uses only accelerom-
eter data, eliminating the need for invasive glucose or dietary logging. Personalized models
were shown to perform well, supporting individual patient calibration without requiring a
universal model.
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• Reinforcement learning framework: The insulin control system uses policy and value
networks trained via Proximal Policy Optimization (PPO) on virtual patients. The con-
troller achieves high Time-in-Range (TIR) glucose regulation and adapts to different
metabolic conditions.

• Validation on real and synthetic datasets: All models were evaluated on both syn-
thetic simulations and real patient datasets (e.g., Ohio T1DM, D1namo). Extensive met-
rics such as AUC, F1-score, precision, and TIR were used to benchmark performance,
revealing robust and clinically relevant results.

In summary, this chapter offers an end-to-end demonstration of how machine learning can
assist in various stages of diabetes management from lifestyle tracking to autonomous insulin
dosing. The solutions presented are not only technically novel but also tailored for practical
deployment in wearable devices and clinical systems.

3.3 Physical activity detection

3.3.1 Goal
The main objective of my research was to investigate whether it is possible to use machine
learning based solutions to detect changes in blood glucose levels during physical activity and
whether additional data are needed for this purpose. I generated one of the datasets insilico,
taking into account two important aspects. The first aspect was to be able to produce the data
set in real life in patients with as few sensors as possible, while the second objective was to
create a simulator to have a large amount of synthetic data available for future studies. Real
measurements can be expensive, so building the simulator was of paramount importance. I
used the simulated data set for the first experimental tests. I continued my research with two
more real patient databases. I applied the experience gained here to the data generated by
the simulator and also experimented with different machine learning algorithms. In addition, I
analysed the results of the highly controlled patient measurements in the framework mentioned in
the introduction of the project. I then extracted additional features using an additional detector
and used these new feature vectors to perform further tests on real patient data. My first step
was to integrate and extend the Jacobs simulator [R30] published on GitHub with the patient
simulator. This simulator generates virtual type 1 diabetes patients and focuses on the external
input of insulin dosing based on the given parameters, where the Cambridge model provided the
basis [R31]. My primary goal was to extend this simulator with a continuous glucose monitoring
sensor (CGMS) module that generates noisier, more realistic synthetic measurement data, and
then use the integrated system to create a data set.I then perform a performance analysis using
machine learning algorithms.

3.3.2 Introduction
Diabetes mellitus (DM) is a chronic metabolic disorder linked to the hormone insulin. Type 1 DM
(T1DM) is an autoimmune disease that can arise abruptly and is influenced by genetic and other
unidentified factors. In contrast, Type 2 DM (T2DM) typically develops gradually, with obesity
and physical inactivity as significant risk factors. T2DM is often undiagnosed for a long time,
with patients frequently discovering their condition through symptoms related to the disease
[R32]. Physical activity is essential in diabetes treatment, benefiting both T1DM and T2DM
patients. For individuals with T1DM, regular exercise enhances glycemic control [R33]. The
intensity of exercise is also critical for these patients. High intensity interval exercise and training
are considered safer than continuous exercise because they lower the risk of hypoglycemia [R33].
However, engaging in unplanned exercise can be hazardous if not managed properly during
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insulin therapy. Specifically, insulin overdose may occur in individuals who fail to adjust their
insulin doses for exercise or neglect to update insulin pump settings during pump therapy, leading
to severe hypoglycemia episodes [R34]. For diabetics, hypoglycemia is a critical condition, as
declining glucose levels can trigger ketoacidosis, potentially resulting in coma or even death
in the short term. Therefore, it is crucial to carefully consider physical activity in daily life,
especially with semi automated therapies like insulin pump applications [R35]. In automatic
glucose control, control algorithms must consider the patient’s physical activity. Subroutines
that can detect exercise events are crucial for preventing hypoglycemic episodes, even if there
are errors in reporting or calculations by patients. Exercise induced reductions in blood glucose
(BG) levels occur with a slight delay, but the impact of physical activity on BG regulation can
last up to 48 hours after exercise, depending on the intensity and duration of the activity, as
discussed in [R36, R37]. Understanding the impact of various physical activities is essential for
timely interventions in blood glucose control.

A significant challenge for researchers is developing algorithms that can detect unexpected
physical activity to enhance decision making and treatment in partially automated blood glucose
(BG) control systems. The difficulty in developing these algorithms arises from limited available
data and the frequent lack of patient cooperation. However, there is a strong demand from pa-
tients and the industry for high-quality physical activity detection systems to support effective
decision making, particularly in insulin pump therapy. Modern insulin pump systems are based
on the artificial pancreas (AP) concept, which consists of three main components: a Continu-
ous Glucose Monitoring System (CGMS) for tracking BG levels, an insulin pump for delivering
insulin, and advanced control algorithms. Typically, AP systems integrate these elements [R38,
R39]. When additional sensors are not available, such as body worn activity trackers or inte-
grated accelerometers (Inertial Measurement Units, or IMUs, which include accelerometers and
other motion sensors) or heart rate (HR) sensors within the CGMS or insulin pump, the only
way to detect physical activity in users of these systems is through the CGMS signal. However,
the main challenge is the delay in reflecting the effects of exercise in the CGMS signal. To
address this limitation, IMU and HR signals can serve as valuable supplements to CGMS sig-
nals, as they can accurately indicate physical activity [R40, R41]. Recognizing, identifying, and
categorizing physical activity by type and intensity are crucial components of effective T1DM
management. Numerous solutions are available in this area, particularly those utilizing Inertial
Measurement Unit (IMU) sensors, as discussed in [R42]. A recent advancement involves using
IMUs specifically to detect and classify physical activity in diabetic patients, as highlighted in
[R43]. The use of IMUs is particularly advantageous given the prevalence of cardiac autonomic
neuropathy (CAN) in individuals with diabetes, characterized by autonomic nervous system
(ANS) dysfunction and an elevated resting heart rate (HR) [R44].

Cardiac autonomic neuropathy (CAN), a common long-term complication in people with
diabetes, can diminish the predictive accuracy of heart rate signals in patients with type 1
diabetes mellitus (T1DM) [R45]. However, the relationship between CAN, blood glucose (BG)
levels, BG variability (BGV), and heart rate variability (HRV) over the short and medium term
is not yet fully understood. Additionally, some studies indicate that the connections between
CAN, HR, and HRV require further investigation [R46]. Most wearable activity monitors on
the market do not allow users to access raw IMU data, as noted in [R47]. Although some
devices, like the Empatica E4, do offer access to raw IMU data, their high cost (around 1000
USD) makes them less accessible for people with diabetes. Conversely, wearable sensors that
provide heart rate (HR) data with a sampling interval of at least 5 minutes are more affordable
and offer convenient data access, either directly from the device or through activity tracking
apps, as highlighted in [R47]. This 5 minute sampling interval enables the use of HR data in
combination with CGMS signals to assess physical activity. Artificial intelligence (AI) tools
have shown their effectiveness in identifying patterns across various applications in biomedical
engineering, as demonstrated by studies such as [R48, R49, R50, R51, R52]. These tools are
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also useful in diabetes treatment, where AI has proven advantageous, as indicated in studies
like [R53, R54, R55, R56]. Effectively managing T1DM requires a personalized approach to
insulin therapy, diet, and physical activity. Monitoring physical activity is crucial for optimizing
glycemic control. However, traditional methods often fall short in providing comprehensive
insights, leading to the exploration of innovative solutions. In this context, Recurrent Neural
Networks (RNNs) [R57] have emerged as a promising tool for detecting and analyzing physical
activity patterns in individuals with T1DM [R58].

RNNs are specifically designed for processing sequential data and excel at recognizing tem-
poral dependencies in human movement. This makes them ideal for identifying various physical
activities, from simple tasks like walking to more complex exercises. The recurrent nature of
RNNs allows them to capture dynamic changes in activity and distinguish nuances between
different activities with remarkable precision, while also providing adaptability [R59].

In summary, the use of RNNs offers a powerful and efficient solution for accurately detect-
ing and analyzing physical activity in T1DM patients. This approach has great potential for
enhancing my understanding of individual activity patterns, leading to more personalized and
effective T1DM management.

Based on the information and research presented earlier, it can be concluded that the CGMS
signal, as well as the combination of CGMS and heart rate (HR) signals, are promising candidates
for detecting physical activity. In this study, my goals include developing AI programs that can
identify physical activity by analyzing either the CGMS signal alone or the combination of CGMS
and HR data in a binary manner (determining the presence or absence of physical activity).
These algorithms show significant potential, particularly in closed loop insulin delivery systems.
It is important to note that, at this initial stage of my research, the focus is on recognizing the
presence of physical activity without categorizing its type.

3.3.3 Synthetic Dataset
I employed synthetic data generated by an extended version of the Jacobs T1DM simulator
[R60]. While the simulator utilizes the Cambridge model as its basis, it includes an embedded
physical activity submodel, which is an extension compared to the version presented in [R61].
My study utilized the single hormone virtual patient population, where the simulator expects
insulin as the sole control input. These virtual patients, totaling 20 in number, were identified
and validated for Type 1 Diabetes Mellitus (T1DM) based on a 3.5 day outpatient Artificial
Pancreas (AP) study [R60]. The simulator, originally published on GitHub (https://gith
ub.com/petejacobs/T1D_VPP), is open source. To enhance the realism of data generation,
I integrated the Continuous Glucose Monitoring System (CGMS) model from [R62] into the
simulator.

The simulator offers straightforward parameterization options for carbohydrate (CHO) and
insulin intake. I maintained the default settings of the simulator and applied the following
regimens, utilizing randomization for both the timing and quantities of CHO intake:

• The times of meal consumption randomly varied between -30 minutes and +90 minutes
with respect to prescribed times. The default time instances in the simulator were: break-
fast at 6 am, lunch at 12 pm and dinner at 6 pm.

• The amount of breakfast was set 35 ± 10 [g].

• The amount at lunch varied between 79 ± 10 [g]

• The amount at dinner varied between 117 ± 10 [g].

• The duration of physical activity varied between 30 minutes to 90 minutes.

• The blood glucose level at the beginning of the day varied between 160 ± 20 [mg/dL].
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Figure 3.1: Jacobs simulator model output indicating the physical activity with the red section
on figure, without CGMS (top) and with CGMS (bottom)

Incorporating the Continuous Glucose Monitoring System (CGMS) model alters the ”pure”
blood glucose (BG) output generated by the simulator. An example of this modification is
illustrated in Fig. 3.1. I maintained a realistic sampling time, with the blood glucose level
simulated by the CGM sensor measured every five minutes.

The synthetic data generation process proceeded as follows:
I randomly selected 13 virtual patients from the available pool of 20. Throughout the data

generation process, I kept the parameters of the selected virtual patients unchanged.
For each patient, the simulation spanned 640 days. Rather than conducting a single extended

simulation, each day was simulated separately over a 24-hour period, resulting in 288 sample
points per day. I utilized a sliding window of 15 sample points to extract features. Samples
within the sliding window were indexed from 0 to 14, yielding 274 data rows per day. Each
sliding window was further divided into three smaller inclusive windows, each consisting of five
consecutive samples with indexes 0 to 4, 5 to 9, and 10 to 14, respectively. From each sliding
window, I extracted 32 features. The ground truth of the dataset is outlined as follows:

• The patient’s body weight w;

• End-to-end blood glucose level change d defined as

d = bg(14)− bg(0) (3.1)

• The blood glucose level variation between consecutive sampled points, or in other words
the first order differences of blood glucose levels, defined as

dp(i) = bg(i+ 1)− bg(i) (3.2)
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for any i = 0 . . . 13;

• End-to-end blood glucose level change in all inclusive sliding windows, defined as

dpp(i) = bg(5i+ 4)− bg(5i) (3.3)

for any i = 0 . . . 2;

• Second order changes of the blood glucose level, computed from 3 consecutive samples
with the formula

ap(i) = dp(i+ 1)− dp(i)
= bg(i+ 2)− 2× bg(i+ 1) + bg(i)

(3.4)

for any i = 0 . . . 12;

• The decision dc, which is used as ground truth throughout this study.

The entire dataset comprises 2,279,680 entries, with 95% representing measurements indi-
cating no activity (0), and the remaining 5% indicating activity (1). Due to this significant
imbalance, the problem can be classified as an anomaly detection task in machine learning.

3.3.4 Tested models on synthetic dataset
This study encompasses eight distinct machine learning algorithms, some of which exist in
multiple versions owing to varying parameter settings, culminating in a total of 13 models.
Below, I provide descriptions of these models along with their unique identifiers.

• Logistic Regression [R63], with maximum 1000 iterations, and L2-type penalty (LogReg);

• AdaBoost Classifier (Ada) [R64] with maximum 50 trees;

• DecisionTree Classifier (DecTree) [R65, R66] with unlimited tree depth and all decisions
allowed to use any one of the features;

• Gaussian Naive Bayes (Gauss) [R67];

• K-Nearest Neighbors Classifier (KNN) [R68] using k − d tree implementation [R69] and
k = 5;

• Support Vector Machines [R70] with 1000 iterations in five kernel variants: radial basis
function kernel (SVM1), sigmoid kernel (SVM2), 3rd degree polynomial kernel (SVM3),
5th degree polynomial kernel (SMV4) and 10th degree polynomial kernel (SVM5);

• Random Forest [R71, R72] with 100 trees (RF);

• Multi Layer Perceptron Networks [R73] with four hidden layers of sizes 100, 150, 100,
and 50, respectively, maximum 1000 iterations, and three variants of activation functions:
logistic (MLP1), ReLU (MLP2), and tanh (MLP3).

3.3.5 Results on synthetic dataset
Table 3.1 presents the confusion matrix for all tested classification models. Values presented
in this table are normalized in each row. The classification can be called successful if the rate
of both true positives and true negatives are high, typically above 0.8. Only the RF model
achieved higher rate than 0.9 of both TP and TN, while KNN, AdaBoost, Decision Tree and all
tested multi layer perceptron models scored at both normalized indicators above 0.8. The three
SVM models that used polynomial kernel apparently predicted the opposite.
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Table 3.1: Normalized confusion matrix obtained by the use of various classification methods

Predicted value
0 1

Tr
ue

va
lu

e

0

LogReg : 0.779 LogReg : 0.221
Ada : 0.833 Ada : 0.167

KNN : 0.980 KNN : 0.020
DecTree : 0.991 DecTree : 0.009

Gauss : 0.789 Gauss : 0.211
SVM1 : 0.717 SVM1 : 0.283
SVM2 : 0.743 SVM2 : 0.257
SVM3 : 0.327 SVM3 : 0.673
SVM4 : 0.311 SVM4 : 0.689
SVM5 : 1.000 SVM5 : 0.000

RF : 0.961 RF : 0.039
MLP1 : 0.864 MLP1 : 0.136
MLP2 : 0.863 MLP2 : 0.137
MLP3 : 0.848 MLP3 : 0.152

1

LogReg : 0.221 LogReg : 0.779
Ada : 0.167 Ada : 0.833

KNN : 0.101 KNN : 0.898
DecTree : 0.166 DecTree : 0.834

Gauss : 0.211 Gauss : 0.789
SVM1 : 0.284 SVM1 : 0.716
SVM2 : 0.257 SVM2 : 0.743
SVM3 : 0.673 SVM3 : 0.327
SVM4 : 0.689 SVM4 : 0.311
SVM5 : 1.000 SVM5 : 0.000

RF : 0.073 RF : 0.927
MLP1 : 0.136 MLP1 : 0.864
MLP2 : 0.137 MLP2 : 0.863
MLP3 : 0.152 MLP3 : 0.848
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Figure 3.2 illustrates the ROC curves of all classification models, while Figure 3.3 highlights
the Area Under Curve (AUC) metric values, excluding those below 0.75. These figures col-
lectively indicate that the Random Forest model exhibited excellent performance, boasting an
AUC value of 0.98. However, it’s worth noting that according to the classification benchmark
by Trifonova et al. (2013) [R74].

Figure 3.2: ROC curve of models
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Figure 3.3: AUC values obtained by various classification models

3.3.6 Real Patient Datasets
Before presenting the data of real patients, it is important to note that in their case, blood
glucose levels alone were no longer sufficient to achieve accurate results in contrast to the syn-
thetic data, where this single feature yielded satisfactory predictive performance. Due to the
complexity of real life scenarios, individual variability, and the influence of various physiologi-
cal and lifestyle factors, the inclusion of additional features became essential to improve model
accuracy. Among these, heart rate data proved particularly relevant, as it effectively reflects
the body’s current state and physiological responses. It is also important to emphasize that
in the simulation environment that is, when working with synthetic data I did not have the
opportunity to incorporate such complex physiological features, which inherently limited the
realism of the simulations. Consequently, working with real data presented not only technical
but also methodological challenges, which became one of the key takeaways of the research.

The Ohio T1DM Dataset

The Ohio T1DM dataset is a semi public dataset accessible to researchers investigating Type
1 Diabetes Mellitus (T1DM). Initially released in 2018 by Marling et al. [R75] for the Blood
Glucose Level Prediction (BGLP) challenge [R76], it was later expanded in 2020 with data from
an additional six subjects [R77, R78].

The dataset comprises 8 weeks of continuous data collected from 12 subjects diagnosed with
Type 1 Diabetes Mellitus (T1DM). Throughout the monitoring period, each subject utilized a
continuous glucose monitoring system (CGMS) and followed insulin pump therapy. The dataset
for each patient includes a comprehensive range of information, such as CGM readings of blood
glucose levels taken every 5 minutes, blood glucose levels obtained through periodic self moni-
toring of blood glucose (finger sticks), administered insulin doses (bolus and basal), self reported
meal times along with carbohydrate estimates, self reported times of activities including exercise,
sleep, work, stress, and illness, as well as physiological data from fitness bands and environmental
data such as temperature [R78].

In my study, I extracted the following data types from the original dataset, which featured
a complex XML structure:

• glucose level: contains the time stamps (date and time in: DD-MM-YYYY HH:MM:SS
format) and the CGM data (in mg/dl) recorded every 5 minutes;
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Figure 3.4: The ways of data extraction from the Ohio T1DM Dataset at a given patient –
graphical example. The black arrows represent a 24 hours long block according to the time
stamps, midnight to midnight. In this example, the blue regions belong to those 24 hours long
blocks, where CGMS data were available and exercise was reported without available corre-
sponding HR data. The green region represents a 24 hours long data block where CGMS data
were available, exercise was reported and the corresponding HR data were available. The trans-
parent area covered by orange dashed line represents self reported exercise (24 hours long block
during which the exercise happened) without corresponding CGMS signal. The transparent area
covered by red dashed line represents a 24 hours long block during which probably an exercise
event happened but it was not reported (“non annotated outcome”).
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• exercise: contains time stamps of the beginning of the exercise (date and time in: DD-
MM-YYYY HH:MM:SS format), intensity values (subjective intensities on a scale of 1 to
10, with 10 the most physically active), type (exercise type), duration in minutes and a
“competitive” field;

• basis_heart_rate: contains time stamps (DD-MM-YYYY HH:MM:SS) and the HR data
(in bpm) recorded every 5 minutes;

• body weight of the patient expressed in kg (measured once at the beginning of the 8-week
experiment).

The primary challenge associated with utilizing the Ohio T1DM dataset arises from the fact
that all physical exercise is self reported. I conducted an in depth analysis of the extracted data
fields, the results of which are illustrated in Fig. 3.4. Here, I present a graphical representation
of my findings from the patient’s recordings. My analysis revealed distinct ”islands” within the
data structure: notably, the data and time stamps were consistently available throughout the
duration of the experiment, while the CGMS data were organized into ”blocks” with specified
starting times and durations, often spanning multiple days. In contrast, exercise events were
reported sporadically, with varying starting times and durations.

I identified exercise events where corresponding CGMS data were absent (e.g., the trans-
parent area covered by orange dashed lines in Fig. 3.4). These data were neglected during
extraction since my use cases necessitated the presence of the CGMS signal. Similarly, I ex-
cluded 24-hour intervals where no physical activity was reported, as my investigations revealed
inaccuracies in patient self reporting, suggesting possible unreported physical activity (e.g., the
transparent area covered by red dashed lines in Fig. 3.4). Consequently, the amount of data
available for extraction significantly decreased. This reduction in data volume holds significance
for later stages, as the algorithms developed in this study could be employed for data annotation.

To ensure that extracted data unequivocally reflected self reported exercise, I opted to extract
only those smaller 24-hour regions (midnight to midnight) where both the CGMS signal and
reported exercise were present (e.g., the blue and green regions in Fig. 3.4). These extracted data
were utilized when the modeling objective was to detect physical activity solely from the CGMS
signal. Additionally, I considered cases where physical activity was detected using the CGMS
signal alongside corresponding exercise events where heart rate (HR) data with matching date
and time stamps were available (e.g., the green region in Fig. 3.4). This type of data extraction
further reduced the size of the usable dataset.

Thus, I have extracted two “cleaned” datasets:

1. CGMS data in 24 hours long blocks where self reported exercise happened within the 24
hours (e.g. Fig. 3.4 – blue and green regions). The exercise event was set to 1 where the
exercise was ongoing. I made an exception – where the reported activity level was lower
than 2, I set the exercise event to 0. The numerical properties of the extracted dataset
can be seen in Table 3.2.

2. CGMS data in 24 hours long blocks where self reported exercise happened within the 24
hours and HR data were also available (e.g. Fig. 3.4 – green region). The exercise event
was set to 1 where the exercise was ongoing. I made an exception – where the reported
activity level was lower than 2, the exercise event was set to 0. The numerical properties
of the extracted dataset can be seen in Table 3.3.

Each data record for each patient followed this structure: [Date stamp (DD-MM-YYYY),
Time stamp (HH:MM:SS), Blood glucose (BG) level from CGMS (concentration), Heart rate
(HR) value (integer), Exercise indicator (0/1)]. These records were arranged chronologically.
Weight data, reported only once at the beginning of the experiment, was managed separately.
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Table 3.2: Properties of the cleaned data from the Ohio T1DM dataset used for patients’ blood
glucose feature extraction.

Ohio T1DM
Patient (OP) ID

Number of
records

Total time
duration in days

OP3 546 2
OP8 2730 10
OP9 546 2
OP10 3276 12
OP14 2730 10
OP18 546 2
OP19 7917 28
OP20 819 3
OP21 1638 6
OP22 1365 5
OP23 4914 18
Total 27027 94

Table 3.3: Properties of the cleaned data from the Ohio T1DM dataset used for the extraction
of patients’ blood glucose and heart rate features.

Ohio T1DM
Patient (OP) ID

Number of
records

Total time
duration in days

OP8 2730 10
OP9 546 2
OP10 3276 12
OP14 2730 10
OP18 546 2
OP19 7917 28
OP20 819 3
OP21 1638 6
Total 20202 71
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The D1namo Dataset

The D1namo dataset consists of measurements from 20 healthy individuals and 9 subjects with
Type 1 Diabetes Mellitus (T1DM), which were obtained using wearable devices (Zephyr Bio-
Harness 3) under non-clinical conditions. This study exclusively focuses on the data from the 9
T1DM patients.

The dataset comprises electrocardiogram (ECG), breathing, and accelerometer data, along-
side glucose measurements and annotated food pictures [R79]. Additionally, aggregated values
derived from the ECG signals are included, which provide information on heart rate and activity
level, both of which are utilized in my study. Furthermore, the patient’s body weight is provided
as part of the dataset.

The dataset generally spans a few days per subject (1-3 days with overlapping). While
the sampling time of the Continuous Glucose Monitoring (CGM) is 5 minutes, the sampling
frequency of heart rate (HR) and activity is 1 Hz. However, the data quality is not as robust as
in other investigated datasets, exhibiting numerous inconsistencies and missing values in CGM,
HR, and activity recordings.

The basis of my data cleaning involved considering blood glucose (BG) registrations in
the format: [date stamp in YYYY-MM-DD, time stamp in HH:MM:SS, BG concentration in
mmol/L, type of measurement (manual/CGMS)]. From the HR and activity data, I extracted
values corresponding to the BG registrations based on date and time stamps. Consequently, for
each subject, I obtained CGM data at a 5-minute sampling time, and HR and activity data at
a 1-second sampling time.

The electrocardiogram (ECG) sensor operates at a sampling frequency of 250 Hz, and the
accelerometer at 100 Hz, although the data stream is provided on a 1-second basis. As a result,
approximately 300 data points of HR and activity level values were available between two BG
registrations in the extracted data (with occasional data inaccuracies).

To address this issue, I aggregated HR and activity levels between BG registrations using
the numerical average of the values ( 1

N

∑N
i=1 HRi, where N = 1.. ∼ 300, depending on data

availability). The activity level, automatically determined by the Zephyr sensor from Inertial
Measurement Unit (IMU) and HR data, is considered mild if it exceeds 0.2 according to US-
ARIEM guidelines [R80]. Thus, I classified an exercise event corresponding to a given record as
1 if the activity level was higher than 0.2; otherwise, it was set to 0.

Following data cleaning, structured datasets were obtained. Similar to the Ohio T1DM
dataset, the final structure of data records for each patient comprised: [Date stamp (DD-MM-
YYYY), Time stamp (HH:MM:SS), CGMS BG level (concentration), HR value (integer), Ex-
ercise (0/1)]. The records were organized chronologically, with the first record representing the
earliest data recorded. Weight data was handled separately.

Table 3.4 presents the number of records extracted solely from the original D1namo dataset
utilizing only CGMS data. Additionally, Table 3.5 displays the extracted data from the D1namo
dataset incorporating both CGMS and HR features.

3.3.7 Explored Machine Learning Techniques
In this section, I outline the machine learning methodologies examined in this study along with
their underlying technological principles. These techniques are predefined within the deployed
Scikit-learn library [R81], facilitating easy parameterization. Through various tests conducted
in my previous investigation within this domain [C5], I employed grid search based methods to
ascertain the most suitable algorithm and its optimal configurations. Technical parameters for
different methodologies were established based on my prior investigations, which involved the
application of synthetic patient data derived from in silico experiments. As one of the objectives
of my research was to assess the classification efficacy of models trained on synthetic data when
applied to real patient data, I utilized the configurations previously determined for all models
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Table 3.4: Properties of the cleaned data from the D1namo dataset used for patients’ blood
glucose feature extraction.

D1namo
Patient

Number of
records

Total time
duration in days

Patient 1 939 6
Patient 2 1575 5
Patient 3 185 2
Patient 4 1383 4
Patient 5 1375 4
Patient 6 1225 6
Patient 7 966 5
Patient 8 1189 5
Patient 9 135 2

Total 8972 39

Table 3.5: Properties of the cleaned data from the D1namo dataset used for the extraction of
patients’ blood glucose and heart rate features.

D1namo
Patient

Number of
records

Total time
duration in days

Patient 1 858 6
Patient 2 1440 5
Patient 3 166 2
Patient 4 1266 4
Patient 5 1251 4
Patient 6 1108 6
Patient 7 879 5
Patient 8 1088 5
Patient 9 85 2

Total 8141 39
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and techniques in the experiments.

1. Logistic Regression (LR). The LR models provide the probability whether a given sample
belong to a particular class or not by using the logistic function:

f(x) = M · exp[k(x− x0)] , (3.5)

where k is the steepness of the logistic curve, M is the maximum value of the curve and
x0 is the inflection point [R63]. During the training session I allowed maximum 1000
iterations and I applied L2-type penalty to measure the performance.

2. AdaBoost Classifier (AdaBoost) represents a boosting technique used in machine learning
as an ensemble method. The weights are reassigned to each instance, with higher weights
assigned to incorrectly classified instances. The purpose of boosting is to reduce bias and
variances. It works on the principle of learners growing sequentially. Each subsequent
learner is grown from previously grown learners except the first one. In simple words,
weak learners are converted into strong ones [R64]. My model was set with maximum 50
trees.

3. Decision Tree Classifier (DC) [R65, R66]. The DC is a flowchart kind machine learning
algorithm where each “node” represents a statistical probe on a given attribute. The
“branches” represent the outcome of the probe while the leaf nodes represent a given class
label. The paths from the roots to the leaves represent given classification rules. The goal
of the DC is to learn rules by making predictions from features. Each branching point in
the tree is a “rule” after which I get either the decision itself or a starting point of another
subtree. The tree depth defines how many rules can be applied step by step to get the
result. In this given case, I applied unlimited tree depth and all decisions are allowed to
use any one of the features.

4. Gaussian Naive Bayes (Gaussian) [R67] is a very simple machine learning algorithm (also
referred to as probabilistic classifier which is based on Bayes’ theorem). In general, the
naive Bayes classifiers are highly scalable models, requiring a number of parameters linear
in the number of variables in a given learning problem. When dealing with continuous or
close-to-continuous data, a typical assumption is that the continuous values are associated
with each class that are distributed according to a normal distribution.

5. K-Nearest Neighbors Classifier (KNN) [R68, R82]. The method is relied on labels and
make an approximation function for a new data. The KNN algorithm assumes that the
similar features ”fall” close to each other (in numerical sense). The data is represented in a
hyperspace based on the characteristics of the data. When new data arrives, the algorithm
looks at the k nearest neighbors at the decision. The result of the decision is the class that
received the most votes based on its neighbors. I use the k − d tree implementation [R69]
of KNN with k = 5.

6. Support Vector Machines [R70]. This machine learning algorithm can be used for classifi-
cation, regression and also for outlier detection (anomaly detection). It is very efficient in
high dimensional spaces, also good when the number of dimensions (features) is greater
than the sample number. It is very versatile in case of using kernels. Common kernels are
provided, but I can specify own kernels if I want. The main goal of the algorithm to is find
a hyperplane in N -dimensional feature space. To separate classes I can find many different
hyperplanes, but SVM finds the hyperplane which provides the maximum margin. The
cost function is:

c(x, y, f(x)) =

{
0, if y · f(x) ≥ 1
1− y · f(x), otherwise , (3.6)

where:
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• f(x) is the output of model,
• y the true output value,
• x the feature vector,
• c the cost function.

I examined SVMs with 1000 iterations in five kernel variants: radial basis function kernel
(SVM kernel=rbf), sigmoid kernel (SVM kernel=sigmoid), 3rd degree polynomial kernel
(SVM kernel=poly degree=3), 5th degree polynomial kernel (SVM kernel=poly degree=5)
and 10th degree polynomial kernel (SVM kernel=poly degree=10).

7. Random Forest [R71, R72]. The Random Forest is based on decision trees: it creates
different trees via training on different random sets of feature vectors from the training
set that were selected according to the same rule. In prediction each tree gives a rating,
a vote. These votes are aggregated. At the end of the summary, I will see which decision
received the most votes. The decision that receives the most votes will be the final decision
of the classifier. In my test the Random Forest was built with 100 trees (Random Forest);

8. Multi Layer Perceptron Networks (MLP) [R73, R83] A neuron consists of an input part,
which is a vector, the weights of the neuron, which is also a vector, an activation function
through which I pass the product of the input vector and the transposition of the weighting
vector. The last element of the neuron is the output, which is the value of the activation
function. Activation function can be sigmoid, tangent hyperbolic, Gaussian function, etc.
An MLP is realized when multiple neurons are organized next to each other – that is the
so-called layer – and multiple layers of neurons are arranged in a row that aggregate the
input in a complex way to realized the output of the MLP. The output is obtained by
going through the network layer by layer. The activation function is calculated for each
neuron in each layer. In the end, the neuron with the highest value will be the output for
that input, I.e. which neuron showed the highest activation for that input.
The activation function of the jth neuron from the Ith layer is:

a
(I)
j = g(θ

(I−1)·t
j · x) , (3.7)

where x represents the feature vector, θ stands for the weights of the neuron, while g is
the activation function (e.g. sigmoid).
The cost function is:

J(θ) = − 1

m
·

[
m∑
I=1

K∑
k=1

y
(I)
k · log(hθ(x(I))k

+(1− y
(I)
k · log(1− (hθ(x

(I)))k)

]
+

λ

2 ·m
·

L∑
l=1

sl∑
I=1

sl+1∑
j=1

(Θ
(l)
ij )

2

(3.8)

where

• m = number of samples
• K = number of neurons in actual layer
• L = number of layers
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• sl = error in actual layer
• sl+1 = error in next layer
• λ = reguralization
• hθ(x) = the output of actual layer.

In this work, I investigated different MLPs: four hidden layers of sizes 100, 150, 100,
and 50, respectively, maximum 1000 iterations, and three variants of activation functions:
logistic (MLP activation=logistic), ReLU (MLP activation=ReLU), and tanh (MLP acti-
vation=tanh).

3.3.8 Test Cases
1. Identifying physical activity solely from CGMS signals was achieved using the preprocessed

data from the Ohio T1DM dataset, referenced as 1. The algorithms previously mentioned
were thoroughly evaluated. My dataset was comprised of BG sample points, structured
as follows: [Date stamp (DD-MM-YYYY), Time stamp (HH:MM:SS), CGMS-derived BG
level (concentration), Exercise indicator (0/1)]. The training dataset constituted 75% of
the total data, with the remaining 25% reserved for testing purposes.

2. Identifying physical activity solely from CGMS signals was accomplished using the san-
itized data from the D1namo dataset. The algorithms mentioned earlier were subjected
to rigorous testing. My dataset was constructed with BG sample points, organized as
follows: [Date stamp (DD-MM-YYYY), Time stamp (HH:MM:SS), CGMS-derived BG
level (concentration), Exercise indicator (0/1)]. For model training, 75% of the dataset
was utilized, while the remaining 25% was held out for testing purposes.

3. Identifying physical activity based on both CGMS and HR signals was conducted using the
sanitized data from the Ohio T1DM dataset, referenced as 2. The algorithms previously
mentioned underwent comprehensive testing. My dataset was constructed to include both
BG and HR sample points, organized as follows: [Date stamp (DD-MM-YYYY), Time
stamp (HH:MM:SS), CGMS-derived BG level (concentration), HR level (integer), Exercise
indicator (0/1)]. For model training, 75% of the dataset was utilized, while the remaining
25% was reserved for testing purposes.

4. Identifying physical activity based on both CGMS and HR signals was carried out using
the sanitized data from the D1namo dataset. The algorithms mentioned earlier were
rigorously tested. My dataset incorporated both BG and HR sample points, structured
as follows: [Date stamp (DD-MM-YYYY), Time stamp (HH:MM:SS), CGMS-derived BG
level (concentration), HR level (integer), Exercise indicator (0/1)]. For model training, 75%
of the dataset was utilized, while the remaining 25% was reserved for testing purposes.

5. Identifying physical activity based on CGMS and HR signals was conducted using sanitized
data from both the Ohio T1DM and D1namo datasets (for the Ohio T1DM dataset, I
utilized the 2 dataset). The algorithms mentioned earlier underwent thorough testing.
My dataset comprised BG sample points and was structured as follows: [Date stamp
(DD-MM-YYYY), Time stamp (HH:MM:SS), CGMS-derived BG level (concentration),
HR level (integer), Exercise indicator (0/1)]. The training data consisted of records from
the Ohio T1DM dataset, while the test data comprised records from the D1namo dataset.
This use case can be applied to strengthen my hypothesis whether there are many non
reported physical activities in the original Ohio T1DM dataset (where CGMS signal was
available, physical activity was not reported, however, physical activity possible happened).
Furthermore, this use-case can be applied for data annotation as well on the original Ohio
T1DM dataset to select the presumable non-reported physical activities.
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This scenario can serve to bolster my hypothesis regarding the potential presence of numer-
ous unreported physical activities within the original Ohio T1DM dataset. In instances
where CGMS signals were present but physical activity was not reported, this use-case
explores the possibility that physical activity may have indeed occurred. Moreover, it
can also be utilized for data annotation purposes within the original Ohio T1DM dataset,
facilitating the identification and selection of presumable non-reported physical activities.

3.3.9 Feature extraction
Feature selection in this study was conducted to support predefined use-cases, specifically the
recognition of physical activity from CGMS signals and from the CGMS and HR complex across
different datasets. During the conceptualization phase, considerations were given to BG and
HR variability dynamics. Previous research [C5] conducted various tests, indicating the ben-
eficial nature of certain feature sets. I experimented with multiple models based on different
algorithms sensitive to various aspects of the data, such as differences, velocities, and acceler-
ations. Consequently, I opted to utilize the features introduced below, despite their correlated
and overlapping information content.

I defined a window spanning 15 records to investigate BG variation, representing a 70-minute
time window based on CGMS data provided every 5 minutes. Additionally, this window was
subdivided into three ”mini” windows to analyze BG level variations in a more detailed manner.

The body weight of the patient (w) was applied as “independent” feature.
The extracted features from the CGMS signal were the following:

• The end-to-end difference of the blood glucose level (d) in the window.

d = bg(14)− bg(0) (3.9)

• The blood glucose level difference between two consecutive sampled points within the window
(dp)

dp(i) = bg(i+ 1)− bg(i), ∀i = 0 . . . 13 (3.10)

• The change of the blood glucose levels in the three mini windows, from beginning to end
(dpp)

dpp(i) =
3∑

j=0
bg(5i+ j + 1)− bg(5i+ j)

= bg(5i+ 4)− bg(5i)

, (3.11)

for any i = 0 . . . 2.

• End-to-end blood glucose level change speed (v):

v =
bg(14)− bg(0)

t(14)− t(0)
=

d

14 ·∆t
(3.12)

• The blood glucose level change speed between two consecutive sampled points (vp)

vp(i) =
bg(i+ 1)− bg(i)

t(i+ 1)− t(i)
=

dp(i)

∆t
, ∀i = 0 . . . 13 (3.13)
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• The blood glucose level change speed in all mini sliding window measured points. From
beginning to end (vpp)

vpp(i) =

3∑
j=0

(bg(5i+ j + 1)− bg(5i+ j))

t(5i+ 4)− t(5i)
=

dpp(i)

4 ·∆t
, (3.14)

for any i = 0 . . . 2.

• The acceleration of blood glucose level change speed among three consecutive sampled points
(ap)

ap(i) =
bg(i+ 2)− bg(i)

(t(i+ 2)− t(i))2
, i = 0 . . . 12 . (3.15)

The extracted features from the HR signal were the following:

• The HR measured at the CGMS sample time (hr),

hr(i) (3.16)

• The end-to-end heart rate difference, the difference between the first hear rate measured
point and the last heart rate measured point, which points is between two consecutive
glucose sample times (hrp),

hrp = hr(i+ 1)− hr(i) (3.17)

Because of the feature selection, particularly due to parameter d, the developed models
require 15 BG registrations to operate effectively. To circumvent the gap during model initiation,
I fill in the missing data with 0 values while the database is ”loading.” Consequently, the models
function, but precise estimations are only possible after 15 BG registrations, which translates
to a 75-minute delay from the initiation, considering a 5-minute sampling time in the CGMS
signal.

Although I did not consider chronological order as a feature, I maintained the real-time
sequence of data recordings. The input to the models consisted of defined features extracted
from the cleaned data. For CGMS recordings only, I applied the following feature set: FS1 =
[w, d, dp(0), dp(1), dp(2), dp(3), dp(4), dp(5), dp(6), dp(7), dp(8), dp(9), dp(10), dp(11), dp(12),
dp(13), dpp(0), dpp(1), dpp(2), v, vp(0), vp(1), vp(2), vp(3), vp(4), vp(5), vp(6), vp(7), vp(8),
vp(9), vp(10), vp(11), vp(12), vp(13), vpp(0), vpp(1), vpp(2), ap(0), ap(1), ap(2), ap(3), ap(4),
ap(5), ap(6), ap(7), ap(8), ap(9), ap(10), ap(11), ap(12)]. When both CGMS and HR recordings
were considered, I utilized the following feature set: FS2 = [w, d, dp(0), dp(1), dp(2), dp(3),
dp(4), dp(5), dp(6), dp(7), dp(8), dp(9), dp(10), dp(11), dp(12), dp(13), dpp(0), dpp(1), dpp(2),
v, vp(0), vp(1), vp(2), vp(3), vp(4), vp(5), vp(6), vp(7), vp(8), vp(9), vp(10), vp(11), vp(12),
vp(13), vpp(0), vpp(1), vpp(2), ap(0), ap(1), ap(2), ap(3), ap(4), ap(5), ap(6), ap(7), ap(8),
ap(9), ap(10), ap(11), ap(12), hr, hrp]. These feature sets, FS1 and FS2, were utilized as inputs
during model operation.

Figure 3.5 illustrates the graphical representation of the feature extraction process described
above.
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Figure 3.5: Abstraction of feature extraction during operation. The v, vp, vpp and ap features
are originated from the d kind features, thus these are not listed here. In the case of the dpi
only the first four value has represented as a demonstration, however, all sampled values has
been considered from the window during operation.

3.3.10 Results Real Patient Dataset
In this section, I present the outcomes obtained when utilizing both CGMS and HR features
from two datasets. However, the training dataset employed was Ohio T1DM , while the test
dataset was D1namo . Essentially, the models underwent training solely on the Ohio T1DM
dataset, with subsequent testing conducted on the D1namo dataset. This approach serves as a
robust test of the research hypothesis, with potential to address two key questions: first, whether
the models demonstrate robustness according to the specified metrics, and second, whether the
models can effectively annotate the Ohio T1DM dataset with satisfactory performance. Figure
3.6 illustrates the test results. Notably, both LR and AdaBoost methods yielded superior AUC
scores (surpassing 0.9), while Random Forest and two MLP models also achieved commendable
AUC-related performance. Table 3.6 outlines the performance metrics of the models. Notably,
five models attained an AUC of ≥ 0.8: Logistic Regression, AdaBoost, Random Forest, MLP
with ReLU activation function, and MLP with Tanh activation function. Consequently, the
subsequent evaluation centers on these models. Logistic Regression achieved an accuracy (ACC)
of 0.845, the highest among the models. Of particular significance, the True Positive Rate (TPR)
attained a value of 0.818, indicating the model’s capability to predict nearly 82% of positive cases
accurately. Moreover, the Positive Predictive Value (PPV) yielded a result of 0.864, implying
that the LR model makes erroneous decisions in only 14,% of cases when predicting positive.
Remarkably, LR also boasts the highest PPV value among all models. The LR model exhibited
the highest F1 score at 0.844, though slightly lower than the 0.9 achieved in the prior use-
case. AdaBoost demonstrated a notable TPR score of 0.909, surpassing all other models in the
test. Consequently, AdaBoost effectively identifies positive classes but occasionally misclassifies
negative ones. Its PPV value of 0.80 falls 6% below LR’s precision. The F1 score for AdaBoost
was 0.838, demonstrating performance close to LR. Remarkably, the Random Forest model
coincidentally attained identical scores of 0.818 across TPR, ACC, PPV, and F1 metrics. This
suggests the model accurately identifies 82% of physical activity while making an 18% error
rate in predicting the negative class. Contrary to expectations, the MLP variants, regardless
of the tested activation functions, did not yield predictions as precise as the aforementioned
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Figure 3.6: AUC of models in all use-cases – test results

Table 3.6: AUC performance achieved in different tests

Training dataset Ohio T1DM D1namo Ohio T1DM D1namo Ohio T1DM
Testing dataset Ohio T1DM D1namo Ohio T1DM D1namo D1namo
Features BG only BG only BG and HR BG and HR BG and HR
Logistic Regression 0.60 0.55 0.90 0.72 0.92
AdaBoost 0.67 0.61 0.89 0.79 0.90
KNN 0.61 0.77 0.84 0.65 0.61
Decision Tree 0.53 0.49 0.61 0.27 0.52
Gaussian 0.60 0.45 0.68 0.27 0.62
SVM kernel=rbf 0.50 0.52 0.71 0.24 0.61
SVM kernel=sigmoid 0.49 0.37 0.63 0.68 0.67
SVM kernel=poly, deg=3 0.54 0.72 0.45 0.81 0.19
SVM kernel=poly, deg=5 0.49 0.47 0.19 0.59 0.19
SVM kernel=poly, deg=10 0.43 0.61 0.25 0.61 0.19
Random Forest 0.65 0.55 0.90 0.94 0.84
MLP activation=logistic 0.63 0.66 0.49 0.54 0.45
MLP activation=ReLU 0.64 0.56 0.81 0.39 0.82
MLP activation=tanh 0.58 0.62 0.86 0.74 0.81

algorithms.
Overall, the results indicate AdaBoost as the ”best” algorithm for this particular test case.

3.3.11 OHIO T1DM Dataset for Recurrent Neural network
The OHIO T1DM dataset is a resource designed for researchers aiming to enhance the health
and management of individuals with type 1 diabetes. It includes data collected over an 8-week
period from 12 participants with type 1 diabetes.

This dataset features several types of information, including continuous glucose monitoring
(CGM) data with glucose levels recorded every 5 minutes. It also contains blood glucose mea-
surements obtained through periodic self monitoring with fingersticks. In addition, the dataset
includes details on insulin doses (both bolus and basal), self reported meal times with carbohy-
drate estimates, and personal information about exercise, sleep, work, stress, and illness. It also
features physiological data from fitness bands and environmental information.

To ensure participant privacy, individuals in the dataset are anonymized and identified only
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Table 3.7: Glucose hours by patients

540 544 552 559 563 567 570 575 584 588 591 596
1242 1115 960 1115 1228 1112 1148 1213 224 1290 1138 1140

by unique identifiers. The OHIO T1DM dataset was first made available during the Blood
Glucose Level Prediction (BGLP) Challenge in 2018 and 2020. [R84].

To achieve my research goals, I employed a multifaceted approach that involved using three
distinct methodologies. I systematically extracted relevant data types from the dataset to sup-
port my investigations. This data includes critical physiological parameters such as glucose
levels, heart rate, and step counts.

The glucose level data consists of continuous glucose monitoring (CGM) measurements taken
every five minutes. Heart rate data, also collected in five-minute increments, is available only
for participants who used the Basis Peak sensor band. Similarly, step count data, aggregated at
five-minute intervals, is restricted to those who wore the Basis Peak sensor band.

• glucose_level: The glucose data comprises continuous glucose monitoring (CGM) mea-
surements in milligrams per deciliter (mg/dl), with corresponding timestamps recorded
at five-minute intervals. The timestamp format follows the DD-MM-YYYY HH:MM:SS
pattern.

• basis_heart_rate: Heart rate information is aggregated in five-minute increments and is
exclusively accessible for individuals who utilized the Basis Peak sensor band. Heart rate
recordings include timestamps, denoting the date and time (in DD-MM-YYYY HH:MM:SS
format), along with corresponding heart rate data measured at five-minute intervals (in
beats per minute).

• basis_steps: The dataset comprises step counts aggregated every 5 minutes in the DD-
MM-YYYY HH:MM:SS format. This data is also exclusively accessible for individuals
using the Basis Peak sensor band.

Table 3.7 summarizes the glucose data, listing the patient analyzed in the first row and the
duration of glucose data collection in hours in the second row.

During the initial phase of data preprocessing, I meticulously refined the original dataset
using specific criteria. The primary focus was on identifying and addressing missing values,
especially within the heart rate and step data fields. I carefully examined these parameters to
ensure that no missing entries were present.

If any missing values were detected in heart rate or step data, the entire corresponding row
was excluded from the CSV dataset.

Additionally, I conducted a temporal analysis of the glucose measurements to identify and
address any temporal gaps. I closely examined the intervals between consecutive glucose mea-
surements. If the time between any two measurements exceeded a predefined threshold of five
minutes, the dataset was reorganized. This involved segmenting the dataset at each instance of
such temporal discontinuity and treating each segment as a separate dataset.

This approach aimed to maintain the temporal integrity of the data and enhance the accuracy
of subsequent analyses.

As described earlier, my research employed a tripartite methodological framework, which
required the development of three distinct dataset structures:

1. The first dataset structure exclusively comprised glucose data. This univariate configura-
tion allowed for an in-depth analysis of glucose dynamics, unencumbered by the influence
of additional physiological variables.
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In this case, the data record for each patient in this dataset had the following structure:
[Date stamp (DD-MM-YYYY), Time stamp (HH:MM:SS), Blood glucose level from CGMS
(concentration)].

2. In the second dataset structure, my analytical scope expanded to encompass the dynamic
interplay between glucose levels and heart rate. This bivariate approach facilitated a
more nuanced examination by integrating heart rate data, also aggregated at five-minute
intervals. Importantly, this dataset structure was specifically tailored for individuals who
wore the Basis Peak sensor band, ensuring methodological consistency and uniformity in
data acquisition practices.
In this case, the data record for each patient in this dataset had the following structure:
[Date stamp (DD-MM-YYYY), Time stamp (HH:MM:SS), Blood glucose level from CGMS
(concentration), HR value (integer)].

3. The third dataset structure extended the integrative paradigm by pairing glucose data with
step information. Similar to the previous approach, the aggregation of data occurred at
five-minute intervals, and exclusivity was maintained for individuals employing the Basis
Peak sensor band.
In this case, the data record for each patient in this dataset had the following structure:
[Date stamp (DD-MM-YYYY), Time stamp (HH:MM:SS), Blood glucose level from CGMS
(concentration), Step value (integer)].

Essentially, the creation of these three distinct dataset structures represents a thoughtful
and strategic research approach. By systematically varying the combinations of physiological
parameters, the objective was to reveal patterns and relationships within the data. This method
contributes to a deeper understanding of the intricate interactions between glucose levels, heart
rate, and step count.

3.3.12 Recurrent neural network approach
In this study [J2], I focused on general machine learning algorithms, particularly recurrent neural
networks (RNNs), which are well-suited for time-series data such as physical activity detection.
Given the uniform time intervals in my dataset, RNNs are an appropriate choice and offer a
modern alternative to traditional machine learning algorithms.

The architectural designs of my models were similar, with the main differences lying in the
recurrent layers. Specifically, I compared networks using Long Short Term Memory (LSTM)
cells and Gated Recurrent Units (GRU) cells. I also explored variations in other parameters,
such as the look back time horizon, which ranged from 3 to 24 time steps, equivalent to 15
minutes to 2 hours given my 5-minute interval data.

Additionally, I considered the size of the feature vectors in the input layer, which is deter-
mined by both the time horizon and the types of sensor data used. My dataset includes data
from blood glucose meters, heart rate monitors, and step counters. To address overfitting, I
adjusted the dropout rate between 0, 0.2, and 0.5 across all layers.

Another important parameter was the number of RNN cells, which ranged from 16 to 128
and was consistent across all recurrent layers. The dense layer, responsible for the hidden layer
neurons, had configurations of 64, 128, 256, 512, and 1024 neurons.

These parameters defined my network configurations, and each configuration was systemat-
ically trained and tested to evaluate performance.

Proposed model

The architecture of the LSTM model is illustrated in Figure 3.7 (right panel). The model’s
input layer is influenced by two factors: the number of time steps considered and the number of
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features used. In this case, I looked back 24 steps, equivalent to two hours of data, and used 2
features from two sensors.

Following the input layer is a Bidirectional layer [R85] [R86] that incorporates LSTM cells
in both the forward and backward directions. The number of LSTM cells in this layer was
a variable parameter, set to 128 for the network depicted in the figure. The RNN layer has
the return_sequences property set to true, meaning it provides an output at every time step
rather than just the final step. Additionally, a dropout rate was applied to this layer to mitigate
overfitting.

Next, a Batch Normalization [R87] layer normalizes the data. This is followed by another
Bidirectional layer with identical parameters to the first one, including the same number of
RNN cells and the return_sequences setting. A subsequent Batch Normalization layer is added,
and then a final Bidirectional layer is incorporated, mirroring the structure of the previous
two Bidirectional layers with consistent RNN cell numbers, return_sequences parameters, and
dropout rates.

After this, a final Batch Normalization layer is introduced to normalize the data once more.
The next component is a Global Average Pooling [R88] layer, which reduces multiple time
vectors into a single vector by averaging. The output from this layer is a vector with a length
equal to the number of RNN cells.

Following the pooling layer, the first Dense layer is configured with a neuron count set ac-
cording to the input parameter, in this case, 256. This is followed by a Dropout layer with a rate
matching that of the RNN layer to prevent overfitting. The second Dense layer also contains the
same number of neurons as the first Dense layer. Another Dropout layer is added, maintaining
consistency with other dropout rates in the network. ReLU [R89] activation functions are used
in the Dense layers.

Finally, the classification layer consists of two neurons to represent the two possible states,
with a softmax [R90] activation function. For optimization, the Adam optimizer [R91] is
employed, and sparse categorical crossentropy [R92] is used as the cost function.

Let’s start by outlining the architecture of the GRU model, as depicted in Figure 3.7. The
model’s input depends on two factors: the number of time steps I look back (24 steps, or two
hours of data) and the number of features (2 features from two sensors).

The input layer is followed by a Bidirectional layer, which is typical in the GRU model. This
layer contains GRU cells operating in both forward and backward directions. The number of
GRU cells, set to 128 in the depicted network, is a variable parameter.

Following this is an RNN layer with the return_sequences property set to true, meaning it
outputs a value at each time step rather than just the final one. A dropout rate is applied to
this layer to prevent overfitting. Next, a Batch Normalization layer normalizes the data.

Another Bidirectional layer, with parameters identical to the first (including the same number
of GRU cells, return_sequences setting, and dropout rate), is added. This is followed by another
Batch Normalization layer.

The final Bidirectional layer mirrors the configuration of the previous two layers, maintaining
consistent GRU cell numbers, return_sequences parameters, and dropout rates. After this, a
final Batch Normalization layer ensures data normalization.

A Global Average Pooling layer then consolidates the multiple time vectors into a single
vector by averaging. This output vector has a length equal to the number of GRU cells.

The first Dense layer is configured with a neuron count specified by the input parameter,
set to 256 in this case. Following this, a Dropout layer is used to combat overfitting, with the
dropout rate matching that of the RNN layer. The second Dense layer also has a neuron count
of 256, and is accompanied by another Dropout layer with consistent dropout values. ReLU
activation functions are applied in the Dense layers.

Finally, the classification layer consists of two neurons to represent the two possible states,
and employs a softmax activation function. The model uses the Adam optimizer, with sparse
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categorical crossentropy as the cost function. Overall, these choices for optimization, activation,
and loss functions are well suited and effective.
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Figure 3.7: The structure of the used GRU and LSTM models. All model configurations had
the same structure, only the values of the hyper parameters changed. The kernel is represented
in the image using a matrix of how much data it processes.
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Training and testing

Eighty percent of the dataset was allocated for training, while the remaining twenty percent was
used for testing. Given the importance of maintaining temporal order in time series data, the
split was carefully managed to ensure that data points were consecutive in time. Additionally,
efforts were made to minimize overlap between the training and testing datasets. To further
validate the model, cross validation was employed during training. For each set of parameters,
five training and testing iterations were conducted. In these iterations, the testing dataset was
initially the first 20% of the data, and by the fifth iteration, it was the last 20%. The remaining
data was used for training. Each training session consisted of 1000 epochs, with a batch size of
256. Additionally, the model was saved whenever there was a decrease in the cost function value
on the train dataset. During the testing phase, the model with the lowest cost function value
was then selected. This approach was necessary because of the class imbalance, which made
accuracy an unreliable metric for evaluation in this context.

3.3.13 Result with Recurrenct Neural Network
Next, the results of the models are reviewed to determine which parameter configurations are
sufficient to meet the performance requirements. To achieve this, performance metrics for various
parameter configurations were collected and visualized using box plots. The metrics analyzed
include Accuracy, Precision, Recall, and F1 score.

For both GRU and LSTM models, the top 30 models were evaluated based on F1 score,
and the corresponding box plots for Accuracy, Precision, and Recall metrics are provided and
detailed in the supplementary material. Additionally, two tables in the supplementary material
offer further insights: one table presents the AUC and Precision values of the top 30 models,
while the other displays the Precision and Recall values for these models.

F1 score

Figure 3.8: F1 score value for different number of RNN cell
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In Figure 3.8, the F1 score values are analyzed in relation to the number of RNN cells. A clear
trend is observed: higher numbers of RNN cells generally correspond to higher upper quartile
values, suggesting that 25% of the models with more cells perform better. However, the median
values show an inverse trend, with the lowest medians recorded for the largest cell numbers,
specifically 64 and 128.

According to the F1 score analysis, models with either 64 or 128 RNN cells achieve the best
results. Nonetheless, configurations with 16 cells can also achieve F1 scores close to 1. On
average, models with 64 or 128 RNN cells tend to deliver the best performance.

Figure 3.9: F1 score value for different number of Look back

In Figure 3.9, the F1 score is analyzed in relation to various look-back window values. A
staircase pattern similar to that observed for Precision and Recall is evident, as the F1 score
combines these two metrics. The median F1 scores show a steady increase up to a 15-fold look-
back window. Notably, some models perform well even with a 12-fold look-back. However, it is
at the 15-fold look-back window where the upper quartile of the F1 score exceeds 0.8. Before
this, only the maximum value of the boxplot, seen for 9-fold and 12-fold look-backs, reaches this
level.

For look-back windows greater than 15, while the median F1 scores are slightly lower than for
the 15-fold look-back, the upper quartile values are higher. Specifically, at a 24-fold look-back,
the top 25% of models perform better compared to those with a 15-fold look-back. However, the
lower median scores for larger look-back windows can be attributed to the vanishing gradient
problem. Models that manage to avoid this issue may outperform those with a 15-fold look-back,
but when the problem occurs, performance can deteriorate significantly. A 15-fold look-back
window achieves good performance on average, whereas a 24-fold look-back window yields the
best results.
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Figure 3.10: F1 score value for different datatype

Figure 3.10 displays the F1 score values across different datasets. Outliers are particularly
notable when only blood glucose values are used as features. While some outlier models achieve
F1 scores close to 1, such instances are infrequent. When blood glucose and heart rate data are
used together, the median F1 score remains below 0.2. However, the upper quartile surpasses 0.6,
and the maximum F1 score approaches 1. Utilizing both blood glucose and step count data as
features leads to a significant improvement in performance. In this scenario, the median F1 score
is around 0.6, with the lower quartile exceeding 0.8, demonstrating the enhanced effectiveness
of incorporating both blood glucose and step count data. Despite this, it is important to note
that some models perform well using only blood glucose data.
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Figure 3.11: F1score value for different number of Drop out rate

Figure 3.11 illustrates the F1 score values for different dropout rates. The boxplots reveal
that incorporating dropout rates into the model design may not be advantageous. Even a small
dropout rate of 0.2 results in significant performance degradation, suggesting that models have
difficulty generalizing to the data. This issue is further intensified with a dropout rate of 0.5,
which leads to the poorest F1 scores. In contrast, the complete omission of dropout results in
better performance, with median F1 scores approaching 0.8 and maximum values nearing 1.
Thus, it might be beneficial to avoid using dropout rates in model design to achieve optimal
performance.
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Figure 3.12: F1 score value for different number of Dense neurons

Figure 3.12 presents the F1 score values, indicating that the number of neurons in the
dense layer has a minimal impact on model performance. Although the median F1 scores are
somewhat higher for configurations with 512 and 1024 neurons, the difference is not significant.
Notably, some models with the smallest neuron count of 64 also achieve very good performance,
suggesting that this setup can still be effective. Nevertheless, neuron counts of 256, 512, and
1024 appear to provide slight advantages, as indicated by higher upper quartile values relative
to the 64 and 128 neuron configurations. This suggests that the top 25% of models may perform
slightly better with these larger neuron counts, though the improvement is marginal.

Analyzation of the best 30 models

In this subsection, I rank the top 30 models based on their F1 scores, as this metric effectively
balances precision and recall, ensuring that the models demonstrate strong performance in both
aspects of classification accuracy. Due to the extensive nature of the data, I have divided the
results into three tables. The ranking is based on the median F1 score from five test cases.
Table 3.8 presents these rankings and F1 score values. Additional tables in the supplementary
material provide further details: one table shows the AUC and accuracy results, while another
displays the precision and recall values for the tested models.

Table 3.8 presents the F1 score values, which are arguably the most critical metric. A review
of the median F1 scores reveals that all models in my dataset consistently achieve scores above
0.98. When examining the mean scores, only one configuration among the top thirty models
falls below this threshold. Additionally, the variance among the models is remarkably low,
highlighting the robustness and reliability of my results.

The analysis of my extensive dataset, comprising over 3,000 test cases, demonstrates a strong
solution to the problem of physical activity detection and offers insights into the parameters
affecting this process. By examining boxplots of various parameter settings, I assessed which
factors influenced the results positively. Compared to previous studies that achieved an AUC
of 0.92 with simpler machine learning algorithms, my use of recurrent layers has improved
performance to an AUC of 0.99, with a F1 score of 0.98.
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Model Data Look back Dropout RNN Dense Neuron F1 Score
Type Rate Cells Number Mean Median STD

LSTM Glucose and HR 24.0000 0.0000 32.0000 64.0000 0.9843 0.9884 0.0063
LSTM Glucose and HR 21.0000 0.0000 128.0000 128.0000 0.9876 0.9875 0.0021
LSTM Glucose and HR 24.0000 0.0000 16.0000 1024.0000 0.9839 0.9869 0.0068
LSTM Glucose and HR 24.0000 0.0000 128.0000 512.0000 0.9847 0.9869 0.0052
GRU Glucose and HR 24.0000 0.0000 128.0000 1024.0000 0.9873 0.9860 0.0054
LSTM Glucose and HR 24.0000 0.0000 64.0000 64.0000 0.9835 0.9858 0.0040
GRU Glucose and HR 24.0000 0.0000 128.0000 256.0000 0.9840 0.9852 0.0045
LSTM Glucose and HR 21.0000 0.0000 128.0000 64.0000 0.9852 0.9849 0.0012
LSTM Glucose and HR 24.0000 0.0000 128.0000 64.0000 0.9856 0.9848 0.0044
GRU Glucose and HR 24.0000 0.0000 128.0000 64.0000 0.9854 0.9848 0.0033
LSTM Glucose and HR 21.0000 0.0000 128.0000 1024.0000 0.9840 0.9848 0.0051
LSTM Glucose and HR 24.0000 0.0000 64.0000 128.0000 0.9820 0.9845 0.0051
LSTM Glucose and Steps 24.0000 0.0000 128.0000 128.0000 0.9839 0.9844 0.0038
LSTM Glucose and HR 24.0000 0.0000 16.0000 256.0000 0.9821 0.9843 0.0051
LSTM Glucose and HR 18.0000 0.0000 128.0000 256.0000 0.9843 0.9842 0.0012
LSTM Glucose and HR 24.0000 0.0000 128.0000 128.0000 0.9840 0.9841 0.0028
LSTM Glucose and Steps 24.0000 0.0000 128.0000 256.0000 0.9835 0.9841 0.0017
GRU Glucose and HR 24.0000 0.0000 128.0000 128.0000 0.9838 0.9841 0.0031
GRU Glucose and Steps 24.0000 0.0000 128.0000 128.0000 0.9835 0.9840 0.0053
LSTM Glucose and HR 24.0000 0.0000 64.0000 256.0000 0.9827 0.9837 0.0046
LSTM Glucose and HR 24.0000 0.0000 128.0000 256.0000 0.9839 0.9836 0.0028
LSTM Glucose and HR 24.0000 0.0000 32.0000 256.0000 0.9800 0.9835 0.0081
LSTM Glucose and HR 24.0000 0.0000 32.0000 512.0000 0.9851 0.9834 0.0048
LSTM Glucose and Steps 24.0000 0.0000 128.0000 64.0000 0.9833 0.9833 0.0025
GRU Glucose and HR 24.0000 0.0000 64.0000 256.0000 0.9824 0.9833 0.0024
LSTM Glucose and HR 21.0000 0.0000 128.0000 512.0000 0.9786 0.9833 0.0101
GRU Glucose and Steps 24.0000 0.0000 128.0000 64.0000 0.9823 0.9832 0.0040
GRU Glucose and HR 24.0000 0.0000 64.0000 512.0000 0.9815 0.9831 0.0040
GRU Glucose and HR 21.0000 0.0000 64.0000 1024.0000 0.9788 0.9830 0.0097
LSTM Glucose and HR 24.0000 0.0000 32.0000 128.0000 0.9826 0.9830 0.0038

Table 3.8: The 30 best model F1 scores
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The results highlight that blood glucose levels alone are insufficient for achieving high clas-
sification performance. While there are instances where blood glucose levels can yield good
results, this is not consistent across all cases. Blood glucose levels showed the best performance
in some datasets, but outlier values indicate that such performance is not generalizable. Com-
bining blood glucose with heart rate data yielded mixed results: although the maximum values
were good, the upper quartile also showed promise. However, my findings suggest that using
heart rate data alone is not ideal for detecting physical activity; cadence data is more effective
in capturing the onset of activity, as it avoids the issues that arise with heart rate measurements
during stressful situations.

Regarding dropout rates, my experiments confirm that while dropout can help prevent over-
fitting, excessively high rates are detrimental. A dropout rate of 0.2 remains a viable option,
but a rate of 0.5 was found to be less effective. The best results were achieved when no dropout
rate was applied to either recurrent or dense layers.

The look-back window parameter also significantly affects model performance. Models per-
form best with a minimum window of 15 steps (or approximately an hour). While extending
the window beyond 15 steps provides minimal additional improvement, having at least an hour
of data is crucial. The change in RNN cell counts did not significantly impact model perfor-
mance, but models with higher cell counts generally performed better. A 64-cell configuration
is recommended, though the best model had 32 cells, despite its high variance.

Lastly, the number of neurons in the dense layer had the least impact on model performance.
Despite variations, the top models showed similar results across different neuron counts. Com-
pared to my previous work [J1], my models have shown significant progress. In [R93], various
machine learning algorithms achieved a maximum AUC of 0.92, while my LSTM model reached
an F1 score of 0.98, demonstrating notable advancement.

3.3.14 Conclusion
In conclusion, I successfully met my objectives by achieving a higher F1 score of 0.9, surpass-
ing the performance of my previous research. My earlier work, which utilized simpler machine
learning algorithms, reached a maximum AUC of 0.92. In contrast, my current experiments
have attained an AUC of 0.99, demonstrating a significant advancement. The fact that multi-
ple recurrent models achieved this high AUC further confirms that recurrent architectures are
effective for physical activity detection.

My research also explored various parameters impacting model performance. It was evident
that using blood glucose levels alone is insufficient for building robust models. Although there
were exceptional cases where blood glucose alone was adequate, these instances were outliers. A
more reliable approach involves combining blood glucose with cadence data, rather than heart
rate, which proved less effective.

I investigated how different look-back window sizes influence model performance and found
that models require more than an hour of data to perform well. A look-back window of at least 15
steps is recommended, though extending beyond 15 steps provides only marginal improvement.

Regarding dropout rates, my results indicate that while a dropout rate of 0.2 can yield
good results, it is an exception rather than the norm. Rates of 0.5, however, result in poorer
performance. Therefore, it is advisable to use no dropout rate for optimal results.

The analysis of RNN cell sizes confirmed that exceeding 64 cells is unnecessary. Addition-
ally, the number of neurons in the dense layer was found to have minimal impact on model
performance, although it affects runtime.

No significant difference was observed between GRU and LSTM models in my study. For
future research, exploring different data representations that include blood glucose, heart rate,
and step count together could be valuable. Investigating the results from combining heart
rate and step count, as well as experimenting with transformer models, could provide further
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insights. Additionally, conducting tests where the training dataset remains the OHIO dataset
but the testing dataset consists of new, measured data would be worthwhile.

3.4 Gesture detection
In this chapter, I will describe a research project that facilitates automatic detection of meal
intakes. Using data from smart devices, it can help diary keeping in diabetes patients.

3.4.1 Goal
This research focused on gesture detection, specifically identifying eating gestures. The goal was
to develop an AI system capable of classifying whether a gesture represents a meal, using raw
data collected from smart devices. This is particularly important for elderly patients, who often
forget to log their carbohydrate intake, making it difficult for doctors to properly adjust their
insulin treatment. Therefore, having an AI that can autonomously detect carbohydrate intake
is crucial. Initially, I based the study on accelerometer data, but it became evident that this
alone was insufficient.

3.4.2 Introduction
Food consumption is a fundamental human activity, closely tied to physiological health partic-
ularly in individuals with diabetes [R94] [R95] [R96] [R97] [R98]. Accurately identifying and
understanding food intake is essential for effective diabetes management, as it plays a key role
in a holistic care strategy. This, in turn, contributes to better blood glucose regulation, more in-
formed dietary decisions, and empowers patients to take greater control of their condition [R99],
[R100], [R101]. With diabetes treatment becoming a global concern, monitoring food intake and
physical activity is essential. However, traditional methods like journaling often lack accuracy
due to manual entry and reliance on memory [R102]. The use of automated food consumption
detection through wearable sensor systems is gaining attention as a promising solution [R103].
Recent studies indicate that deep learning-based gesture recognition, utilizing accelerometer and
gyroscope data, outperforms traditional machine learning methods [R104]. Traditional methods
of detecting food consumption rely heavily on self-reported data, which is prone to human error
and can be a time-consuming manual process. Automated food consumption detection offers
a solution by independently collecting and processing data, complementing traditional meth-
ods and reducing bias. These systems also offer the potential for personal self-monitoring by
providing tailored food recommendations [R105].

Beyond its basic nutritional role, food intake is crucial for maintaining glucose levels in indi-
viduals with diabetes. Recognizing the specific movements associated with food intake elevates
this approach, paving the way for improved diabetes and metabolic disorder treatment methods.
The ability to detect these movements and convert them into automated signals for devices such
as insulin pumps allows for proactive blood sugar level control. This preventative intervention
can significantly enhance diabetes management, leading to better long-term health outcomes
and an improved quality of life.

This research advances food consumption detection using deep learning by analyzing the
complexities of human behavior to decode the subtle movements that accompany eating. De-
ciphering food consumption through machine learning represents not just a technological ad-
vancement but also a significant shift in healthcare. In this article, I thoroughly examine the
rationale, methodology, challenges, and potential impact of using deep learning for food con-
sumption detection. My aim is to emphasize the critical role that technology-driven gesture
recognition [R106] [R107] [R108] [R109] can play in optimizing treatment approaches, redefining
patient care, and ultimately advancing the field of medicine. The use of Inertial Measurement
Unit (IMU) sensors for detecting food consumption is motivated by several key advantages over
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other sensor technologies, such as Continuous Glucose Monitors (CGM) and sound sensors, as
highlighted in studies like [R110] and [R111]. IMUs are non-invasive and enhance user comfort
because they are typically worn externally on devices like smartwatches, unlike CGMs, which
require subcutaneous insertion. This makes IMUs more suitable for long-term use and improves
user compliance [R110].

Additionally, IMUs are versatile, as they are integrated into widely available consumer de-
vices, reducing the need for specialized equipment. They provide rich, reliable data by captur-
ing detailed movement patterns associated with eating, enabling robust and accurate detection
algorithms. In contrast, sound sensors, as explored in [R111], can be inconsistent due to envi-
ronmental noise and issues with sensor placement [R111].

Figure 3.13 illustrates the gesture detection process. It’s important to detail each step of
this process. Initially, hand movements (A) generate raw data, which can be measured using
accelerometers and magnetometers (B). A smart bracelet or watch (C) is required to extract
meaningful information from this raw data. The device collects and transforms the raw data
(B) into meaningful values (D). This data is then processed by a deep learning model (E) to
determine whether the sequence of movements is associated with a meal. The final output (G)
indicates whether the participant is eating (F).

Figure 3.13: Food Consumption Detection system in plan, A: Hand gesture, B: Raw sensor data,
C: Smart Watch/Band, D: Collected-Transformed data, E: Deep learning model, F: No Eating,
G: Eating

3.4.3 Data collection

Sensor Setup and Data Acquisition for Meal Detection

My research involved testing and utilizing multiple sensor platforms for data acquisition, which
was necessary due to several important considerations. Primarily, different devices are equipped
with accelerometric sensors that vary in sensitivity, sampling frequency, and measurement range.
Additionally, sensor data can vary significantly depending on the orientation and placement of
the device on the user’s wrist. These factors greatly influence the quality and characteristics of
the collected data, which formed the foundation for training artificial intelligence models.
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The diversity and richness of the dataset both in temporal resolution and precision were
crucial for enabling robust model learning. For example, if meal-related motion was recorded
at a low sampling rate, the neural network may not have had sufficient resolution to capture
informative patterns. At the same time, it was important to minimize noise and inconsistency
in the data.

To begin, I used a sensor unit controlled by an Arduino microcontroller. This setup featured
an MPU6050 module, which includes a 3-axis accelerometer and a gyroscope [R112]. The sam-
pling frequency was configured to 75 Hz, based on similar values used in related studies. The
sensor data was recorded with precise timestamps and saved to an SD card. The MPU6050
contains a 16-bit analog-to-digital converter, enabling high-resolution measurements. The gy-
roscope supports a range of 250 to 2000 degrees per second, while the accelerometer measures
within a ±2G to ±16G range. Given that eating involves relatively smooth, repetitive motion,
these ranges were found to be adequate for the task.

In parallel, I employed the MetaMotionS wristband developed by MbientLab, a device tai-
lored for gesture detection and logging. It incorporates a 6-axis Bosch BMI270 IMU sensor and
supports Bluetooth Low Energy (BLE) communication. The device features a 100mAh battery,
offering up to 48 hours of continuous operation. The sampling rate of the accelerometer ranges
from 0.78 Hz to 1600 Hz, while the gyroscope supports between 25 Hz and 3200 Hz. I inter-
faced with the device via MbientLab’s Python API on an Ubuntu Linux platform and developed
custom software for real-time data acquisition and transfer to a laptop.

A critical aspect of the experiment was verifying the sensor’s ability to maintain the set
sampling rate over long periods. To evaluate this, I compared the expected sample count against
the timestamps over extended intervals. The device maintained the configured frequency with
an error margin of approximately ±0.6-0.7%, which was acceptable for the purposes of my study.

From empirical observations, I noted that measured values were influenced by individual
characteristics such as handedness and eating style. Therefore, metadata was recorded during
each session, including whether the subject used their dominant hand, the eating utensil (hand,
spoon, fork, knife), and the orientation of the wrist sensor (inner or outer wrist). These variations
allowed me to assess the robustness of the trained model to changes in motion direction and
context.

In addition, I utilized the Panoramic wristband [R113], a device equipped with sensors
similar to those in previous tools but enhanced with a magnetometer for gyroscope calibration.
Designed for clinical and research use, this device offers 1 GB of onboard memory for data
logging without requiring continuous wireless transmission. Data could be retrieved via BLE
using the Android ”nRF Connect for Mobile” application. Although the Panoramic device does
not support continuous streaming, it transmits data in one-minute intervals suitable for sliding
window analysis. The wristband also includes a temperature sensor to detect removal events,
automatically pausing data collection and conserving energy.

Due to limited availability of these dedicated sensors, I also explored a smartphone-based
solution. I used the ”AndroSensor” mobile application to collect accelerometer and gyroscope
data from a standard smartphone. The data was stored in CSV format and later processed
using custom Python scripts. This allowed me to expand the dataset further by capturing a
wide range of real-world motion patterns related to meal consumption.

Each data entry contained acceleration, linear acceleration, and rotational velocity values,
along with a timestamp. This allowed for the labeling of meal events based on contextual
timing and observation. Data collection was conducted collaboratively, with assistance from
several colleagues who contributed by recording their own eating sessions, including times of
both meal and non-meal activities.

The final dataset used for training included three acceleration axes and a binary label in-
dicating the presence or absence of a meal. I was able to record 40 meal sessions, resulting in
approximately 110,000 data points. Of these, around 92,000 were associated with confirmed
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Aspect/Technique Logistic
regression

MLP
(30,30)

MLP
(30,30,30)

MLP
(50,50,50)

MLP
(100,100,100)

Accuracy score 0.6715 0.8722 0.8825 0.8870 0.8879
F1-score 0.8018 0.87 0.88 0.88 0.89

Table 3.9: Accuracy results with logistic regression and MLP

Aspect / Technique RFC
(est: 10)

RFC
(est: 50)

RFC
(est: 100)

RFC
(est: 200)

RFC
(est: 500)

Accuracy score 0.8706 0.8788 0.8805 0.8807 0.8810
F1-score 0.87 0.88 0.88 0.88 0.88

Table 3.10: Accuracy results with random forest

meal-related movements, while the remaining 18,000 captured hand motions from unrelated
daily activities. This carefully constructed and diverse dataset played a pivotal role in training
a reliable and generalizable meal detection model.

3.4.4 Machine learning based approach
I conducted tests utilizing various [C4]techniques and methods, including logistic regression,
multi-layer perceptron (MLP) networks [R114, R83], and random forest. These methods were
applied to datasets comprising the following data:

• ACCELEROMETER X (m / s2)

• ACCELEROMETER Y (m / s2)

• ACCELEROMETER Z (m / s2)

• Label (0 or 1)

For each network, I employed a training-to-test set ratio of 75 (train) / 25 (test). I deemed this
ratio appropriate given the ample size of my dataset during the research period, thus favoring a
larger number of training samples.

3.4.5 Result with machine learning approach
During the data collection phase, I assembled a dataset comprising over 40 meals with 110,000
records, upon which the aforementioned data manipulation procedures were applied. Out of the
110,000 records, approximately 92,000 records documented eating events, while the remaining
18,000 records captured other similar activities (e.g., toothpicking, smoking). I compared the
listed techniques based on various metrics, with the primary considerations being the weighted
average F1 score and the Accuracy score. Naturally, MLP and random forest models were exper-
imented with using different parameters to ascertain whether larger networks yielded superior
performance. The results of these tests are summarized in Tables 3.9 and 3.10.

The optimal efficiency, reaching 89%, was achieved by a relatively large MLP network.
Looking ahead, my aim is to explore techniques capable of consistently detecting meal-related
movements even when operating with real-time data.
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3.4.6 Clemson dataset

Figure 3.14: Clemson All-day dataset data collection road map A: Patient Population, B: Raw
data collection, C: ActiGraph gt9x, D: Shimmer 3, E: Export Data, F: Self reported eating, G:
Exported data

The data collection process in the Clemson All-Day dataset, as depicted in Figure 3.14, involved
several components. Firstly, a large cohort of patients (A) participated in the study. These
patients were equipped with motion sensors, which could be categorized into two main types:
ActiGraph gt9x (C) and Shimmer 3 (D). Additionally, other measurement devices were utilized
to capture raw data (B) pertaining to hand movements, which were subsequently saved in
CSV format (E). These CSV files contained data from accelerometers, magnetometers, and
gyroscopes.

On another aspect of data collection, information regarding meals was recorded. Patients
themselves documented meal times (F), including details such as the type of meal consumed, its
contents, and whether the meal was eaten alone. This meal-related data was stored in a TXT
file (G).

The utilization of the Clemson All-Day dataset stands out as a key aspect of this research,
offering an extensive, round-the-clock documentation of wrist movement data. Past studies
leveraging this dataset have applied sliding window methodologies and convolutional neural
networks (CNNs) to derive the continuous probability of food consumption (P(E)) from the
movement data. Expanding upon this foundation, the daily pattern classifier operates on se-
quences of P(E), referred to as ”daily patterns,” facilitating a more comprehensive examination
of food consumption trends.

For my research, I employed the Clemson All-Day dataset, comprising wrist movement track-
ing data from 351 individuals leading their daily lives. Participants utilized wrist movement
trackers to delineate meal episodes’ onset and conclusion throughout the day. This dataset
encompasses raw data sourced from accelerometers, gyroscopes, and magnetometers, alongside
processed linear accelerometry data. Offering distinctive insights into daily activities and food
consumption behaviors, this dataset enables researchers to delve into movement patterns and
their correlation with meals and snacks. This dataset was specifically curated for gesture detec-
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tion related to food consumption. Its extensive nature and continuous measurement make it a
widely utilized resource in the scientific community. A total of 351 subjects contributed to the
data collection, resulting in 354 days’ worth of successfully recorded data. Meal reporting was
self-initiated by participants through button presses. Various devices were employed for data
collection, primarily the Shimmer 3 activity meter, alongside the Actigraph gt9x and iPhones.
The dataset boasts significant diversity among subjects, encompassing various ages, races, body
weights, and dominant hand preferences. This diversity renders it an invaluable resource for
research purposes. Each patient’s meal records are stored in separate text files, identified by a
unique patient identifier (P####), facilitating precise patient differentiation and analysis.

Figure 3.15: Food consumption txt example

The dataset operators have executed their task commendably, offering two distinct types
of data. Firstly, they’ve provided a downsized dataset synchronized precisely to 15 Hz, which
is more manageable in size. Moreover, they’ve made accessible the raw data captured by the
Shimmer instrument. Due to its considerable size, this raw data is partitioned into five segments,
constituting a total dataset size of approximately 20 gigabytes. Each segment, comprising about
4 gigabytes, encompasses patient data tagged with unique patient IDs.

Figure 3.16: Directory structure

As depicted in the image, within this folder structure, you’ll encounter patient folders con-
taining data. Navigating to the CSV directory, you’ll discover CSV files recorded by individual
patients. These files house raw data obtained from the measurement tool. Notably, the delimiter
within the CSV file is not a comma but a tab. The dataset comprises 17 columns, each column
featuring the measurement name along with the corresponding unit in the subsequent row. The
columns within the complete CSV file are listed as follows:

• P105_10_30_Timestamp_CAL msecs

• P105_10_30_RealTime_CAL msecs

• P105_10_30_GSR_CAL kOhms

• P105_10_30_Quat_MPL_6DOF_W_CAL no units

• P105_10_30_Quat_MPL_6DOF_X_CAL no units
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Figure 3.17: CSV file example

• P105_10_30_Quat_MPL_6DOF_Y_CAL no units

• P105_10_30_Quat_MPL_6DOF_Z_CAL no units

• P105_10_30_Gyro_MPU_MPL_X_CAL deg/sec

• P105_10_30_Gyro_MPU_MPL_Y_CAL deg/sec

• P105_10_30_Gyro_MPU_MPL_Z_CAL deg/sec

• P105_10_30_Accel_MPU_MPL_X_CAL m/(sec2̂)

• P105_10_30_Accel_MPU_MPL_Y_CAL m/(sec2̂)

• P105_10_30_Accel_MPU_MPL_Z_CAL m/(sec2̂)

• P105_10_30_Mag_MPU_MPL_X_CAL uTesla

• P105_10_30_Mag_MPU_MPL_Y_CAL uTesla

• P105_10_30_Mag_MPU_MPL_Z_CAL uTesla

• P105_10_30_Date dd_MMM_yyyy_HH:MM:SS.FFF

As evident, the columns represent session names, complicating the data conversion process
necessitating truncation. The subsequent image provides a brief glimpse of the raw data’s
appearance. Due to its extensive nature, displaying the entire dataset would be impractical,
hence, I’ve omitted the initial columns for brevity.
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Figure 3.18: My proposed method in real life use, A: Hand gesture, B: Raw sensor data, C: Smart
Watch/Band, D: Collected data, E: Smart Phone, F: Transformed data, G: LSTM modell, H:
No Eating, I: Eating, J: Export, K: Database

In Figure 3.18, you can observe the practical application of the developed model. As depicted
in Figure 3.13, hand movements (A) serve as the initial input, generating raw data (B) for
recording. Optimal recording is achieved through a smartwatch or smart bracelet (C), with data
transmission facilitated to a smartphone (E) via Bluetooth technology (D). The smartphone
performs data conversion into the requisite format (F), creating one-minute data stacks, as
outlined. Within this dataset, elements are sequenced every second. The transformed feature
vector is then inputted into my LSTM model (G) for decision-making. Remarkably, this LSTM
model can be integrated into a smartphone application for on-the-go usage. Subsequently, the
model output discerns whether the motion sequence corresponds to a meal (I) or not (H). This
data is exportable (J) to a database (K), which could also manifest as a logging application.
The data was stored in CSV format, with each CSV file containing a session representing either
food consumption or another activity. To extract the data, 12 data points were selected from
the raw data. Initially, I examined the frequency to assess any deviations from the 15 Hz
frequency, which the meter could measure. Upon testing, I found no deviations, indicating that
all data adhered to the correct frequency without errors. The presence of real-time data in the
second column facilitated the calculation of intervals between two time points. Subsequently,
since the sampling rate was 15 Hz, data was extracted at this frequency and averaged to obtain
raw data per second. Working with data in seconds simplified labeling tasks. Additionally,
uncertainty regarding the model’s prediction speed influenced my decision to extract data at
this frequency. The sliding window approach employed was not one-by-one; instead, a new
second was considered every 15 seconds.
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Figure 3.19: Data aggragetion

Subsequently, I extracted meal data reported by the patient. This involved parsing through
the file line by line to identify meal entries. Upon encountering a meal entry, I recorded the
start and end points of the meal. These timestamps were then converted from string format to
timestamp format, facilitating data processing in seconds. This streamlined the subsequent data
processing and labeling tasks. Data falling outside the meal’s start and end times was discarded,
while the remaining data was initially labeled with a value of 0. Next, I iterated through the
list of meals, and for each meal item, I traversed the extracted second data. If a transformed
timestamp of a data element fell within the meal’s start and end time, it was labeled with 1.

Figure 3.20: Labelling

Subsequently, I filtered out any raw data components deemed unsuitable for training due to
their potential patient-specific influence on the outcome. Specifically, I excluded two timestamp
values, as not all participants measured on the same day or initiated measurements simultane-
ously. Additionally, the date attribute was omitted due to its potential patient-specific nature.
Furthermore, the GSR attribute, measured in kOhm, was discarded as it pertained to device
specifics. Finally, I dropped the Quat W CAL attribute, as the Quat values were count-based,
aligning with my decision to exclusively work with X, Y, and Z axis data. Consequently, I
retained 3 Quat values, 3 gyroscope values, 3 accelerometer values, and 3 magnitude values,
alongside a label denoting meal presence or absence, totaling 13 fields (12 attributes and one
label). This curated dataset was saved in CSV format files, with separate files created for each
of the 354 days, forming the basis for training.
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Figure 3.21: Transformed data for training

Figures 3.22, 3.23, 3.24, and 3.25 display sample data from a single patient, illustrating the
four types of sensor readings. The figures include data from the magnetometer, accelerometer,
and gyroscope, represented along their three axes, while the quaternion includes three axes and
the total calculated displacement. The axis values for each sensor type are plotted individually,
providing clearer insights into the behavior of each sensor during carbohydrate intake. The meal
periods are indicated in pale red on the graphs.

For the accelerometer, there is little difference in sensor readings between meal and non-meal
periods, although the sensor values are notably higher when meals are present. In contrast, the
gyroscope shows a significant change, with all axes displaying higher values during meals. Simi-
larly, the magnetometer readings show an opposite trend, with minimal variation during meals.
Finally, the quaternion data reveals large fluctuations around mealtimes, with the frequency of
these changes noticeably higher compared to non-meal periods.

Figure 3.22: Sample patient accelerometer data after transformation
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Figure 3.23: Sample patient gyroscope data after transformation

Figure 3.24: Sample patient magnetometer data after transformation
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Figure 3.25: Sample patient quaternion data after transformation

3.4.7 LSTM based method
In my previous study, I exclusively utilized simple machine learning algorithms [R115]. However,
in my current investigation [J3], I opted for a deep neural network approach. Recurrent Neural
Networks (RNNs) inherently possess memory, facilitating information retention. Nonetheless,
traditional RNN architectures struggle with effectively recalling long sequences of data. To
address this limitation, Long Short-Term Memory (LSTM) networks were introduced [R116].
Accordingly, my model incorporates LSTM layers to enhance memory retention capabilities.

The input to my model comprises 60 vectors, each containing 12 elements, aligning with the
one-minute data granularity. I employed two LSTM layers, each comprising 256 neurons, with
the return_sequences attribute set to true [R117]. Consequently, the LSTM layers produce an
output of 60 vectors, each containing 256 elements. To prevent overfitting, a dropout layer with
a dropout rate of 0.2 was incorporated [R118].

Subsequently, another LSTM layer with identical configuration followed, alongside a dropout
layer with the same dropout rate. A GlobalAveragePooling1D layer was then applied to compute
the average of the 60 vectors, yielding a vector with 256 elements [R119]. The subsequent layers
are responsible for classification.

Preceding the final classification layer are two blocks, each comprising a dense layer with 64
neurons and a Rectified Linear Unit (ReLU) activation function [ReLU]. Following each dense
layer is a dropout layer with the same dropout rate mentioned earlier [R118]. The classification
layer itself consists of two neurons with a softmax activation function, reflecting the binary
classification nature of the task.

Sparse categorical cross-entropy served as the cost function [R120], and the Adam optimizer
was utilized for optimization [R121]. The decision to employ only two neurons in the classifica-
tion layer aligns with the binary classification task at hand.
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Figure 3.26: LSTM model

3.4.8 Training testing
During training and testing, data were grouped by one minute. In contrast to data extraction,
I have now moved my sliding window to every second rather than every minute. That is, I
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extracted the first sixty values from the csv file and then I latched the sub-file and extracted
60 values again. I did this until I got to the end of the csv wall for that day. The label for the
decision was the value at the 60th element. Since I only wanted to tell for the current time point
whether there was an arrival or not. I did not want to make a decision for the other seconds
before that. Following the rule for time series data that I do not randomly extract data from a
given data set. But by observing the events that occurred in the time series. That is, the first
x% of the data is training data, while the remaining y% is testing data. So I did a resolution of
80 and 20%. The first 80% of each day was the training sample, while the remaining 20% went
to the test data set. The training was done over 100 epochs. During training, the model that
achieved the lowest cost function value was eliminated. Then at testing this model was reloaded
and performance analysis was performed on it.

3.4.9 Validation
Validation of the results was conducted for one patient at a time, following the established
protocols for time series data analysis. Data samples were not randomly selected for training
and testing datasets. Instead, the first 80% of the data for each patient constituted the training
dataset, while the remaining 20% comprised the test dataset. Metrics were then calculated for
each patient based on this test dataset. Subsequently, the results obtained from these metrics
were aggregated and presented in the results section. This validation method was employed to
ascertain whether a day’s sample provided sufficient information to learn a patient’s patterns
effectively.

3.4.10 Results with LSTM model
Let’s delve into the findings derived from the analysis of the tests. Firstly, let’s refer to Table
3.11, which provides a comprehensive summary of precision, recall, and F1 score values spanning
354 days. The table not only presents the median and mean of these metrics but also includes
the first and upper quartile values, along with the maximum and minimum values. Additionally,
the standard deviation from the mean is depicted.

Commencing with the minimum values, it’s noteworthy that despite being the lowest, the
Recall column still reaches the 80% range. Similarly, the Precision column achieves a minimum
of 86%. Examining the F1 score, which amalgamates Precision and Recall, yields an impressive
88%. This metric serves as a robust indicator of model performance. The F1 score’s minimum
might surpass the minimum values of the other metrics because it’s a composite metric, thus
even the poorest-performing model can predict with an 88% accuracy.

Moving on to the bottom quartile, which encapsulates the poorest performing 25% of the
dataset, both Precision and Recall columns display a strong 99%. Similarly, the F1 score metric
reflects a commendable 98%. This suggests that in 75% of the tests, the F1 score exceeds 98%.
However, it’s crucial to acknowledge the presence of outliers.

Considering the median and mean scores, there’s a marginal 1% discrepancy between the
median and average in the F1 score and Recall column. This indicates the presence of outliers
among the test scores. Nonetheless, on average, the F1 score can reliably achieve approximately
98% to 99%. Utilizing the median, it can be inferred that half of the test scores exceed 99%.
The minimal standard deviation implies that the majority of tests cluster closely around the
mean.

At the upper quartile or maximum value, I observe a model achieving 100%. This may occur
when there are test cases with minimal meal occurrences, leading to no meals being included in
the test set during the split.
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Precision Recall Fscore
mean 0.990405 0.988249 0.989036
std 0.021567 0.027148 0.018902
min 0.864838 0.816071 0.888330
25% 0.993431 0.991326 0.988496
50% 0.998181 0.998014 0.997057
75% 1.000000 1.000000 0.999205
max 1.000000 1.000000 1.000000

Table 3.11: Description of metrics

Figure 3.27: Boxplot for metric

Now let’s analyze Figure 3.27, which employs boxplot representations to visualize the metric
values. The observations I’ve made thus far are corroborated here. Notably, a considerable
number of outliers emerge during the tests, yet none fall below 80%. Specifically, in the case
of the F1 score, only two instances fail to reach a 90% performance, indicating that merely two
out of 354 items exhibit lower scores.

Examining the body of the boxplot reinforces my initial hypothesis. The test results predom-
inantly cluster around the 98-98 range, aligning with my expectations from the computation.
It’s also noteworthy that in the precision metric, only three values fall below 90%. This implies
that the models generate few false positives, which is advantageous. However, the situation
is less favorable for Recall, where this number is double that of Precision. Unfortunately, the
models predict more false negatives in this scenario.

Nevertheless, when considering the aggregate boxplot values for all three metrics, it’s evident
that 11 cases fail to reach 90% performance on any metric. Additionally, a greater number of
outliers above 90% performance are observed. Despite this, considering that I haven’t achieved
90% performance thus far, the absence of outliers represents a notable improvement.
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Figure 3.28: Confusion matrix

Finally, let’s scrutinize the confusion matrix averaged from the results depicted in Figure
3.28. The confusion matrix serves as a revealing representation of my work with non-smoothed
datasets. Given that the confusion matrix provides mean values, any statements made should
pertain to the average.

Returning to the non-smoothed dataset, on average, the number of positive samples accounts
for 10% of the number of negative samples in the test datasets. However, it’s essential to focus
on the number of false positives and negatives, which are more relevant to my analysis.

Let’s begin with false positives, which occur when the model predicts a meal when there isn’t
one. This may occur at the end of a meal due to the absence of discernible changes in the data.
In this scenario, the average value is 5. This indicates that, on average, the model continues
to predict food consumption 5 seconds after a meal has concluded. This value is relatively low,
suggesting that at a minute resolution, errors may be minimized.

Conversely, consider the situation where the model fails to predict a meal when one is actually
occurring. This typically occurs at the start of a meal, as there may not yet be sufficient changes
in the data. In this case, the average value is 6. Hence, on average, it takes 6 seconds from the
start of a meal before the model detects that a meal is being consumed.

The average values of 5 and 6 imply that the longer it takes for the model to detect meal
consumption, the longer it will take for the model to accurately predict meal consumption. This
phenomenon stems from the internal dynamics of the LSTM cell, where changes may not be as
pronounced. This issue could potentially be addressed by implementing a model that considers
a longer time span and predicts both the beginning and end of a meal.

3.4.11 Conclusion
In summary, the tests indicate that I achieved better results on a more complex dataset compared
to the dataset I collected ourselves. Recurrent networks proved particularly effective in solving
the problem. However, some outliers remain in the test results. Despite this, the model I
developed consistently achieves over 90% accuracy on the dataset, with an average prediction
delay of 5.5 seconds. This delay means the model predicts meal events slightly late and extends
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the period it identifies as meal time.
It’s important to note that while some participants in the dataset have several days’ worth

of data, most have data for only one day. This raises the question of how the model would
perform if multi-day data were required. A potential solution would involve collecting multi-day
data, including nighttime periods, and testing the model on that dataset. Furthermore, the
5.5-second latency I observed might be influenced by the one-minute resolution, which could be
too broad for the LSTM model to capture changes in the data effectively. Reducing the time
window might improve the model’s responsiveness.

Overall, I developed a model that demonstrates outstanding performance on this dataset,
consistently achieving an accuracy between 98-99%. Future research could enhance this model
further by incorporating alternative datasets and applying advanced cross-validation techniques.
Collecting a new dataset will be crucial in advancing this work. Additionally, incorporating
transformer networks and using shorter time windows could enhance future models. We also
plan to experiment with non-personalized models that can be applied in real-world scenarios.

One key limitation of current artificial pancreas systems is the delayed response of insulin,
which needs to be administered 15-20 minutes before meals to effectively control postprandial
glucose levels. This timing delay reduces the real-time effectiveness of closed-loop systems during
meals, underscoring the need for system enhancements. Furthermore, automatic meal detection
is essential to reduce reliance on patient input, especially for elderly users, where forgetting meal
times could hinder accurate logging.

3.5 Insulin control with reinforcement-based neural network

3.5.1 Goal
The main objective of my research was to investigate the feasibility of tuning the control of
the AP (artificial pancreas) device with a reinforcement-based neural network using devices
connected to the artificial pancreas. There are already artificial pancreas systems in the world
that consist of three main components. The first component is the continuous glucose monitoring
sensor (CGMS), which allows the measurement of the patient’s blood glucose levels at 5-minute
intervals. The second main component is the insulin pump, which can deliver insulin to the
patient. The third component is an advanced control algorithm. In this thesis I present a
modern adaptive example of this algorithm. This solution has a number of advantages, allowing
for a much more personalised therapy design and eliminating the need for a longer therapy
adjustment period and the need for experimentation. The patient can wear the device and in
the longer term learn the ideal dosage on his/her own - and initially it will deliver the dosage
in a reliable way (acceptable to the patient, but not personalised). In the initial phase of my
research, I conducted basic tests and learned about reinforcement learning (RL). I tested a
selected mathematical model using a virtual patient simulator. The simulator provided the
environment for reinforcement learning, while the model or neural network represented the
agent. The selected mathematical model was a simple-structure IVP model calibrated to 10 real
patients and used in an environment of 17 virtual patients. At each step I ran the mathematical
model, which returned a measured blood glucose value. Based on this, my neural network model
calculated how much insulin to administer in a given iteration.

3.5.2 Introduction
Diabetes mellitus (DM) is a chronic metabolic disease that remains incurable, arising from either
a complete lack of insulin in Type 1 Diabetes Mellitus (T1DM) or a partial deficiency and/or
inadequate effect of insulin in Type 2 Diabetes Mellitus (T2DM). The precise pathophysiology
is not fully understood; however, T1DM is thought to result from a series of autoimmune reac-
tions that destroy the insulin-producing � cells in the pancreatic islets of Langerhans [R122]. This
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manuscript focuses on managing blood sugar levels in T1DM using reinforcement learning-based
artificial intelligence techniques for external insulin administration. T1DM typically develops
rapidly, primarily affecting children and adolescents who may have a genetic predisposition.
However, lifestyle factors and external circumstances can also accelerate the onset of the con-
dition [R123, R124]. The primary molecular function of insulin is to facilitate the entry of
glucose into insulin-sensitive tissues, such as muscle and adipose tissue, and to suppress exces-
sive glucose production (gluconeogenesis and glycogenolysis) primarily in the liver and kidneys
[R32]. Patients with T1DM require lifelong external insulin to maintain their blood glucose
levels [R125]. Without this external insulin, they cannot survive due to their body’s inability
to regulate energy metabolism [R126]. Robust, high-quality, and personalized blood glucose
management is crucial for patients with T1DM to achieve normal glycemia and reduce the risk
of complications. Affected individuals often develop long-term complications, such as damage
to the retina, microvascular system, nerves, and kidneys [R127, R128, R129].

In recent years, semi-automated insulin administration for T1DM has been shown to main-
tain satisfactory glycemia over time and reduce the risk of serious complications [R130, R131].
However, there is a significant need for further development of control algorithms for insulin
administration. These solutions must be robust initially and possess self-tuning capabilities to
adapt to the patient’s needs over time, providing personalized treatment and insulin delivery
[R38]. Semi-automatic glycemic control typically follows the artificial pancreas (AP) concept,
which consists of three key components: a Continuous Glycemia Monitoring System (CGMS)
for measuring blood sugar levels, an insulin pump to deliver insulin, and an advanced control
algorithm [R38, R39, R132, R133].

An AP system is designed to monitor blood glucose levels and automatically administer
insulin to manage diabetes within certain parameters. It comprises a continuous glucose monitor,
an insulin pump, and a control algorithm. Studies, such as [R134], demonstrate its effectiveness
in improving glucose control and reducing episodes of hypoglycemia. These systems, approved
by the FDA, provide a more automated approach to diabetes management.

Control algorithms within artificial pancreas systems are crucial for determining insulin doses
based on real-time glucose data [R135, R136, R137, R138]. These algorithms continuously an-
alyze glucose sensor readings and utilize mathematical models to predict future glucose levels.
The main objective is to keep blood sugar within a target range while minimizing the risks
of hypoglycemia (low blood sugar) and hyperglycemia (high blood sugar). Over the past two
decades of artificial pancreas (AP) development, a variety of control algorithms have been cre-
ated and studied, including proportional-integral-derivative (PID) controllers, model predictive
controllers (MPC), and fuzzy logic controllers. Each algorithm has its advantages and lim-
itations, and researchers are continuously working to refine and optimize them for improved
performance and safety [R139, R140, R141, R142, R143, R144].

The selection of a control algorithm depends on factors such as an individual’s insulin sen-
sitivity, meal intake, physical activity, and overnight glucose patterns. Additionally, advance-
ments in machine learning and artificial intelligence have led to the creation of more adaptive
and personalized algorithms that can adjust insulin dosing based on individual variability and
changing circumstances [R145, R146]. Current blood glucose management methods for type
1 diabetes involve regular self-monitoring of blood glucose levels and insulin administration.
These methods, however, demand considerable commitment from patients. Consequently, there
is growing interest in applying machine learning techniques, especially RL, to improve diabetes
management [R147, R148, R149]. RL is an advanced machine learning method in which an
agent-like algorithm (often a neural network-based model) learns the optimal policy for taking
actions by receiving feedback in the form of rewards or penalties. Its effectiveness has been
demonstrated in various fields, including game playing [R150], robotics [R151], and healthcare
[R152]. In blood glucose management, RL can be used to develop a personalized strategy for
adjusting insulin dosages by analyzing current and past blood glucose levels, insulin doses, and
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other relevant factors [R153].

3.5.3 Virtual Patient model
The foundation for the controlled environment was established using the Identifiable Virtual
Patient model [R154].

These parameter sets can be examined in the Table 3.12.

BW GEZI EGP CI SI tau1 tau2 p2 VG
89 3.87E-08 1.4 2010 4.93E-04 49 47 1.06E-02 253
89 2.20E-03 1.33 2010 8.11E-04 49 47 1.06E-02 253
63 4.38E-03 0.6 1281 9.64E-05 41 10 1.16E-02 261
65 3.50E-03 0.856 909 1.70E-04 71 70 2.33E-02 199
65 1.64E-03 1.07 909 4.63E-04 71 70 2.33E-02 199
116 7.58E-08 2.59 1813 3.77E-04 91 70 8.14E-03 337
116 1.64E-05 0.98 1813 3.77E-04 91 70 8.14E-03 337
64 4.33E-03 0.6 1535 2.05E-04 46 46 9.63E-03 188
51 1.01E-03 0.603 588 4.12E-04 68 30 9.15E-03 104
77 2.30E-03 1.11 1806 8.16E-04 60 60 1.01E-02 263
65 1.00E-08 1.3 540 3.68E-04 95 37 1.03E-02 137
100 6.39E-03 1.27 875 2.56E-04 131 21 1.03E-02 193
64 1.04E-03 0.611 1309 6.03E-04 53 53 1.02E-02 204
51 3.79E-03 0.603 588 9.48E-04 68 30 9.15E-03 104
65 1.00E-08 0.601 540 5.40E-04 95 37 1.03E-02 137
100 6.39E-03 3.45 875 6.89E-04 131 21 1.03E-02 193
64 1.04E-03 0.611 1309 1.73E-03 53 53 1.02E-02 204

Table 3.12: Patient parameter sets used in the Identifiable Virtual Patient (IVP) model. Rows
with identical values for VG and BW represent data from the same patient. The parameters in-
clude BW (Body Weight), GEZI (Gastric Emptying and Insulin Sensitivity), EGP (Endogenous
Glucose Production), CI (Clearance Index), SI (Sensitivity Index), tau1 (Delay Parameter 1),
tau2 (Delay Parameter 2), p2 (Parameter 2), and VG (Volume of Glucose). In the case where
the parameters (BW) and (VG) are the same, I are talking about the same patient. But with
night and day parameter sets.

In my simulation environment, this model was expanded to include a representation of sen-
sor noise. While the inclusion of GEZI in the model may be subject to debate, it serves as
a commonly employed, straightforward model of glucose-insulin metabolism, and I opted for
its use for illustrative purposes. My methodology involved the integration of a cohort of 10
uniquely characterized patients, supplemented by an additional set of parameters tailored for
nighttime periods. Consequently, a total of 17 distinct virtual patient profiles were generated.
The dynamics of a patient are described by the following equations:
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Ġ(t) = −(GEZI + IEFF(t)) ·G(t) + EGP +RA(t) (3.18)
İEFF(t) = −p2 · IEFF(t) + p2 · SI · IP (t) (3.19)

İP (t) = − 1

τ2
IP (t) +

1

τ2
ISC(t) (3.20)

İSC(t) = − 1

τ1
ISC(t) +

1

τ1CI
u(t) (3.21)

RA(t) =
m∑
i

di
VG · τ2Di

ti · e
− ti

τDi (3.22)

Blood glucose concentration is denoted as G(t), measured in milligrams per deciliter (mg/dL),
while the effectiveness of insulin is represented by IEFF (t), measured in units of inverse time
(min−1). Subcutaneous and plasma insulin concentrations are symbolized as ISC(t) and IP (t) re-
spectively, both expressed in microunits per milliliter (µU/mL). The agent indirectly influences
blood glucose levels through insulin infusion, while disturbances in the form of carbohydrate
intakes di in grams are encapsulated by the parameter RA.

The timing parameters τ1 and τ2 are measured in minutes, while the rate constant p2 is
expressed in units of inverse time (min−1), defining the absorption kinetics of insulin. Insulin
clearance is denoted as CI , measured in milliliters per minute (mL/min), and insulin sensitivity
is represented by SI , expressed in milliliters per microunit per minute (mL/µU/min).

Endogenous glucose production, symbolized as EGP, quantifies liver glucose output and
is measured in milligrams per deciliter per minute (mg/dL/min). Glucose effectiveness at
zero insulin concentration (GEZI) characterizes insulin-independent glucose consumption. VG

represents the apparent glucose distribution volume, expressed in deciliters (dL). The gradual
assimilation of meals into the system is governed by the time constants τDi .

I enhanced the Identifiable Virtual Patient (IVP) model following the approach outlined
in [R155]. This enhancement involved incorporating a Continuous Glucose Monitoring (CGM)
error model into the IVP, which accounts for various factors including temporal delay [R156],
additive sensor noise, and calibration imprecision. However, to prevent interference with the
training process, I opted to exclude sensor drift from the model.

In the extended model, the temporal delay characteristic of CGM measurements, stemming
from their interstitial measurement site, was integrated by introducing an additional interstitial
glucose compartment denoted as IG. The sensor noise was modeled as a second-order autore-
gressive process with a stochastic white noise term w, distributed as N (0, σ2).

˙IG(t) = − 1

τIG
IG(t) +

1

τIG
G(t), (3.23)

v(t) = α1v(t− Ts) + α2v(t− 2Ts) + w(t), (3.24)
CGM(t) = IG(t) + v(t), (3.25)

3.5.4 Reinforcment Learning
Utilizing a closed-loop control scenario enables adaptation to the requirements of the target sys-
tem through semi-supervised learning methods. In the realm of reinforcement learning, the core
components consist of the agent, responsible for decision-making, and the environment, which
interprets and executes the agent’s actions. Over time, the agent learns to select appropriate
actions from the environment’s action space, aiming to maximize cumulative rewards. The envi-
ronment provides feedback in the form of a new state and a reward for each action taken by the
agent. While the reward aspect is supervised, allowing for precise estimation of state quality,
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the exploration of action sequences remains unsupervised, as the optimal sequence of actions is
unknown [R157].

I employed the actor-critic reinforcement learning architecture, which combines elements of
both policy-based and value-based models [R158]. In reinforcement learning, the agent explores
various actions in different states to identify the optimal action sequence that maximizes the
reward value. Actor-critic models consist of two key components: the actor and the critic. The
actor learns the policy by receiving feedback from the critic, while the critic learns the value
function, which assesses the quality of each state. Actor-critic models typically feature two
neural networks: one for outputting the value function and another for determining the policy.
The value network estimates the goodness value of a state, derived from the value function,
while the policy network outputs a vector or scalar with probabilistic values representing the
available actions [R158].

Proximal Policy Optimization (PPO) is a policy gradient method utilized in reinforcement
learning [R159]. Recent years have seen significant research into policy gradient methods, with
algorithms like TRPO, GAE, and A2C/A3C demonstrating superior performance compared
to traditional methods such as Q-learning. Among these, the Proximal Policy Optimization
Algorithm, developed by OpenAI, stands out as a core algorithm in the policy gradient/actor-
critic domain.

In my study, I utilized the PPO model class from the Stable Baselines3 library [R160]. This
library offers ease of use across various reinforcement learning algorithms and facilitates the
creation of custom environments. All environments are constructed using the OpenAI Gym
[R161], ensuring straightforward setup of reinforcement learning environments. Moreover, the
library package undergoes regular maintenance, with the swift introduction of new reinforcement
learning algorithms. I am particularly interested in testing the TQC algorithm [R162] in the
future, which is already available in the Stable Baselines3 contribution repository.

3.5.5 Closed Loop
In my approach, the primary focus lies on the Identifiable Virtual Patient (IVP) model, while
the RL agent assumes the role of the closed-loop controller, responsible for administering insulin
dosages. The IVP model dynamically predicts blood glucose (BG) levels based on various
inputs, including carbohydrates and insulin. The RL agent calculates the insulin dosage for the
upcoming time step (5 minutes) by considering current BG levels and the historical record of
administered insulin. This results in a closed-loop system, as illustrated in Figure 3.29, and
further elaborated through equations (3.26) to (3.29).
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Figure 3.29: The top figure represents the block diagram of the reinforcement learning based
closed-loop algorithm. The bottom figure details the control architecture of the system.

3.5.6 Meal generator
I implemented the meal consumption generation scheme outlined in [R163], which incorporates
six meals throughout the day. These meals vary in terms of occurrence, carbohydrate content,
and timing, based on predefined probabilities.

• Assume that the patient’s body weight is known

• Probability of meal appearance: p = [0.95, 0.3, 0.95, 0.3, 0.95, 0.3]

• Meal time upper boundary: up = [9, 10, 14, 16, 20, 23] · 60

• Meal time lower boundary: lo = [5, 9, 10, 14, 16, 20] · 60

• Meal time: µt = [7, 9.5, 12, 15, 18, 21.5] · 60

• Meal time variance: σt = [60, 30, 60, 30, 60, 30]

• Amount of meal: µa = [0.7, 0.15, 1.1, 0.15, 1.25, 0.15] ·BW

• Amount of meal variance : σa = µa · 0.15
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• Meal set: E = ∅

• for k ∈ [1, 2, 3, 4, 5, 6] do

• Generate a random value for ptmp between 0–100

• if ptmp ≤ p[k] then

• Calculate the meal amount for k-th timestamp: ek = Round(max(0, Normal(µa[k], σa[k])))

• Calculate the meal time for k-th timestamp: ζk = Round(TruncNorm(µt[k], σt[k], lb[k], op[k]))

• Make a union with the meal set: E ∪ {ek, ζk}

• return E

This method enables the generation of patient-specific carbohydrate intake for a day. Ten-
day-long scenarios were created by concatenating ten individually generated day-long samples.
The method incorporates randomization, allowing for variation in the number of meals per day
(ranging from 2 to 6) as well as in the carbohydrate content and meal timing. Larger meals are
constrained to have their upper and lower limits set two hours apart, while other meals may
vary by up to half an hour.

Every 5 minutes, the agent determines the insulin dosage to administer to the user. Each
simulation begins at 0:00 and spans 24 hours. At each time step, my neural network model
receives a feature vector computed from the preceding 12 steps. Training the model involved 5
million episodes, comprising 5 million cases generated by the algorithm.

3.5.7 First results
In my first study [C3] the feature vector was derived from blood glucose measurements and
insulin administrations spanning a one-hour period. Given the 5-minute measurement interval
of the CGM sensor, a total of 12 blood glucose samples were utilized.

During feature extraction, 11 features were generated from the blood glucose data, alongside
11 features from the insulin data. Specifically, the blood glucose data yielded 11 point deviations
from the 12 measured points. Similarly, for the insulin data, 11 features were derived using a
pointwise variation approach. Notably, adjustments were made for the insulin data to account
for the sensor’s 5% measurement increment [C3].

Furthermore, the feature extraction process included computing differences between end-
points for the insulin characteristics.

∆G(I) = G(I + 1)−G(I), I ∈ [0, 10] (3.26)
∆G(I)

∆t
= (G(I + 1)−G(I))/5, I ∈ [0, 10] (3.27)

∆u(I) = u(I + 1)− u(I), I ∈ [0, 10] (3.28)

∆u = u(11)− u(0) (3.29)

In the initial investigation, I experimented with various types of agents, encompassing both
discrete and continuous action space agents. The algorithms subjected to testing comprised:

• PPO [R164]

• SAC [R165]

• DDPG [R166]
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• DQN [R167]

• A2C [R168]

• TD3 [R169]

I established a closed-loop system, incorporating a virtual patient as the environment. My
system featured a neural network-based agent as the controller, responsible for administering
insulin into the environment, thereby influencing it. The environment, in response, provided a
blood glucose value based on the injected insulin, predetermined patient parameters, and speci-
fied carbohydrate intake. The action space ranged from 0 to 18 U/hr for insulin administration.

I investigated different types of reward functions to optimize the controller and found that
a two-step reward function was the most effective for my specific problem. Initially, I computed
a temporal reward, followed by averaging several temporal rewards in the second step. Eval-
uation of the tests primarily relied on Time in Range and CVGA metrics. Given the superior
performance of the PPO algorithm in the initial tests, I proceeded to employ it for the one-day
test analysis. For the day test, I established three distinct test cases.

First test case

In my initial trial, I conducted a one-day simulation for educational purposes, followed by a one-
day assessment phase. Among the patients, 5 exhibited significant fluctuations in glucose levels,
prompting me to halt the testing protocol. For the remaining patients, there were no noteworthy
deviations observed in their glycemia patterns. The average Time in Range (TIR) recorded was
77.55%, a satisfactory outcome considering the broader patient cohort. The distribution of blood
glucose (BG) levels across all patients also correlates well with the TIR metric.

Assessing the results using the Coefficient of Variation of the Glucose Area (CVGA) metric,
I identified zone B control actions for a total of 7 patients. Notably, patient number 7 demon-
strated exceptional performance, maintaining a flawless 100% adherence within the target range.

Second test case

For the subsequent evaluation, I initiated a one-day training phase for the agent, followed by
an extensive 10-day simulation period. The aim was to assess the agent’s ability to generalize
from a single day of training to an extended simulation. Throughout this trial, I encountered 4
instances where extreme conditions necessitated the termination of testing. Unlike the previous
trial, I observed noticeable deviations in the agent’s performance outside the middle range,
resulting in elevated blood glucose (BG) levels.

Interestingly, only two instances of zone B control were apparent in this trial. Regarding
the Time in Range (TIR) metrics, the average stood at 72%. Particularly noteworthy was the
performance of patient 10, exhibiting exceptional results. An intriguing scenario unfolded with
patient 13, where the agent successfully steered the patient away from extreme conditions while
leaning towards higher BG levels within the non-extreme zone.

The 180-250 BG range was occupied, on average, 17% of the time, comfortably within the
specified acceptable threshold (25%). This consistency with the TIR metric validates its relia-
bility. However, for patient 13, the allowed percentage was exceeded, prompting considerations
regarding the agent’s general applicability.

Third test case

For my third evaluation, I reversed the conditions of the second test: the agent underwent a
ten-day training phase, followed by a condensed one-day testing period. The objective was to
determine whether the agent’s ability to generalize from extensive training could be applied to
shorter testing scenarios.

87



3. Diabetes-related research 3.5. Insulin control with reinforcement-based neural network

Unfortunately, the outcomes of this test do not support the agent’s proficiency in formulating
effective control strategies for individual patients to avoid extreme zones: the Time in Range
(TIR) metrics fail to meet the predefined criteria, as blood glucose (BG) levels displayed shifts
towards the higher range.

These findings imply that consistent results might be achievable if I maintain the same
simulation duration for both training and testing phases. Additionally, it’s worth noting that
no CGM noise was applied to the patients in this particular test.

3.5.8 Second results
In the second study [C2], my aim was to explore the efficacy of various reward functions, par-
ticularly considering the absence of continuous functions in previously published tests. The
mathematical model underwent modification for this experiment, with the inclusion of CGM
noise. Both training and testing simulations were conducted over a one-day period.

During training, carbohydrate inputs were randomly generated, while exercise-induced car-
bohydrate intake followed the guidelines outlined in the referenced meal section. Thirteen
distinct test day carbohydrate intake patterns were defined: 10 test days featured randomly
generated carbohydrate intake, while 3 test days had predefined carbohydrate intake scenarios.
These included no carbohydrate intake, a consistent 12-gram intake per hour, and an additional
5 grams of carbohydrate introduced at the 12th hour, reaching the maximum carbohydrate
intake capacity of the generator.

For control, I utilized the PPO algorithm, chosen for its superior performance in my ini-
tial tests. The architectural design was relatively straightforward, with both actor and critic
networks structured as outgoing networks. They shared an identical structure, comprising two
hidden layers with a ReLU activation function in each layer. Additionally, the observation space
was altered, consisting of only two elements representing blood glucose and insulin concentra-
tions at the preceding time point.

I experimented with four distinct reward functions, one of which lacked continuity. All
functions were optimized to center around a glucose level of 120 mg/dl. Additionally, I assessed
each function under two conditions: halting the simulation if glycemia exceeded a predetermined
range, and allowing the simulation to continue indefinitely. I employed the CVGA and Time
In Range metrics to evaluate the out-of-range interval in a consistent manner. Furthermore, I
computed the mean squared error of the simulated blood glucose during the test, considering
both 90 mg/dl and 150 mg/dl thresholds.

Bump function [R170]

score(I) =

{
exp

(
−1

1−((CGM−90)/45−1)2

)
90 < CGM < 180

0 otherwise
(3.30)

Piecewise constant function

score(I) =


−1 CGM < 70

1 70 ≤ CGM ≤ 180

0 180 < CGM

, (3.31)

R =
1

n

n∑
I=1

score(I), (3.32)

where R is the final reward and n is the simulation length.

88



3. Diabetes-related research 3.5. Insulin control with reinforcement-based neural network

Cosine function

score(I) =

{
− cos

(
CGM
45

)
0 < CGM < 300

−1 otherwise
, (3.33)

Mexican hat wavelet [R171]

score(I) =
2

√
3 · π

1
4

·
(
1−

(CGM − 140

140

)2)
· exp

(
−
(
1

2
·
(CGM − 140

140

)2)) (3.34)

Figure 3.30: Investigated reward functions.

3.5.9 Third Results
In my third experiment [C1], I investigated how altering hyperparameters affects performance.
The aim was to identify which hyperparameters significantly impact the control problem. To
this end, I conducted tests varying the number of neurons in the hidden layers between 64 and
512. Additionally, I performed another test where the number of neurons in the hidden layers
was fixed at 64, but I changed the activation functions (sigmoid, ReLU, ELU, and none). The
experimental setup remained consistent with my second experiment, featuring two characteristic
inputs and one output representing the insulin quantity.
ReLU:

f(x) = max(0, x) (3.35)

Sigmoid:

f(x) =
1

1 + e−z
(3.36)

ELU:

f(x) =

{
x x ≥ 0

α(exp(x)− 1) x < 0
(3.37)

The training and testing scenarios remained consistent with those employed in the second
trial. Additionally, I maintained the fixed reward function (piecewise), as originally utilized in

89



3. Diabetes-related research 3.5. Insulin control with reinforcement-based neural network

my investigation, and summarized the outcomes using median values. Surprisingly, altering the
number of neurons did not yield substantial changes in the control capabilities of the neural
network models, despite slightly better performance observed in larger meshes (the 512-neuron
network exhibited the most optimal performance in the trials). Conversely, varying activation
functions led to significantly divergent controller performance, with ELU and sigmoid functions
surpassing others. Notably, the ELU activation achieved a TIR metric exceeding 70%. These
findings suggest that employing deeper meshes and ELU activation functions in the hidden layer
is advisable.

3.5.10 Final neural network
In the [J4] adaptation of the neural network Figure 3.31, I employed the bump function as my
reward function. Consistent with my previous experiments, my input feature vector comprised
two elements: the blood glucose level from the previous time step and the quantity of insulin
administered at the previous time step. To normalize these features to values between 0 and 1,
I divided the blood glucose level by 1000. For insulin, as the action space in the environment
ranged from -1 to 1 (representing values from 0 to 25 U/hr), I adjusted the feature vector design
accordingly. I added one to the current decision and then divided by 2. Consequently, when the
network made a decision, I added 1 to that value, multiplied it by 25, and finally divided by 2 to
obtain the actual insulin value to be administered to the patient. Building on my earlier findings
that models perform better without halting simulation when values exceed limits, I simulated
the entire time period regardless. Given that extended simulation time yielded more accurate
results, I opted for a simulation duration of 10 days based on my test outcomes.

Figure 3.31: A graphical representation of the policy and value networks as depicted by Pytorch.
The image on the left is the policy network, which is larger than the value network. This network
learns the control strategy. On the right is the value network, which gives an estimate of how
good the policy network was.

My current network retained the distinction between value and policy, a structure consistent
with my previous tests. To avoid shallow networks and incorporate larger networks, I introduced
blocks comprising Linear and ELU layers in my current experiment. The inclusion of the ELU
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layer was motivated by the favorable outcomes observed in the third test, while the incorporation
of the Linear layer was driven by my continuous output requirement. The policy and value
networks featured a variable number of these blocks: the value network comprised 5 blocks,
while the policy network contained 7 blocks. I opted for a smaller value network to facilitate
quicker learning of the critical aspects of my model, whereas the policy network was designed
deeper to provide the actor with greater flexibility in learning the optimal strategy. Each block
typically consisted of 2048 neurons, except for the initial and terminal blocks. The initial block
in both networks had 2 features in its input layer, while the terminal block had an output of
64 values. Both networks concluded with a terminal block composed of an Identity layer and a
Linear layer. The output of each network was a single value: for the value network, this value
represented a prediction of the quality of the given step, while for the policy network, the value,
ranging between -1 and 1, indicated the quantity of insulin to be administered. The network
architecture is illustrated in Figure 3.32.

Figure 3.32: The top figure represents the architecture of the Policy Network, which consists
of multiple Exponential Linear Unit (ELU) blocks followed by an Identity block and a final
Linear activation layer. The middle figure shows the architecture of the Value Network, which
is similarly structured with a sequence of ELU blocks, an Identity block, and a Linear activation
layer at the output. The bottom figure illustrates the internal structure of the ELU and Identity
blocks, where the ELU block consists of a linear layer followed by an ELU activation, and the
Identity block replaces the ELU with an identity activation function after the linear layer.

In my third trial [C1], I explored the impact of adjusting hyperparameters on performance.
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My objective was to identify which hyperparameters significantly influence the control problem.
To achieve this, I conducted experiments altering the number of neurons in the hidden layers
within the range of 64 to 512. Additionally, I conducted another trial with a fixed number of
neurons (64) in the hidden layers but varied the activation functions (sigmoid, ReLU, ELU, and
none). The experimental setup remained consistent with my second experiment, involving two
characteristic inputs and one output representing the insulin quantity.

The training and testing scenarios remained consistent with those employed in the second
trial. Additionally, I maintained the fixed reward function (piecewise), as originally utilized in
my investigation, and summarized the outcomes using median values. Surprisingly, altering the
number of neurons did not yield substantial changes in the control capabilities of the neural
network models, despite slightly better performance observed in larger meshes (the 512-neuron
network exhibited the most optimal performance in the trials). Conversely, varying activation
functions led to significantly divergent controller performance, with ELU and sigmoid functions
surpassing others. Notably, the ELU activation achieved a TIR metric exceeding 70%. These
findings suggest that employing deeper meshes and ELU activation functions in the hidden layer
is advisable.

In the adaptation of the neural network, I employed the bump function as my reward func-
tion. Consistent with my previous experiments, my input feature vector comprised two elements:
the blood glucose level from the previous time step and the quantity of insulin administered at
the previous time step. To normalize these features to values between 0 and 1, I divided the
blood glucose level by 1000. For insulin, as the action space in the environment ranged from -1
to 1 (representing values from 0 to 25 U/hr), I adjusted the feature vector design accordingly.
I added one to the current decision and then divided by 2. Consequently, when the network
made a decision, I added 1 to that value, multiplied it by 25, and finally divided by 2 to ob-
tain the actual insulin value to be administered to the patient. Building on my earlier findings
that models perform better without halting simulation when values exceed limits, I simulated
the entire time period regardless. Given that extended simulation time yielded more accurate
results, I opted for a simulation duration of 10 days based on my test outcomes.

My current network Fig. 3.31 retained the distinction between value and policy, a structure
consistent with my previous tests. To avoid shallow networks and incorporate larger networks,
I introduced blocks comprising Linear and ELU layers in my current experiment. The inclusion
of the ELU layer was motivated by the favorable outcomes observed in the third test, while the
incorporation of the Linear layer was driven by my continuous output requirement. The policy
and value networks featured a variable number of these blocks: the value network comprised
5 blocks, while the policy network contained 7 blocks. I opted for a smaller value network to
facilitate quicker learning of the critical aspects of my model, whereas the policy network was
designed deeper to provide the actor with greater flexibility in learning the optimal strategy.
Each block typically consisted of 2048 neurons, except for the initial and terminal blocks. The
initial block in both networks had 2 features in its input layer, while the terminal block had an
output of 64 values. Both networks concluded with a terminal block composed of an Identity
layer and a Linear layer. The output of each network was a single value: for the value network,
this value represented a prediction of the quality of the given step, while for the policy network,
the value, ranging between -1 and 1, indicated the quantity of insulin to be administered. The
network architecture is illustrated in Figure 3.32.

3.5.11 Training Phase
During the iterative training phase, a sequence of 10 consecutive-day scenarios served as the
test set to evaluate the evolving performance of the neural network. These scenarios included
randomized meal patterns interspersed between one-day periods, providing diverse patterns
for the networks to learn from. Multiple networks were trained for each subject, maintaining
constant patient parameters but varying the timing and carbohydrate content of meals. Training
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was completed over 5 million iterative steps and conducted on the ELKH research cloud.

3.5.12 Testing Phase
The evaluation phase involved 13 distinct meal schemes, encompassing both random and in-
tentionally designed scenarios to subject the classification algorithms to a broad spectrum of
challenges. The inclusion of human-designed scenarios aimed to assess potential overfitting.
Virtual patient parameters remained constant throughout both the training and testing phases.

Among the 13 test scenarios, 10 replicated the methodology utilized during the training
phase, while three were manually crafted to represent specific situations: the first scenario
featured no meal intake (0 g); the second scenario involved administering 12 g of carbohydrates
every hour; and in the third scenario, a single substantial meal with maximum carbohydrate
content was administered, with an additional 5 grams of carbohydrates added.

3.5.13 Result and Discussion
Table 3.13 summarizes the aggregated results across different glucose ranges. In the 70-180
mg/dL range, the median value is notably high at 86%, exceeding previous results. The method
achieved better than 44% Time in Range (TIR) in 75% of the tests, though the lowest recorded
value in this range was 18%, indicating that some patients did not achieve optimal glucose
control with this method. Notably, outliers in the results were patients with low body weight.
Overall, the average TIR exceeded 70%, representing an improvement over my earlier studies.

In the 180-250 mg/dL range, over 75% of patients maintained glucose levels below 180 mg/dL
during the evaluation period. Similar patterns are evident in the >250 mg/dL range, suggesting
that elevated blood glucose levels occurred only in isolated cases, all within the permissible 5%
limit.

The RMSE150 variable represents the root mean squared error from a glucose concentration
of 150 mg/dL. Half of the data deviated by less than 37 mg/dL from this value, and for the
upper quartile, a deviation of 65 mg/dL is a reasonable outcome. In fact, a quarter of the test
values ranged between 85 mg/dL and 215 mg/dL.

Table 3.13: Aggregated table for all investigated simulation days, including mean, maximum,
minimum, standard deviation, and quarterlies values in terms of TIR zones.

<50 50–70 70–180 180–250 >250 RMSE90 RMSE150

mean 11.925 14.013 73.261 0.512 0.289 94.777 69.905
std 21.647 17.288 28.350 1.482 1.466 79.771 67.590
min 0.000 0.000 18.056 0.000 0.000 20.016 17.106
25% 0.000 0.000 44.792 0.000 0.000 43.382 31.384
50% 0.000 8.333 86.806 0.000 0.000 61.408 37.472
75% 11.458 22.222 100.000 0.000 0.000 109.674 65.366
max 73.264 73.264 100.000 9.375 11.458 360.283 309.865

Figure 3.33 displays the median and standard deviation for the 221 days simulated during
the test. The median blood glucose values were calculated for this simulation and are presented
on two subbars: one showing only the median value, and the other showing the median alongside
values between the 10th and 90th percentiles. Carbohydrate intake is also plotted. The median
value falls within the desired range, indicating satisfactory performance. Notably, the 10th
percentile values also remain within this range, which is encouraging. However, some patients,
particularly those with lower body weight, had simulated blood glucose values reaching as high
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as 400 mg/dL, highlighting the need to improve the system’s robustness an area I will focus on
in future studies.

Figure 3.33: Blood glucose median curve with standard deviations and meal intakes for all the
investigated days.

Figure 3.34 is similar to Figure 3.33, but it plots the mean values of the data simulated during
the test. Instead of percentile differences, the standard deviation of ±2 is shown. It is worth
noting that the mean values remained largely within the target range for most of the simulation
but began to drift out of range toward the end. There is a noticeable steady increase in the
blood glucose curve, which can be attributed to instances where the neural network model failed
to administer insulin, leading to a continuous rise in blood glucose. Since the mean is sensitive
to such deviations, the overall simulation tended toward higher blood glucose levels, which is
further reflected in the large variance observed. This highlights the insufficient robustness of the
RL controller, particularly for patients with lower body weights. However, the small difference
between the median and mean blood glucose values is a promising result.

Figure 3.34: Mean blood glucose curve with standard deviation and meal intakes for all the
investigated days.
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Figure 3.35: CVGA diagram for all tested days

Figure 3.35 illustrates the Control Variability Grid Analysis. A significant proportion of the
samples fall within the A and B zones. Compared to my previous study, where Zone A comprised
approximately 1% of the samples, the current method achieves a substantial improvement with
22% of the samples falling within Zone A. Similarly, there is an increase in the occurrences of
Zone B, rising from around 30% to almost 50%. Zone C occurrences have remained consistent
with previous levels. Samples in Zone Upper D have decreased significantly, approximately
halving, while Zone E samples have been minimized.

Noteworthy spikes are observed in both the high and low blood sugar level sections. Inter-
estingly, there is a higher concentration of test cases in the higher blood glucose half at each
extreme, indicating a tendency towards hyperglycemia. Conversely, there are fewer points in the
low blood glucose section, suggesting that the model effectively avoids hypoglycemia. However,
it is evident that some patients still experience hyperglycemia.

After presenting my results, I now delve deeper into the outcomes. Starting with Table 3.13,
I see the aggregated results for all simulated days. For glucose levels below 50 mg/dL, half of
the simulated days had a value of 0, indicating that in 50% of cases, there were no significant
hypoglycemic events. However, for the 75th percentile, the value is 11, meaning that 25% of
the simulated days experienced significant hypoglycemia. Specifically, there were 55 days when
blood glucose levels dropped below 50 mg/dL during the simulation. Even more concerning,
the maximum value in this category reached 73, highlighting that there are patients for whom
my model is not functioning effectively. These cases mainly involved patients with lower body
weight, where the model administered a large dose of insulin, leading to dangerously low blood
glucose levels and an inability to return to a healthy range. To avoid this, insulin should not be
administered when glucose levels are already low. In the 50-70 mg/dL range, at least half of the
simulations show values below 9, while a quarter of the simulated days fall outside this range
entirely. The value in the 75th percentile is double that of the median, indicating that many
patients had blood glucose levels within this range during the simulation. According to Time
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in Range (TIR) metrics, time spent in this zone should not exceed 5 minutes, though values
between 50-70 mg/dL are not considered a serious problem if they don’t drop below 50 mg/dL.
The most important column is the TIR metric, where it is promising that more than 50% of
simulated days achieved TIR values greater than 70% in the 70-180 mg/dL range. In fact, the
75th percentile shows that 25% of the days stayed 100% within this range. The average TIR value
exceeded 70%, a result not observed in previous tests. However, 25% of the simulated days had
TIR values under 40%. The next two columns, which represent higher blood glucose levels, show
minimal values compared to previous studies, indicating that the model generally avoided high
glucose levels by not overdosing insulin. However, on certain days, particularly with lightweight
patients, the model reacted too late to sudden blood sugar spikes following carbohydrate intake.
Figures 3.33 and 3.34 present simulation results for all days, including the mean and median
curves. For the mean, the standard deviation of ±2 is plotted, while for the median, the 10th
to 90th percentiles are shown. We also examined carbohydrate intake, which is clearly reflected
in the graphs by the three large peaks representing main meals, along with visible shifts in
timing, suggesting that random days were used for testing. For the median curve, the model
was able to maintain glucose levels within the TIR zone throughout the day, although at the
start, the models allowed blood glucose to rise before stabilizing around 150 mg/dL. Observing
the percentiles, it is clear that even the 10th percentile remained within the TIR range, though
the 90th percentile reached up to 400 mg/dL, which is excessively high. This indicates that
while the model handles hypoglycemia well, it still struggles with hyperglycemia. The average
curve, unlike the median, drifted out of the TIR zone by the end of the day, showing a steadily
increasing slope, supporting my earlier observation that the simulation time for training was
too long. However, the average did not exceed 200 mg/dL. The scatter plot reveals that the
maximum value can reach as high as 500 mg/dL, suggesting that my model is ineffective for
certain patient cases, particularly those with lower body weight. In these cases, the model either
reacts too late or not at all, and administering insulin too early causes significant fluctuations in
glucose levels. The CVGA plot in Figure 3.35 shows all test days, and in Zones A and B where
control is considered most successful I achieved 72%, meaning nearly three quarters of the days
demonstrated good control. However, many days shifted into the upper range for poor control,
as evidenced by more data points in Upper C and Upper D than in Lower C and Lower D. In
Zone E, which indicates complete loss of control, I only observed 1% of the days, meaning just
one or two days were borderline failures. Overall, my solution worked well for most days, but
when it failed, it usually resulted in high blood glucose levels rather than low ones.

3.5.14 Conclusion
When employing reinforcement learning for glycemic control and developing a new agent model,
I successfully increased the median Time in Range (TIR) metric value to around 80%. Moreover,
there was a notable increase in the number of samples falling within Zone A and Zone B in the
CVGA analysis. Compared to previous studies, this novel approach generally reduces glycemic
curves, resulting in significantly improved TIR values, albeit with a slight increase in Time Below
Range (TBR) values.

Instances of hypoglycemia were primarily observed in patients weighing less than 65 kilo-
grams, indicating a need to develop effective and safe control methods tailored to individuals
with lower body weight. Addressing simulation time is also crucial and should be minimized in
future studies. Additionally, attention should be directed towards refining the policy algorithm,
as well as addressing instances where the Proximal Policy Optimization (PPO) model may be-
come trapped in local minima during testing. Furthermore, exploring learning with a larger
feature vector may resolve issues related to administering excessive doses of insulin at once.

In future endeavors, I propose conducting two training phases. The first phase would involve
fixed time carbohydrate intakes, allowing the agent to learn how to manage carbohydrate intake
of varying sizes. Subsequently, in the second phase, the timing of carbohydrate intake would
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be varied. This sequential approach aims to streamline the optimization process for the agent,
focusing on one aspect at a time rather than multiple variables concurrently.

3.6 Thesis Summary – Diabetes Research
This chapter presents my research contributions in the context of diabetes management, focusing
on three interconnected areas: physical activity detection, gesture (meal) detection, and insulin
regulation using artificial intelligence techniques. Although structured as a single thematic
unit, the research contains three distinct methodological directions. Each part reflects novel
approaches and experimental results that advance current practices in diabetes technology.

Physical Activity Detection in Diabetes Patients
The first and most extensively developed topic addresses the detection of physical activity in
diabetes patients using noninvasive signals. I investigated whether physical activity can be
identified using only heart rate and blood glucose data—without requiring dedicated motion
sensors.

As a novel approach, I showed in [J1] that even traditional machine learning models (e.g.,
decision trees, SVM) could detect physical activity with acceptable accuracy, demonstrating the
feasibility of using physiological signals as proxies for movement. Later, I significantly improved
upon these results by applying recurrent neural networks (RNNs), achieving over 90% accuracy
as detailed in [J2]. These results confirmed that temporal modeling of physiological signals is
highly effective for activity recognition.

Another key contribution was my comparison between simulated and real world datasets
[C5], where I demonstrated that simulator based training does not mask realistic patterns and
is valid for early stage model development. This was an important validation for the use of
synthetic data in medical applications, where patient level data is often scarce or sensitive.

Gesture Detection from Wrist-Worn Sensors
The second topic focused on gesture detection specifically, the recognition of meal related move-
ments from wrist mounted inertial sensors. My initial work involved developing a simple ma-
chine learning model trained on accelerometer data collected via wearable devices. This model
achieved an accuracy of around 90% [C4], indicating the potential for AI-driven meal detection
in real-world scenarios.

The novelty in this part came with scaling the problem to a much larger, publicly available
dataset comprising data from more than 300 individuals. I applied recurrent neural networks to
this dataset and achieved a classification accuracy of approximately 98% [J3]. A key innovation
was the personalized model structure: each patient’s data was used to train a dedicated model,
making the detection highly patient specific. I demonstrated that even one day of data was
sufficient to train a model with high accuracy, although performance improves further with
additional training data. These results suggest that personalized gesture recognition is not only
feasible but scalable across diverse patient populations.

Insulin Regulation with Reinforcement Learning
The third part of my research focused on the use of reinforcement learning (RL) to optimize
insulin delivery in a personalized, autonomous way. The goal was to replace fixed medical
protocols with adaptive, AI-driven control strategies.

In [C3], I tested various RL algorithms and found that the Proximal Policy Optimization
(PPO) algorithm consistently produced the most stable and accurate insulin regulation results.
A key finding was that model performance degrades when evaluated over time windows longer
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than the training period highlighting the importance of training duration in medical control
applications.

I then introduced a novel reward shaping strategy in [C2], where I compared different re-
ward functions. I showed that the ”bump” reward function outperformed all other alternatives
in terms of blood glucose control metrics, including Time-in-Range (TIR) and Mean Absolute
Error (MAE). The ”cosine” reward also showed potential, but was consistently less effective. An-
other novelty was demonstrating that uninterrupted training simulating full daily cycles without
resetting the environment yields superior learning outcomes.

In [C1], I evaluated the sensitivity of PPO models to various hyperparameters. Notably, I
showed that the choice of activation function significantly impacts performance: using the ELU
activation function was critical for achieving TIR values above 70%. In contrast, the number of
neurons had a minimal effect, while deeper networks offered slight improvements.

Finally, in [J4], I introduced a novel dual-network architecture where the policy and value
networks were structurally distinct for the first time. I also extended the training setup by
increasing both the number of simulated episodes and the number of steps per episode. These
innovations led to the best performance achieved in this line of research. The patient specific
models developed in this work achieved high TIR scores and showed generalizability to individ-
uals over 70 kg in body weight. However, the model’s performance declined for lighter patients,
indicating the need for tailored training based on patient characteristics. Additionally, the ex-
periments confirmed that one day of training is insufficient and that longer simulation periods
significantly enhance learning stability.
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Thesis group II: Researches focused on the advanced processing
techniques applied to MRI imaging data

Thesis II.1
I developed an artificial intelligence-based solution for the pixel-level segmentation of infant
brain tissues from MRI images. My solution can greatly help the medical staff in the detection
of abnormal development of the brain.

Thesis II.1.1
I have shown that it is not mandatory to follow the traditional U-net architecture. My experi-
ments revealed that decreasing the filter numbers in consecutive encoding blocks and increasing
them in consecutive decoding blocks can also provide fine segmentation.

Thesis II.1.2
I have shown that using non-traditional cost functions in training can be beneficial. Using
a Dice similarity score-based cost function gives much better results than using a traditional
categorical cross-entropy function.

Thesis II.1.3
I have shown that it is worthwhile to deploy (2+1)D convolution, frequently used in video pro-
cessing, in the segmentation problem. Consecutive slices of a volumetric MRI record correlate
as much as consecutive frames of a video.

Thesis II.2
I have developed solutions that classify brain MRI tumor images more accurately than state-
of-the-art models. In addition, I have developed a solution that can classify and segment the
tumor simultaneously.

Thesis II.2.1
I have shown that reducing image size to a certain extent improves the classification accuracy
of brain tumor MRI images. Furthermore, I have shown that a better training strategy is
to save the model continuously when the accuracy on the validation dataset increases during
training. I also proved that a large network size is not needed for all problems. In particular,
if the problem is specific, smaller architectures may solve the problem better.

Thesis II.2.2
I proved the theory that if you train a network on two problems simultaneously, you can get
better results than if you train on only one problem at a time. In addition, I have created a
network model that can segment and classify accurately at the same time, when all data is
available.

Publications relevant to the theses: [C7, C8, J5, J6, J7].
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Medical imaging plays a central role in modern healthcare, enabling clinicians to non-
invasively examine internal structures of the human body. Among the various imaging modali-
ties, magnetic resonance imaging (MRI) is one of the most versatile and information-rich tech-
nologies, offering exceptional spatial resolution, soft tissue contrast, and flexibility in visualizing
anatomical and functional aspects of the brain and other organs.

This chapter presents the results of my research in the field of medical image processing, with
a focus on applying advanced deep learning models to MRI data. The goal of this work is to
improve diagnostic accuracy and facilitate the development of intelligent systems that support
clinical decision-making.

4.1 Chapter Overview
The chapter is divided into two main research tracks:

• Infant brain tissue segmentation: Accurate tissue segmentation is essential for early
diagnosis and developmental tracking in neonates. I developed multiple U-net-based ar-
chitectures, ranging from 2D and 3D models to a novel spatiotemporal convolutional net-
work. These networks were trained and evaluated on real clinical datasets to segment
cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) with high preci-
sion.

• Brain tumor classification: In this section, I propose an end-to-end system for iden-
tifying three types of brain tumors—glioma, meningioma, and pituitary—based on T1-
weighted MRI scans. A two-stage L-net architecture was introduced, combining a segmen-
tation module based on U-net with a CNN classifier. This modular approach enhances the
system’s interpretability and robustness while achieving state-of-the-art performance.

4.2 Novel Contributions
The key novelties and contributions of this chapter include:

• Architectural innovations: I introduce a range of custom U-net architectures tailored
for different use-cases. In particular, the spatiotemporal U-net combines 2D spatial and
1D temporal convolutions to exploit the sequential nature of multi-slice MRI volumes—a
design rarely used in infant brain segmentation.

• L-net architecture: The L-net framework is a novel dual-component architecture where
segmentation and classification are handled sequentially. The U-net segmentor localizes
tumor regions, and the CNN classifier operates directly on the segmented areas, improving
classification accuracy and interpretability.

• Comprehensive evaluation: All models were evaluated on publicly available datasets
and assessed using accuracy, AUC, and F1-score. The segmentation results achieved com-
petitive or superior performance compared to existing benchmarks, and the tumor classi-
fication models achieved high precision with minimal false positives.

• Clinical relevance: The methods proposed are tailored for integration into real-world
diagnostic workflows. Both the segmentation and classification pipelines are optimized for
automation and scalability, making them applicable in hospital environments with limited
expert resources.
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Overall, this chapter highlights how deep learning can be harnessed to improve diagnostic
imaging and pave the way for intelligent, data-driven radiology systems. The research pre-
sented here contributes not only novel technical solutions but also emphasizes the importance
of practical deployment in clinical contexts.

4.3 Infant brain tissue segmentation

4.3.1 Goal
The focus of my research was to segment the MRI recordings of the infant brain, to distinguish
the three main tissue types, namely the wight matter, the gray matter, and the cerebro-spinal
fluid. This task is by no means as simple as for adults. In fact, in the first few months after birth,
white matter looks darker than gray matter in T1-weighted MRI. The white matter gradually
gets a lighter color and approximately at the age of 6 months, these two tissue types apparently
have the dame color and thus are difficult to distinguish. To provide a reliable automated
solution for this segmentation problem is utmost important, as the doctors wish to study the
correlation between the brain’s development in the first year of life with the occurrence of certain
illnesses.

4.3.2 Introduction
Brain tissue segmentation using MRI data has been a subject of extensive research for decades,
as demonstrated by studies such as [R172] and [R173]. However, segmenting infant brain tissues
introduces additional complexity. In the early months after birth, the T1 data channel of MRI
shows a notable difference: gray matter appears lighter than white matter, which facilitates
segmentation. By six months of age, the pixel intensity distributions of these tissue types begin
to converge significantly. This intricate overlap is highlighted in research by [R174] and [R175].

The development of automated segmentation methods has primarily focused on improving
medical workflows through computational efficiency. In the specific case of infant brain tissue
segmentation, computers have a unique ability to identify tissue boundaries that may not be
easily visible to the human eye. As a result, these systems are crucial in supporting precise
decision-making processes.

Research into automated segmentation techniques for infant brain tissue has been extensive
over the past decade. Challenges such as iSeg-2017 and iSeg-2019 [R174, R175] have significantly
intensified these efforts. These challenges have been vital by providing carefully annotated
training datasets and establishing a standardized benchmarking framework, which has driven
advancements in the field.

In the early stages, before the introduction of the iSeg challenges, common methodologies
primarily relied on classical machine learning techniques [R176]. Methods such as k-nearest
neighbors, binary decision trees, and support vector machines [R177, R178] were foundational to
these approaches. Additionally, shape models [R179, R180], as well as unsupervised techniques
like level sets [R181, R182] and various c-means clustering models [R183, R184], were often used.

The pivotal rise and development of convolutional neural networks (CNNs) began a few years
before the iSeg challenges. Thus, it is unsurprising that many solutions for these challenges and
later publications are based on variants of CNNs and deep learning techniques. Notable examples
include works by [R185, R186, R187]. Moreover, architectures such as deep residual networks
[R188] and U-net networks [R189] have become common in infant brain tissue segmentation,
demonstrating the rapid adoption of advanced neural network architectures in the segmentation
process.

In this chapter I introduce a new solution for the complex task of infant brain tissue seg-
mentation. My approach involves adapting a U-net network specifically tailored to meet the

101



4. Processing MRI images 4.3. Infant brain tissue segmentation

unique requirements of this problem. A key aspect of my methodology is the use of the training
dataset comprising ten records, which was carefully curated by the iSeg-2017 challenge.

To improve the effectiveness of my approach, I incorporate a single preprocessing step into
the workflow. This step acts as a normalization mechanism, aligning the histograms within each
data channel of the MRI records. This essential normalization process not only adjusts the pixel
intensities for meaningful comparisons but also prepares the data for subsequent neural network
processing. The output from the neural network is used as the final segmentation result. To
objectively evaluate the quality of the segmentation, this output undergoes detailed statistical
analysis, providing an unbiased and quantifiable assessment of the results.

4.3.3 Dataset and Challenge Context
This study is built on the meticulously curated training records from the iSeg-2017 challenge,
as described by [R174]. These training records are a crucial resource for developing, validating,
and assessing my proposed U-net-based methodologies.

The iSeg-2017 dataset consists of ten distinct records, each providing essential information
for my research. Each record contains a multifaceted dataset featuring T1-weighted and T2-
weighted MRI data acquired from infant subjects. An automated registration method ensures
accurate spatial alignment between these complementary MRI data modalities.

An invaluable part of this dataset is the human expert-crafted ground truth, which annotates
pixels corresponding to three main tissue categories: cerebrospinal fluid (CSF), gray matter
(GM), and white matter (WM). These annotations serve as the reference standard for evaluating
the segmentation performance of my proposed U-net-based methods.

Each volume in the dataset comprises up to 112 transverse cross-sections, with dimensions of
144×192 pixels, capturing the detailed anatomical features of the infant brain tissues. Each pixel
represents a cubic region measuring one millimeter in each dimension, thus providing critical
information about the three-dimensional structure of these tissues.

The challenge’s central issue becomes apparent when considering the overall segmentation
task. As infants reach approximately six months of age, a significant convergence occurs in the
intensity distributions of white matter (WM) and gray matter (GM). This convergence results in
perceptual similarity, making visual differentiation difficult for humans. This ambiguity increases
the complexity of the segmentation task, as the intensity-based distinctions between these two
vital tissue types become unclear and intertwined [R174].

By thoroughly exploring this rich and complex dataset, my study aims to uncover patterns
in infant brain tissue segmentation. I seek to develop innovative methodologies that effectively
address the challenges posed by the overlap between white and gray matter tissues.

4.3.4 Data Preprocessing and Intensity Alignment
In magnetic resonance imaging, intensity inhomogeneity has long been recognized as a potential
source of signal distortion and complexity [R190, R191]. This low-frequency noise can create
irregularities in pixel intensities across the image, complicating subsequent analysis. However,
in my examination of the iSeg-2017 training dataset, careful analysis shows that intensity in-
homogeneity is minimal. Therefore, developing compensation strategies for this phenomenon is
unnecessary for my specific dataset.

Nevertheless, challenges still arise. I encounter occasional gaps and missing data, appearing
as voids in certain pixel positions. Addressing these gaps is crucial, as they can compromise
the integrity of later processing and analysis. To resolve this, I apply data augmentation and
interpolation techniques to ensure continuity of information and maintain the spatial context
within these regions.

Beyond these gaps, the primary focus of my preprocessing effort is on harmonizing the di-
verse intensity scales among the ten MRI records in the iSeg-2017 training dataset. Variations
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Figure 4.1: A whole volumetric MRI record presented in cross-sections: T1 data in top panel,
T2 data in the middle panel, ground truth in the bottom panel.
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Figure 4.2: The U-net network structure deployed for brain tissue segmentation.

in intensity distributions can originate from differences in acquisition protocols, imaging hard-
ware, or scanning environments. To address these discrepancies, I employ a preprocessing step
involving histogram alignment.

For this alignment, I use a method proposed by [R192], which manages intensity scale har-
monization by utilizing key percentiles in the intensity distribution. Specifically, I use the 25th,
50th, and 75th percentiles as key markers within the intensity histograms. By aligning these
points across the ten MRI records, I create a consistent intensity framework that overcomes the
differences caused by varying data acquisition.

My histogram alignment methodology is further refined by insights from previous research,
notably presented in my earlier study [R193]. This combination of strategic refinement and
established methodology creates a preprocessing approach that not only corrects disparities but
also builds on the collective knowledge gained from prior research.

Through these carefully coordinated preprocessing measures, my study aims not just to cor-
rect data imperfections and ensure uniformity, but also to establish a strong foundation of data
integrity and preprocessing robustness. This foundation, constructed through data augmenta-
tion, interpolation, and histogram alignment, prepares the dataset for subsequent segmentation
analysis using the U-net neural network architecture.

4.3.5 First U-net network
U-net, introduced by Ronneberger et al. [R194], is a neural network designed for biomedical
image segmentation. Today, U-net is widely used for semantic segmentation tasks, primarily
because it can effectively learn from a small number of training samples. The network is named
for its U-shaped architecture, which consists of an encoder and a decoder section, classifying it
as an autoencoder neural network. Typically, both the encoder and decoder sections have four
blocks and they are connected by a bridge.

I modified the U-net architecture to suit my specific problem. The network’s structure is
shown in Fig. 4.2. On the encoder side, the spatial dimensions are progressively halved while
the number of filters (features) doubles with each block. Conversely, on the decoder side, the
process is reversed: spatial dimensions double, and the number of features is halved. The
encoder works as a feature extractor by learning an abstract representation of an image through
multiple sequences of encoder blocks. Each block consists of two convolutional layers with a
kernel size of 3 × 3, followed by a Rectified Linear Unit (ReLU) activation function. After the
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ReLU activation, a max-pooling layer with a 2× 2 kernel reduces the spatial size of the image,
which also decreases the number of trainable parameters and the computational cost. Skip
connections help the decoder produce better semantic features and improve gradient flow during
backpropagation, enhancing the network’s ability to learn representations. The bridge section
connects the encoder and decoder, consisting of two convolutional layers with a 3×3 kernel and
a subsequent ReLU activation function. The decoder takes the abstract representation from the
encoder and bridge to generate the semantic segmentation mask. Each decoder block begins
with a 2 × 2 transpose convolution, followed by the concatenation of the corresponding skip
connection with the output of the transpose layer. After these two layers, a ReLU activation
function is applied. The final decoder layer connects to a convolutional layer with a 1×1 kernel
and uses a sigmoid or SoftMax activation function, depending on the number of classes being
differentiated during segmentation.

Figure 4.3: The structure of an encoder block, using Conv2D layers with kernel size 3×3, ReLU
activation function, and MaxPooling2D kernel size 2× 2.

Figure 4.4: The structure of the network’s bridge part, using Conv2D kernel size 3 × 3, and
ReLU activation function.

Figure 4.5: The structure of a decoder block, using Conv2DTranspose kernel size 2×2, Conv2D
kernel size 3× 3, and ReLU activation function.

My model employs four encoding blocks, as shown in Fig. 4.3. Each encoding block includes
a convolutional layer with a 3× 3 kernel, followed by a batch normalization layer and a dropout
layer. The block continues with another convolutional layer with a 3 × 3 kernel, followed by a
batch normalization layer and a max-pooling layer with a 2 × 2 kernel. The filter sizes for the
four encoder blocks are 256, 128, 64, and 32, respectively.
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The bridge component of my model, illustrated in Fig. 4.4, consists of a convolutional
layer with a 3 × 3 kernel, followed by a batch normalization layer and a dropout layer. This is
followed by another convolutional layer with a 3 × 3 kernel, and the final layer performs batch
normalization. The filter size for the convolutional layers in the bridge is 16.

My network’s decoder consists of four blocks, as depicted in Fig. 4.5. Each block contains
a transpose convolutional layer with a 2 × 2 kernel, a concatenate layer that merges the skip
connection and the transpose layer’s output, a convolutional layer with a 3× 3 kernel, a batch
normalization layer, a dropout layer, another convolutional layer with a 3 × 3 kernel, followed
by a final batch normalization layer to complete the block. The filter sizes for the four decoder
blocks are 32, 64, 128, and 256, respectively. The transpose filter sizes also double from block
to block, ranging from 16 to 128. The output layer is a convolutional layer with a 1× 1 kernel
and a filter size of 4, distinguishing the four classes in segmentation: background, white matter,
gray matter, and cerebrospinal fluid. The network model processes six input images: three
T1-weighted and three T2-weighted slices, incorporating neighboring slices in the segmentation
of the current slice. The first and last slices are duplicated to provide neighboring slices for the
first and last slices.

The network model uses sparse categorical cross-entropy as the loss function, optimized with
the Adam optimizer algorithm [R195]. Training required no more than 100 epochs to achieve
high-quality results.

4.3.6 First result

Table 4.1: Average values of the main accuracy indicators

Accuracy Tissue type
indicator CSF GM WM
Dice score 0.9272 0.8867 0.8704
Sensitivity 0.9219 0.8917 0.8726
Specificity 0.9824 0.8950 0.9436
Precision 0.9351 0.8829 0.8700

All tissues
Accuracy 0.8908

Table 4.1 shows the average accuracy metrics calculated for the ten individual MRI records.
A global accuracy of over 0.89 suggests that nearly 11% of pixels are misclassified. Among
the three tissue types, cerebrospinal fluid (CSF) has the highest overall segmentation accuracy.
White matter (WM) shows the second-highest specificity, while gray matter (GM) has the best
average scores for the other three metrics.

4.3.7 Second U-net nerwork
One significant change since my previous work ([C8]) is the loss function. In this study, I
implemented a custom loss function comprising two additive components. The first component
is the categorical cross-entropy loss, while the second is a Dice score-based loss for the four
classes (the three tissue types and the non-brain region). Each component is weighted equally,
with a weight of 0.5 in the overall loss function. These adjustments were made by fine-tuning
the function in TensorFlow.
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Figure 4.6: The proposed 2D U-net architecture.

6 65

32

16

8

4

8

16

32

65 4

skip connection

skip connection

skip connection

skip connection

Encode

Encode

Encode

Encode Decode

Decode

Decode

Decode

Input 112× 192× 144

56× 96× 72

28× 48× 36

14× 24× 18

7× 12× 9

Output112× 192× 144

56× 96× 72

28× 48× 36

14× 24× 18

Figure 4.7: The proposed 3D U-net architecture.

The 2D U-net model, depicted in Fig. 4.6, consists of four encoder layers, a bridge layer,
and four decoder layers. The input layer is a convolutional layer. When an arbitrary slice
n is presented to the network, it also receives slices n−1 and n + 1 from both the T1 and
T2 data channels, totaling six channels. Additionally, these slices are concatenated into three
examples, representing the red, green, and blue channels of color images, similar to typical CNN
applications in image processing, despite working with single-channel grayscale images. Thus,
the input shape becomes 192 × 144 × 18. The output represents the segmentation for slice n,
encoded in four channels for the four classes, resulting in an output shape of 192× 144× 4. The
encoder blocks have 300, 150, 75, and 37 channels, respectively. The bridge layer contains 18
channels, while the decoder blocks have 37, 75, 150, and 300 channels. The output layer has four
channels and uses a SoftMax activation function. All other U-net layers use the exponential linear
unit (ELU) activation function ([R196]). The structures of the encoder, bridge, and decoder
blocks are shown in Fig. 4.8, with all convolutions operating in 2D. The encoder structure is
as follows: a Conv2D layer with a 3×3 kernel, ELU activation, and same padding, followed by
batch normalization, a dropout layer with a rate of 0.2, another Conv2D layer identical to the
first, another batch normalization layer, and a MaxPooling layer with a pool size of 2× 2. The
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Figure 4.8: The structure of: (a) encoder block; (b) bridge part of network; (c) decoder block.
Convolution works in 2D or 3D, depending on the architecture model.

bridge block has five layers: starting with the same Conv2D layer as the encoder, followed by
batch normalization, a dropout layer, another Conv2D layer, and a final batch normalization
layer. The decoder structure includes seven layers: first, a Conv2DTranspose layer with a 2× 2
kernel and stride of 2 × 2, a concatenate layer for connecting the skip connection, a Conv2D
layer identical to those in other blocks, batch normalization, a dropout layer with a rate of 0.2,
another Conv2D, and the final batch normalization layer in the block.

The 3D U-net architecture has the same number of encoder and decoder blocks as the 2D U-
net, but with different configurations Figure 4.7. The input shape is 112×192×144×6 because
it processes entire T1 and T2 volumes simultaneously, organized into three examples for each,
corresponding to the red, green, and blue channels. The output shape is 112 × 192 × 144 × 4,
representing the four-class segmentation of the entire volume.

The encoder blocks have 65, 32, 16, and 8 channels, respectively, while the bridge contains
4 channels. The decoder blocks are structured with 8, 16, 32, and 65 channels. As illustrated in
Fig. 4.8, all convolutions are performed in 3D. The encoder block consists of six layers: starting
with a Conv3D layer with a 3×3×3 kernel and ELU activation, followed by batch normalization,
a dropout layer with a 0.2 rate, another Conv3D layer identical to the first, additional batch
normalization, and a MaxPooling 3D layer with a pool size of 2× 2× 2. The bridge comprises
five layers: a Conv3D layer identical to the encoder, batch normalization, a dropout layer with a
0.2 rate, another Conv3D layer like the first, and a final batch normalization layer. The decoder
includes seven layers: beginning with a Conv3DTranspose layer with a 2 × 2 × 2 kernel and
stride, a concatenation layer for merging the skip connection, a Conv3D layer like the previous
one, followed by batch normalization, a dropout layer with a 0.2 rate, another Conv3D layer,
and concluding with a batch normalization layer.

4.3.8 Second results
All ten MRI records used in this study underwent preprocessing as outlined in Section 4.3.4.
Subsequently, each record was tested individually using the “leave-one-out” method, where the
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Table 4.2: Average accuracy indicator values obtained from the ten MRI records

2D model 3D model
Accuracy Tissue type Tissue type
indicator CSF GM WM CSF GM WM
Dice score 0.939 0.905 0.890 0.950 0.915 0.898
Sensitivity 0.941 0.909 0.886 0.947 0.921 0.895
Specificity 0.983 0.912 0.955 0.988 0.919 0.958
Precision 0.937 0.902 0.895 0.954 0.910 0.902

All tissues All tissues
Accuracy 0.908 0.918

model was trained on the other nine records. For each segmentation outcome, the accuracy
metrics were calculated and recorded for individual patients. Average metrics were then com-
puted to provide a global measure of segmentation accuracy. These experiments were conducted
separately using both the Conv2D and Conv3D network models.

Table 4.2 displays the average accuracy metrics obtained for the ten MRI records, separately
for each network model. The global accuracies of 0.908 and 0.918 suggest a high-quality seg-
mentation, with only 8-9% of pixels misclassified. This level of accuracy makes my algorithm
competitive with the best solutions submitted to the iSeg-2017 challenge ([R174]). Among the
three tissue types, CSF is most accurately segmented with a Dice score of 0.95, while WM has
the lowest, yet still acceptable, Dice score of nearly 0.9. Specificity is the only metric where GM
tissue has the lowest value. Comparing the two network architectures, the 3D convolution model
consistently achieves higher scores, with an improvement of approximately 0.01 in all cases.

4.3.9 Spatiotemporal Convolutions: Unleashing Dynamics in Deep Learning
The advancement of deep learning has significantly transformed my ability to process and in-
terpret complex data, with spatiotemporal convolutions exemplifying this change. These con-
volutions, an essential enhancement of traditional spatial convolutions, have become crucial for
analyzing dynamic patterns and motion in video data, fundamentally changing video analysis
and action recognition [R197].

Spatiotemporal convolutions surpass traditional spatial convolutions by extending beyond
spatial dimensions to include the temporal dimension, which is vital for video data analysis.
While spatial convolutions effectively capture local spatial relationships within individual image
frames, they cannot account for the temporal dynamics essential to video sequences. Spatiotem-
poral convolutions address this limitation by integrating spatial and temporal information, en-
abling deep learning models to understand both appearances and movements.

This integration of spatial and temporal elements is accomplished by applying convolutions
across three dimensions: two spatial and one temporal. Practically, each spatiotemporal con-
volutional kernel moves through the spatial dimensions and across the timeline of sequential
frames. This enables the neural network to identify complex spatial patterns while capturing
their temporal progression, effectively encoding movements, actions, and temporal dependencies
essential for tasks like action recognition, video analysis, and gesture understanding.

The effectiveness of spatiotemporal convolutions is most apparent in action recognition,
where accurately modeling motion sequences is critical. By utilizing spatiotemporal convolu-
tions, deep neural networks can autonomously and adaptively learn intricate spatiotemporal
features directly from raw video data, eliminating the need for labor-intensive, domain-specific
handcrafted feature engineering.
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Spatiotemporal convolutional network architectures typically consist of stacked convolutional
layers, interspersed with pooling and nonlinear activation functions. A key feature is the use of
3D convolutional kernels, which span both spatial and temporal dimensions. This enables the
network to capture not only static appearances but also the dynamic progression of actions and
events over time.

In deep learning, spatiotemporal convolutions exemplify the powerful integration of neural
networks with temporal dynamics. By allowing the simultaneous exploration of spatial and
temporal dimensions, these convolutions have been transformative in various fields beyond ac-
tion recognition, including video understanding, gesture analysis, and spatiotemporal anomaly
detection.

In summary, the advent of spatiotemporal convolutions has expanded the scope of deep learn-
ing and ushered in an era of automated interpretation of complex temporal data. Their ability
to integrate spatial patterns with temporal dynamics highlights the limitless possibilities that
continue to emerge as I leverage the power of deep learning in a world rich with spatiotemporal
data.

Figure 4.9: 2 plus 1 dimensional convolution

4.3.10 Third U-net

Overall

My entire U-net network is built on the experience I have accumulated [C8, J5] and incorporates
the 2 plus 1 dimensional convolutional layer design originally proposed for video analysis [J7].
The network consists of four encoder and decoder sections, along with a bridge, skip connections,
an input layer, and an output layer. On the input side, I merged the T1 and T2 channel images,
resulting in six color channels by placing them side by side. Additionally, each volume contains
112 slices, with each image having dimensions of 192 × 144 pixels, giving me an input size of
112×192×144×6. As previously mentioned, the encoding section consists of four encoder blocks.
The number of filters is halved at each step, as is the output image size. Consequently, the filter
numbers are 65, 32, 16, and 8. The image sizes decrease progressively from 112× 192× 144 to
56× 96× 72, then to 28× 48× 36, and finally to 14× 24× 18. Each encoder block output has
a skip connection to the corresponding decoder block at the same level, which also serves as an
additional output for the encoder block.

Next is the bridge, which has an input size of 7×12×9, representing the smallest compression
in my network. The bridge block uses four filters, similar to the output layer. The resizing
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Figure 4.10: The proposed 3D U-net architecture.

process is then carried out by the decoder section. This section, like the encoder, contains
four decoder blocks. However, as I move from the bottom up, the number of filters and image
dimensions increase. The filter numbers are 8, 16, 32, and 65 in order, while the image sizes
are 14 × 24 × 18, 28 × 48 × 36, 56 × 96 × 72, and 112 × 192 × 144, respectively. Each decoder
block also utilizes the output from the encoder block at the same level, received via the skip
connection.

Finally, the last layer is the classifier layer with four filters, corresponding to the four output
classes (three tissue types and the surrounding space). Thus, my final output has a size of
112× 192× 144× 4.

Encoder blocks

Figure 4.11 illustrates the structure of the encoder blocks. Each block contains four convolutional
layers, two batch normalization layers, a dropout layer, and a max-pooling layer. Data entering
the block first goes through a 3D convolutional layer with a unique kernel. Following the 2 plus
1D rule, the first convolutional layer processes data spatially with a kernel of size 1× 3× 3. The
output then moves to the next 3D convolutional layer, designed for spatial feature detection,
with a kernel size of 3×1×1, in line with (2+1)D convolution principles. The activation function
used is ELU [R198], as it proved most effective in my previous studies.

A batch normalization layer follows, normalizing the data, then a dropout layer with a rate
of 0.2 to prevent overfitting. Two more convolutional layers follow, structured similarly to the
first two: the first uses a 1 × 3 × 3 kernel, and the second uses a 3 × 1 × 1 kernel with ELU
activation. The number of filters in the convolutional layers is consistent throughout the block,
as shown in Figure 4.10. Another batch normalization layer follows to further normalize the
data. The output of this layer is sent to the skip connection branch, which connects to the
corresponding decoder block. The final layer is a max-pooling layer that reduces the dimensions
by half, with a pooling size of 2× 2× 2. Finally, the output is passed either to the next encoder
block or to the bridge.
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Figure 4.11: Structure of an encoder block.
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Figure 4.12: Structure of the bridge part.

Bridge

The next component is the bridge block Figure 4.12, which connects the encoder to the decoder
and represents the smallest size within the network. In U-net, which functions as a type of
autoencoder, this block is often referred to as the ”key,” reflecting the smallest representation
typical in autoencoder networks. Its structure is similar to that of the encoder and decoder
blocks, with only slight differences.

The bridge block consists of four convolutional layers, two batch normalization layers, and
a dropout layer. When data enters this block, it first passes through a 3D convolutional layer
with a 1× 3× 3 kernel, similar to the first convolutional layer in the encoder. This is followed
by a batch normalization layer to standardize the data. To prevent overfitting, a dropout layer
with a rate of 0.2 is used next. Subsequently, two additional 3D convolutional layers are applied:
the first with a 1×3×3 kernel and the next with a 3× 1× 1 kernel. A final batch normalization
layer follows to normalize the data further. All convolutional layers employ the ELU activation
function, and the number of filters is consistent across layers, as indicated in Figure 4.10.

Decoder

Finally, let’s look at the structure of the decoder blocks Figure 4.13. These blocks contain most
of the layers because they use the output from the encoder block at the same level and the output
from either the bridge or a decoder block one level below. Each decoder block consists of four
convolutional layers, two batch normalization layers, a Conv3DTranspose layer, a concatenate
layer, and a dropout layer.

Here’s a step-by-step breakdown of how the layers work and their functions. When data
enters a decoder block, it first passes through the Conv3DTranspose layer. This data comes
from a lower layer, either the bridge or another decoder block. The Conv3DTranspose layer
increases the dimension of the deconvolution layer. Since the size of the first layer is half the
size of the encoder block output at that level, I need to double the size, which is achieved by
this layer. Thus, the kernel of this layer is 2× 2× 2, similar to the encoder pooling layer.

Next, the concatenate layer combines the output of the previous layer with the skip connec-
tion value from that level, which comes from the encoder block before dimension reduction. This
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Figure 4.13: Structure of a decoder block.

is followed by two convolutional layers. The first convolutional layer searches for spatial features
and uses a 1× 3× 3 kernel. The second convolutional layer searches for temporal features and
has a 3× 1× 1 kernel.

A batch normalization layer follows to normalize the data, then a dropout layer to prevent
overfitting. Next, there are two more convolutional layers, similar to the previous ones: the first
uses a 1 × 3 × 3 kernel for spatial feature detection, and the second uses a 3 × 1 × 1 kernel for
temporal feature detection. Finally, another batch normalization layer normalizes the data. The
number of filters in the convolutional layers is consistent within a block, and all use the ELU
activation function.

Classification layer

The classification layer has 4 filters. Although my task was to segment the 3 tissue types by
classifying them at the pixel level, my data also includes a background class. This results in
four total classes. This layer is a 3D convolutional layer with a kernel size of 1 × 1 × 1, as it
examines one pixel at a time. The SoftMax activation function, commonly used in classification
tasks, is applied here. The network’s final output, produced by this layer, has dimensions
112× 192× 144× 4. This means that for each pixel, I obtain the predicted probabilities of the
pixel belonging to each of the four classes. The final segmentation results are determined by
selecting the class with the highest probability for each pixel.

Training and testing

The training and testing processes closely followed the methodology employed in my previous
studies. Specifically, data from nine patients were used to form the training dataset, while the
remaining one patient’s data served as the testing dataset. This approach was cross-validated
by repeating the process for each patient, resulting in a total of 10 test evaluations.

For training, I utilized my previously proposed cost function [J5], which combines sparse
categorical cross-entropy and the Dice score cost with equal weighting. The Dice score cost was
computed by subtracting the average Dice score of the four classes from 1. Optimization was
carried out using the ADAM optimizer [R199], and the network was trained for 1000 epochs in
each iteration.

During training, the model with the lowest cost function value was saved as the best model.
For prediction, this saved model was reloaded, and its performance was evaluated using the test
dataset.

4.3.11 Third results
Let us examine the results achieved during testing. Table 4.3 presents the ten patients alongside
their respective F1 scores, Precision, and Recall metrics, arranged in ascending order of F1
scores.
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Table 4.3: Recall, precision and F1 score for all patients, displayed in increasing order of the F1
score

Patient Precision Recall F1 score
4 0.910571 0.906693 0.907219
7 0.915163 0.914503 0.914542
2 0.917713 0.917772 0.917736
5 0.919483 0.918829 0.918891
10 0.922817 0.921393 0.921721
9 0.923732 0.922788 0.922694
3 0.927507 0.927406 0.927385
6 0.928836 0.928748 0.928642
1 0.929377 0.929290 0.929122
8 0.932538 0.932624 0.932568

Table 4.4: Accuracy benchmark or rate of correct decisions, obtained for different patients,
sorted in increasing order

Patient Accuracy
4 0.906731
7 0.915281
2 0.917950
5 0.918972

10 0.921573
9 0.922976
3 0.927496
6 0.928893
1 0.929426
8 0.932671

mean 0.9225

The lowest F1 score was observed for patient 4, marking the only instance below 91%. This
indicates that even in the worst case, my method achieves at least 90% accuracy in classifying
different brain tissues. For this patient, Precision and Recall were also at their lowest values.

In contrast, the best results were recorded for patient 8, where the F1 score was 93.2%,
representing a 2.5% improvement over the lowest score. Both Precision and Recall for this case
also reached 93.2%. This is a notable enhancement compared to my previous work, where I were
unable to surpass 93%.

Additionally, it is worth noting that only four patients had F1 scores below 92%, compared to
six in my earlier tests, highlighting a clear improvement in performance. Table 4.4 displays the
accuracy benchmarks achieved for various patients, arranged in ascending order. The bottom
row of the table shows the mean accuracy rate, calculated as the average of the accuracy rates
across all ten patients, which is 92.25%. Individual patient accuracy rates range from 90.6% to
93.2%, with the accuracy ranking aligning perfectly with the F1 score ranking.

Unlike earlier solutions, which consistently reported at least one patient with an accuracy
rate below 90%, the proposed method achieves a minimum accuracy of 90.6%. The highest
accuracy, 93.2%, was obtained for patient 8, the same patient who performed best in other
benchmarks. The overall mean accuracy, 92.25%, is nearly 0.5% higher than the results reported
in my previous work [J5].

Figure 4.14 illustrates the boxplot of the three benchmark metrics. The median values for
all three metrics lie between 92% and 92.5%, consistent with the values presented in Table 4.3.
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Figure 4.14: Boxplot of different segmentation benchmark metrics

Table 4.5: The distribution of various metrics values

Precision Recall F1 Score
Avg 0.922774 0.922005 0.922052
Std 0.007010 0.007889 0.007732
Min 0.910571 0.906693 0.907219
Q1 0.918155 0.918036 0.918025
Q2 0.923274 0.922090 0.922207
Q3 0.928504 0.928412 0.928328
Max 0.932538 0.932624 0.932568

While the medians vary slightly, the interquartile range (IQR) for all three metrics remains
similar. The lower quartile is positioned at 91.8%, and the upper quartile at 92.8%.

The lower endpoint for Recall and F1 score extends below 91%, whereas the Precision metric
does not fall below this threshold. Conversely, the upper endpoint for all three metrics exceeds
93%, highlighting the strong performance across these benchmarks.

Let us analyze the metric values summarized in Table 4.5. Starting with the median values,
Precision is 92.3%, while Recall and F1 score are both 92.2%. This minimal difference of 0.1%
indicates that the test results exhibit very little variation. This observation is further supported
by the standard deviation (Std) row in the table, which shows values of approximately 0.7%.
Such low variability across the test cases confirms the absence of outliers and demonstrates the
model’s consistency in delivering high-quality results with minimal differences.

The mean values reinforce this consistency, with only the Precision column showing a notice-
able deviation from the median. The Q1 (lower quartile) values, as reflected in the boxplot in
Figure 4.14, are consistent across all three metrics at 91.8%. This marks a significant improve-
ment over previous solutions, where this value represented the average performance. Similarly,
the Q3 (upper quartile) values reveal minimal variation between metrics.

As highlighted in the boxplot analysis, the best test case achieved scores exceeding 93%
across benchmarks. Even in the worst case, while Recall and F1 score dipped below 91%,
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Table 4.6: Statistics of the ten confusion matrices obtained for individual patients

Predicted
CSF GM WM

A
ct

ua
l

C
SF

Min: 142971 Min: 3326 Min: 289
Avg: 166034 Avg: 9018 Avg: 476
Sdv: 15389 Sdv: 4580 Sdv: 198

Max: 189750 Max: 20286 Max: 1029
Q1: 151634 Q1: 6412 Q1: 379
Q2: 168979 Q2: 7694 Q2: 455
Q3: 176538 Q3: 9271 Q3: 475

G
M

Min: 1204 Min: 277932 Min: 15867
Avg: 6199 Avg: 350375 Avg: 21216
Sdv: 2893 Sdv: 31367 Sdv: 3691

Max: 13262 Max: 402310 Max: 28401
Q1: 4769 Q1: 338884 Q1: 18309
Q2: 6045 Q2: 348180 Q2: 21157
Q3: 6979 Q3: 365025 Q3: 23837

W
M

Min: 326 Min: 15842 Min: 162766
Avg: 624 Avg: 24417 Avg: 220792
Sdv: 221 Sdv: 5155 Sdv: 32762

Max: 996 Max: 34771 Max: 272870
Q1: 462 Q1: 22572 Q1: 207567
Q2: 625 Q2: 23652 Q2: 219777
Q3: 723 Q3: 26832 Q3: 239483

they remained well above 90%. This consistency across metrics underscores the robustness and
reliability of the model’s performance.

Figure 4.15 presents the benchmark values for individual records, plotted in ascending order
for clarity. The first three panels display the Recall, Precision, and F1 score values for the three
primary tissue types separately, while the fourth panel shows the overall accuracy for each record.
The graphs highlight that CSF tissues are identified with the highest accuracy, as expected based
on their intensity distributions. Recall values are noticeably higher for GM compared to WM
tissues, while Precision is approximately equal for both. Overall accuracy, irrespective of tissue
type, ranges from 90.7% to 93.3%, with minimal variance around the average of 92.25%.

Table 4.6 provides a summary of the confusion matrices for individual records. It is evident
that the fewest misclassifications occur for CSF tissues, which aligns with expectations given
the distinct intensity distributions of these tissues in T1 and T2 volumes. Misclassifications
between CSF and WM are rare, while confusion between CSF and GM is more common. The
most frequent misclassifications, however, occur between GM and WM tissues.

Interestingly, approximately the same number of GM pixels are misclassified as WM as WM
pixels are misclassified as GM. However, since there are nearly twice as many GM pixels as WM
pixels in the records, the accuracy of GM pixel identification is higher. This difference explains
the observed disparity in F1 scores and Recall values between GM and WM tissues, as depicted
in Figure 4.15.

Figure 4.16 presents the segmentation outcome of one of the ten records. The three green
shades from darker to lighter ones represent the correctly identified pixels of CSF, GM, and
WM tissues, respectively. Red color stands for misclassifications, regardless to the tissue types.
It is easy to notice that most red pixels are situated at the boundary between two tissue types,
where it is not so much obvious that the initial annotation was correct.

Table 4.7 summarizes a performance comparison between my previous work and a selection
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Figure 4.15: Benchmark values obtained for individual records and tissue types in panels (a) to
(c); accuracy rates obtained for individual records in panel (d).
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Figure 4.16: All slices of a segmented brain. The three shades of green from dark to light
represent the correctly segmented pixels of the three main tissue types: CSF, GM and WM,
respectively, while red color indicates misclassified pixels.

Table 4.7: Benchmark comparison with previous works and state-of-the-art methods

F1-score
Paper Method CSF GM WM Average Accuracy
Surányi et al. [R200] random forest 0.879 0.835 0.796 0.837 0.833
Dénes-Fazakas et al [C8] U-net 2D 0.927 0.886 0.870 0.894 0.890
Dénes-Fazakas et al [J5] U-net 3D 0.950 0.915 0.898 0.921 0.918
Dénes-Fazakas et al [J6] U-net (2+1)D 0.952 0.920 0.903 0.925 0.922
Qamar et al. [R189] U-net 3D 0.957 0.920 0.905 0.927 N/A
Dolz et al. [R187] CNN ensembles 0.957 0.918 0.897 0.924 N/A
Nguyen et al. [R201] 3D capsules U-net 0.949 0.911 0.902 0.920 N/A
Tran et al. [R202] self-supervised 3D 0.949 0.914 0.907 0.923 N/A

of state-of-the-art methods for infant brain segmentation. The improvements over my earlier
results are both clear and substantial, with all benchmark metrics showing higher values than
in prior studies. Furthermore, the average F1-score column demonstrates that the proposed
method is competitive with current state-of-the-art approaches.

4.3.12 Conclusion
In this work, I introduced a modified U-net-based approach for segmenting infant brain tissues
from multi-spectral MRI data. The key innovation compared to my previous work was the
replacement of 3D convolutions with (2+1)D convolutions in all encoder and decoder blocks
of the U-net. This modification resulted in enhanced segmentation quality, outperforming my
earlier methods and achieving competitive results across all evaluated statistical benchmarks.
Future improvements could involve incorporating attention blocks into the model to further
enhance the separation of GM and WM tissues, where most misclassifications currently occur.

4.4 Tumor classification of MRI scans
This chapter relates on another branch of MRI image processing research that I have been
involved in, concerninng the classification of brain tumors encountered in 2D MRI scans of
adult brain.
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4.4.1 Goal
The main goal of this chapter is to provide AIU-based solutions for the brain tumor classification
problem. Given a set of MRI scans and the ground truth associated to them, an efficient and
accurate method is needed to distinguish various types of the tumors.

4.4.2 Introduction
Each year, hundreds of thousands of individuals are diagnosed with brain tumors, with approx-
imately 18,000 fatal cases reported annually in the United States alone [R203]. Early detection
greatly enhances the chances of survival; however, the specific type of tumor also plays a critical
role [R173]. Effective early detection does not necessarily require exact tumor segmentation;
rather, it is essential that the detection process is sufficiently sensitive to identify even the
smallest lesions. Brain tumors vary widely in size, shape, position, and visual characteristics,
making detection difficult due to the distortions they cause in normal brain structures and the
interference from various types of noise [R172].

In the past decade, there has been significant progress in brain tumor segmentation methods,
driven largely by the Brain Tumor Segmentation (BraTS) Challenge, an annual event started
in 2012 [R204, R205]. Initially, the BraTS challenge prompted researchers to explore a broad
range of classical machine learning techniques [R206]. More recently, the field has undergone a
major transformation with the advent of deep learning and various convolutional neural networks
(CNNs), which have become the leading approaches in medical image analysis [R207, R208]. This
shift highlights the substantial advancements and ongoing evolution in brain tumor segmentation
methods.

While BraTS has primarily concentrated on gliomas, it is important to acknowledge the
presence of various brain tumor lesions that require accurate classification for a well-rounded
diagnostic approach. As a result, the problem of brain tumor segmentation has evolved as an
extension of the BraTS challenges and has gained substantial traction in recent years. Numerous
advanced solutions, mainly based on convolutional neural networks (CNNs), have emerged,
achieving impressive results with accuracies often reaching 97-98% in the complex three-class
brain tumor classification problem.

These cutting-edge methods not only utilize deep learning and convolutional networks but
also integrate a range of sophisticated techniques:

1. Generative Adversarial Networks (GANs): Neelima et al. [R209] introduced GANs
into the domain of brain tumor segmentation.

2. Deep Hybrid Representation Learning: Kanchanamala et al. [R210] proposed a deep
hybrid representation learning approach, further enhancing the accuracy of brain tumor
classification.

3. Hybrid Deep Learning with Gabor Wavelets: Rajeev et al. [R211] combined deep
learning with Gabor wavelets to address brain tumor segmentation challenges.

4. Adaptive Attention Mechanisms: Mishra et al. [R212] and Reddy et al. [R213]
introduced adaptive attention mechanisms to improve the segmentation of brain tumors.

5. Deep Residual Learning Framework: Mehnatkesh et al. [R214] proposed a deep
residual learning framework for robust brain tumor segmentation.

6. Recurrent CNNs: Vankdothu et al. [R215] explored recurrent CNNs to address the
intricacies of brain tumor segmentation.

7. Parallel Deep CNNs: Rahman et al. [R216] introduced parallel deep CNNs as a promis-
ing approach to enhance brain tumor segmentation.
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Table 4.8: The structure of the image data set involved in the study

Tumor Patient Section plane Total
type count Coronal Sagittal Transversal images

Glioma 89 437 495 494 1426
Meningioma 82 268 231 209 708
Pituitary 62 319 320 291 930
Total 233 1024 1046 994 3064

8. Multi-Path Convolution and Multi-Head Attention Network: Isunuri et al. [R217]
devised a multi-path convolution and multi-head attention network for accurate brain tu-
mor segmentation.

In this study, I explored a more sophisticated neural network for classifying different brain
tumors. My approach involved small CNN and combining the U-net and CNN architectures.

4.4.3 Dataset
The dataset used to train and evaluate my CNN models in this study was initially compiled and
publicly released by Cheng et al. [R218, R219]. It was meticulously gathered from 233 patients
treated at two state-owned hospitals in Guangzhou and Tianjin, China, between 2005 and 2010.
The dataset includes a total of 3064 T1-weighted contrast-enhanced brain MRI scans, each with
a high resolution of 512× 512 pixels and a pixel size of 0.49,mm in both dimensions.

The dataset is diverse, covering three types of brain tumors—Pituitary, Meningioma, and
Glioma—and includes images from three different planes: axial, coronal, and sagittal. This
variety provides a comprehensive view of the structural characteristics and localization of these
tumors. The dataset’s distribution is as follows: 930 instances of Pituitary tumors, 708 in-
stances of Meningioma tumors, and 1,426 instances of Glioma tumors, ensuring a well-balanced
representation of these tumor types.

Each image is provided in MATLAB (.mat) format, which includes detailed information such
as a description, a tumor mask outlining the tumor boundaries, a tumor class label specifying the
tumor type, a tumor border for precise demarcation, and a unique patient ID for identification.

For a detailed overview of the dataset’s key attributes, see Table 4.8.

4.4.4 First Network architectures
In my experiments, I evaluated several pre-existing neural network architectures and developed
a custom network for the task. I tested ResNet34, ResNet50, and VGG16 models. Given that
most images in the dataset have a resolution of 512 × 512 pixels, this input size was initially
used for all network architectures. Networks that demonstrated strong performance were also
tested with reduced input sizes of 256× 256 and 128× 128 pixels.

For each architecture, I employed an 80/20 split of the images for training and evaluation,
respectively, and conducted five tests per architecture to ensure every image served as evaluation
data at least once. I saved two trained versions of each network to determine the best-performing
model: one with the lowest cost function value and another with the highest accuracy on the
training data. The cost function used was SparseCategoricalCrossentropy, and the optimizer
was the Adam algorithm [R220].

The two network architectures proposed in this study are shown in Figure 4.17. Although
their overall structures are quite similar, there are several key differences. One difference is the
size of the input layer, which varies based on the dimensions of the images being processed.
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Figure 4.17: The proposed network architectures: (a) with dropout; (b) without dropout.

I explored various configurations for the number of Dense layers, trying out several different
setups to optimize performance. Additionally, I experimented with kernel sizes, testing both 3
and 9.

My models were divided into two main configurations: one without a Dropout layer and
one with a Dropout layer set to 0.2, positioned after the Flatten layer and before the Dense
layers. Another variation occurred when processing 128 × 128 images; in this case, the final
Maxpool layer was adjusted to 2 × 2 instead of the standard 4 × 4. These modifications were
made to assess their impact on the network’s performance and to determine the most effective
architecture for the given task.

The first model in my study features a total of 15 layers. It begins with an input layer that
can handle image sizes of 512 × 512 × 3, 256 × 256 × 3, or 128 × 128 × 3. This is followed by
convolutional blocks, which are divided into two groups: those with a BatchNormalization layer
and those without. The first two convolutional blocks include BatchNormalization, while the
next two do not.

The initial convolution block consists of three layers. It starts with a Conv2D layer with 64
filters, a 3× 3 kernel size, and ELU activation function with padding set to ’same’. I also tested
a 9 × 9 kernel size in one of the configurations. This is followed by a MaxPool2D layer with a
4× 4 size and a BatchNormalization layer.

The subsequent block mirrors the structure of the first but uses 128 filters and omits the
BatchNormalization layer. The third block includes a Conv2D layer with 256 filters, maintaining
all other parameters. This is followed by a MaxPool2D layer with a 4 × 4 size, and a similar
block is repeated with 512 filters. For 128× 128 images, the final MaxPool2D layer is adjusted
to 2× 2.

Following the convolutional blocks, there is a Flatten layer that converts the data into a
vector. This is followed by two Dense layers, with neuron counts varying between 32 and 4096
during testing, using ReLU activation. The final classification layer has 3 neurons with a SoftMax
activation function.

Models with dropout layers differ by incorporating a dropout layer with a rate of 0.2 be-
tween the Flatten layer and the two Dense layers, resulting in a total of 18 layers for these
configurations.

4.4.5 First results
The entire dataset of 3064 images was divided into five nearly equal groups, with each group
being used as the test set in turn. During each test, four of these groups served as the train-
ing data, while the remaining group was used for evaluation. I investigated various network
architectures as described. The performance of each network was assessed using the statistical
indicators.
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Table 4.9 provides a summary of the F1 scores obtained by each network across different test
scenarios. In this table, ⋆VGG architecture refers to my custom implementation of the VGG
network, while VGG and ResNet indicate the VGG16 and residual networks employed through
transfer learning, respectively.

The third column of the table lists the input sizes for each network, representing the dimen-
sions to which the original images were resized before being fed into the network. The fourth
column details several parameters: [MA] denotes the maximum accuracy achieved during train-
ing; [mL] indicates the minimum loss recorded during training; [D] signifies whether a dropout
layer with a rate of 0.2 was used during training; and [K9] indicates the use of 9× 9 convolution
kernels instead of the default 3× 3 kernels.

F1 scores are reported as averages ± standard deviations, reflecting the results from the
five separate runs, each corresponding to one of the five image groups used as evaluation data.
This detailed breakdown allows for a comprehensive comparison of network performances under
various conditions.

Table 4.9: Average and standard deviation of the main accuracy indicator (F1 score) obtained
by various network models. For each of the five runs, each performed using one group of input
data for evaluation and the other four for training, the average of the three F1 scores (for classes
Meningioma, Glioma, and Pituitary) were extracted. The average and the standard deviation
of these five values are reported here for each network model.

CNN Dense Input Parame- F1 score
network neurons size ters mean ± stdev
⋆VGG 256 256× 256 [MA][D] 0.9827 ± 0.0066
⋆VGG 2048 256× 256 [MA][D][K9] 0.9814 ± 0.0042
⋆VGG 2048 256× 256 [MA][K9] 0.9814 ± 0.0029
⋆VGG 1024 256× 256 [MA][D] 0.9808 ± 0.0037
⋆VGG 1024 128× 128 [MA][D] 0.9795 ± 0.0018
⋆VGG 256 256× 256 [MA] 0.9789 ± 0.0054
⋆VGG 4096 256× 256 [MA][D] 0.9782 ± 0.0053
⋆VGG 2048 128× 128 [MA][D][K9] 0.9781 ± 0.0037
⋆VGG 32 128× 128 [MA] 0.9778 ± 0.0047
⋆VGG 4096 128× 128 [MA][D] 0.9776 ± 0.0046
⋆VGG 2048 128× 128 [MA] 0.9772 ± 0.0048
⋆VGG 2048 128× 128 [MA][D] 0.9772 ± 0.0025
⋆VGG 1024 128× 128 [MA] 0.9772 ± 0.0053
⋆VGG 2048 128× 128 [MA][K9] 0.9771 ± 0.0033
VGG 4096 128× 128 [MA] 0.9769 ± 0.0066

ResNet 1000 512× 512 [MA] 0.9767 ± 0.0062
⋆VGG 2048 256× 256 [MA][D] 0.9766 ± 0.0044
⋆VGG 2048 256× 256 [mL][K9] 0.9763 ± 0.0075
⋆VGG 4096 256× 256 [MA] 0.9762 ± 0.0026
⋆VGG 4096 128× 128 [MA] 0.9761 ± 0.0045
⋆VGG 2048 256× 256 [MA] 0.9760 ± 0.0055
⋆VGG 256 128× 128 [MA][D] 0.9759 ± 0.0047
⋆VGG 2048 512× 512 [MA] 0.9758 ± 0.0065
⋆VGG 1024 512× 512 [MA] 0.9758 ± 0.0035
⋆VGG 32 256× 256 [MA] 0.9753 ± 0.0074
⋆VGG 1024 256× 256 [MA] 0.9748 ± 0.0060
⋆VGG 1024 256× 256 [mL] 0.9742 ± 0.0031
⋆VGG 256 128× 128 [mL] 0.9742 ± 0.0103
⋆VGG 4096 512× 512 [MA] 0.9740 ± 0.0085
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⋆VGG 256 128× 128 [MA] 0.9739 ± 0.0057
⋆VGG 2048 512× 512 [MA] 0.9733 ± 0.0056
⋆VGG 256 512× 512 [MA] 0.9732 ± 0.0062
⋆VGG 2048 512× 512 [mL][D][K9] 0.9718 ± 0.0093
⋆VGG 32 256× 256 [mL] 0.9717 ± 0.0083
⋆VGG 256 256× 256 [mL] 0.9714 ± 0.0067
⋆VGG 256 128× 128 [mL] 0.9711 ± 0.0059
VGG 4096 256× 256 [MA] 0.9711 ± 0.0041

ResNet 1000 512× 512 [MA] 0.9703 ± 0.0038
⋆VGG 2048 128× 128 [mL][K9] 0.9687 ± 0.0101
⋆VGG 2048 512× 512 [mL][K9] 0.9681 ± 0.0071
⋆VGG 2048 128× 128 [mL] 0.9680 ± 0.0080
VGG 4096 128× 128 [mL] 0.9677 ± 0.0067
⋆VGG 256 512× 512 [mL] 0.9677 ± 0.0117
VGG 4096 128× 128 [MA] 0.9672 ± 0.0109
⋆VGG 2048 128× 128 [mL][D] 0.9671 ± 0.0053
⋆VGG 4096 128× 128 [mL][D] 0.9666 ± 0.0051
⋆VGG 256 256× 256 [mL] 0.9665 ± 0.0080
⋆VGG 1024 256× 256 [mL][D] 0.9664 ± 0.0085
⋆VGG 1024 512× 512 [mL] 0.9660 ± 0.0110
⋆VGG 2048 256× 256 [mL] 0.9660 ± 0.0142
⋆VGG 4096 256× 256 [mL][D] 0.9658 ± 0.0115
⋆VGG 32 512× 512 [MA] 0.9653 ± 0.0200
⋆VGG 2048 256× 256 [mL][D] 0.9651 ± 0.0050
⋆VGG 4096 256× 256 [mL] 0.9649 ± 0.0086
⋆VGG 1024 128× 128 [mL] 0.9646 ± 0.0088
⋆VGG 4096 512× 512 [mL] 0.9644 ± 0.0065
ResNet 1000 512× 512 [mL] 0.9642 ± 0.0121
⋆VGG 32 128× 128 [mL] 0.9639 ± 0.0109
VGG 4096 512× 512 [MA] 0.9638 ± 0.0185
⋆VGG 1024 128× 128 [mL][D] 0.9628 ± 0.0106

The results show that decreasing image size is beneficial, as it removes irrelevant features
from the images. However, scaling the images to excessively small sizes is not advisable. None
of the top 10 performing architectures utilized the original image size of 512 × 512. Using
512×512 images initially was found to slow down training, as this size contains a lot of extraneous
information.

It is evident from the table that only three models in the top 10 had an input image size of
128× 128× 3, suggesting that excessively small images are not effective. The optimal resolution
appears to be 256×256×3. Furthermore, models retrieved based on maximum accuracy during
training generally outperformed those selected based on the minimum cost function. Since the
dataset is well-balanced, models emphasizing maximum accuracy are more suitable.

Another key observation from the table is that incorporating a dropout layer enhances train-
ing by reducing the likelihood of overfitting. Additionally, my findings suggest that pre-existing
network architectures are not always the best solution for every problem. In my study, a sim-
plified network structure similar to the VGG model yielded better results than more complex,
pre-designed models. This may be attributed to the limited number of images available for
training and the insufficient time allocated for training the pre-existing models, which could
have benefited from more than 100 epochs.

In the initial comprehensive table, a summary of all the tested network models are presented,
organized in descending order of their average F1 score. The data reveals that models utilizing
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512 × 512 image resolution generally perform worse compared to those with other resolutions.
Specifically, models with a 256 × 256 resolution outperform those with a 128 × 128 resolution.
This suggests that resizing and compressing images can improve network performance, although
resizing to excessively small dimensions is not optimal. Keeping images at their original 512×512
resolution proves to be problematic as they are too large and contain excessive, unnecessary
features for effective model training.

Interestingly, commonly used model architectures did not achieve as favorable results as the
custom architectures I employed. This is because the standard models are often designed for
more complex images and have larger, deeper networks, which can hinder their ability to focus
on specific tasks. The smaller networks I proposed, offering faster training and better suitability
for this specific problem, outperformed the traditional models.

The table also indicates that very large or very small dense layers are less effective. Dense
layers with 256, 1024, or 2048 neurons demonstrated optimal performance. Models with these
configurations achieved average F1 scores exceeding 0.98 at a 256×256 resolution. Furthermore,
including a dropout layer generally enhanced model accuracy, as evidenced by its presence in
four of the top five models. On average, models with dropout layers performed better than those
without.

Regarding kernel size, the results are somewhat nuanced. The model with the highest average
F1 score used a 3 × 3 kernel. However, the second and third highest models employed 9 × 9
kernels. These models showed lower variance compared to the top-performing model but had
slightly lower average F1 scores. This suggests that while kernel size does not significantly affect
average accuracy, it may help to surpass a certain minimum accuracy threshold.

4.4.6 L-net (U-net plus CNN), Second Architectures
In this study [J6], I proposed a complex network model, illustrated in Figure 4.18, based on
the principle that neural networks can improve their learning when trained on multiple tasks
concurrently. The architecture features a U-net and a CNN arranged in a unique cascade. The
input MRI image is first processed by the U-net, which generates a predicted brain mask at its
output. The output from the penultimate layer of the U-net (just before the final output layer)
is then fed into the CNN, instead of the original image, allowing the CNN to predict the tumor
type based on the features extracted by the U-net. The U-net is trained to perform segmentation
using the provided tumor masks, while the CNN is trained to accurately classify the tumor type
from the annotated images. Both parts of the architecture are trained simultaneously, with
each training epoch adjusting the weights of both networks in response to each batch of images,
ensuring they learn in parallel.

U-net in L-net

Our U-net, depicted in Figure 4.19, consists of four encoder blocks and four decoder blocks.
These blocks are connected at the bottom by a bridge and include skip connections at each
level. Unlike the original U-net, my model features an additional convolution block with nine
filters, positioned right before the output layer, which contains two filters (marked in green) that
produce the predicted segmentation output. The encoder blocks use 64, 32, 16, and 8 filters,
respectively, while the decoder blocks mirror this in reversed order. The bridge uses the smallest
number of filters, four, as it represents the smallest feature map within the U-net. Image sizes
are not specified in Figure 4.19, since multiple resolutions were used during evaluation. Each
encoder block reduces the image size by half in both dimensions, while each decoder block
doubles it, restoring the original image size at the U-net’s output. The CNN portion of the
L-net connects after the green-marked layer and uses this as its input.

The structure of the encoder blocks is shown in Figure 4.20, with four such blocks forming
the encoder branch of the U-net. Each block is composed of six layers: two Conv2D layers, two

124



4. Processing MRI images 4.4. Tumor classification of MRI scans

Figure 4.18: An overview of the L-net architecture, combining segmentation and classification
tasks. The model first segments the tumor region using a U-net structure (left), where the
black image represents the segmentation mask as the output. It then classifies the tumor, based
on the features extracted by the U-net, into one of three categories: Glioma, Meningioma, or
Pituitary (right), using a CNN.

batch normalization layers, a dropout layer, and a MaxPooling2D layer. The data flow within
the block is detailed in Figure 4.20. First, the data passes through a Conv2D layer [R221],
followed by batch normalization to standardize the output. Next, a dropout layer is applied to
help prevent overfitting [R222], with a dropout rate of 0.2. The second Conv2D layer comes
after this, followed by another batch normalization layer. Finally, the MaxPooling2D [R223]
layer reduces the image dimensions. The MaxPooling2D layer uses a 2× 2 matrix, halving the
image size compared to the input. The skip connection retrieves the output from the second
batch normalization layer, while the reduced-size output from the MaxPooling2D layer is passed
to the corresponding decoder block. Both Conv2D layers utilize the ELU [R224] activation
function. The number of filters in each encoder block is shown in Figure 4.19. The convolution
kernels have a size of 3 × 3, and their fill factor is set so that the data size remains unchanged
within the convolution layers.

The bridge component of my U-net network, depicted in Figure 4.21, serves as the connection
between the encoder and decoder branches. Its structure closely mirrors that of the encoder
blocks, with the key difference being the absence of a MaxPooling2D layer at the end of the
bridge. As a result, the image size is not further reduced at this stage. The blocks of the decoder
branch in the U-net are structured as shown in Figure 4.22. These are the most complex blocks
within the U-net, as they process the output from either the bridge or the previous decoder. The
lower-level data is first upscaled by a Conv2DTranspose layer, then concatenated with the data
from the corresponding skip connection at the same level, which is handled by the Concatenate
layer.

Next, the data passes through two Conv2D layers, each followed by batch normalization,
with a dropout layer in between, set to a dropout rate of 0.2. The Conv2DTranspose layer uses
a 2 × 2 kernel matrix and a 2 × 2 stride, which doubles the size of the incoming data from the
previous block. The number of filters in this layer matches the filter count of the Conv2D layers
in the same block. Like the encoder blocks, the Conv2D layers use 3 × 3 kernels and the ELU
activation function. The final decoder block produces output images that match the original
input size of the U-net.
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Figure 4.19: The U-net module, which forms a key part of the overall L-net architecture.

Figure 4.20: Encoder blocks of the U-net part of the L-net.

Figure 4.21: The bridge section within the U-net component of the L-net architecture.
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Figure 4.22: The decoder blocks within the U-net component of the L-net architecture.

CNN in L-net

The convolutional component of the L-net architecture is responsible for classification, as shown
in Figure 4.23. As depicted in Figure 4.18, the CNN is connected directly after the U-net.
Specifically, Figure 4.18 shows the connection point, where the output from the penultimate U-
net layer, which consists of nine filters, is passed to the CNN’s input. The CNN is divided into
two parts: a convolutional section for feature extraction and a classifier section for performing
the classification.

The structure of the CNN blocks is shown in Figure 4.23. The convolutional part contains
four blocks with 64, 128, 256, and 512 filters, respectively. The classifier section begins with a
flatten layer that converts the feature maps into a column vector, followed by three dense layers.
The first two dense layers have 256 neurons each, while the final dense layer, which performs the
classification, has three neurons corresponding to the three tumor classes to be distinguished.

These blocks, as mentioned earlier, come after the flatten layer, meaning they only operate
on column vectors. The first layer in each block is a dropout layer with a rate of 0.2, added to
reduce the risk of overfitting. Following that is a dense layer, which functions as a set of vector
neurons. The number of neurons in each block matches the neuron count in the corresponding
layer, as shown in Figure 4.23. The activation function for these blocks is ReLU [R225], except
for the final layer, which uses the SoftMax activation function [R90] to predict probabilities for
the classification task.

Figure 4.23: The detailed architecture of the CNN component that forms a crucial part of the
overall L-net structure.
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Figure 4.24: The individual blocks of the CNN component within the broader L-net architecture.

4.4.7 Training and testing
In my experiment, I evaluated various image resolutions to determine which one yields the best
performance for my model. I aimed to identify the optimal resolution and assess whether I could
surpass the results from my previous tests. Given the complexity of the network, I conducted
training and testing using the following image resolutions: 16×16, 32×32, 64×64, and 128×128.

I did not evaluate the segmentation results in this study, as I worked with smaller image sizes
compared to the original 512 × 512 resolution of the dataset. Therefore, segmentation results
at reduced image sizes would be misleading. Although the model also produced segmentation
outputs, my primary focus remained on classification.

I employed cross-validation in my analysis, similar to my previous tests. Specifically, 80%
of the data was used for training, while 20% was reserved for testing. Cross-validation was
performed by cycling through each tumor type, with every 5th item being allocated to the test
set and the remaining items to the training set. The test set started with index 0 and cycled
through to index 4. Consequently, I conducted 5 separate tests for each model configuration.
Training was carried out over 1000 epochs using the Adam optimizer.

4.4.8 L-net Results
The entire set of 3064 images was used in a five-fold cross-validation process, with the same
five nearly equal groups of images serving as the testing data in rotation while the model was
trained on the remaining four groups. The proposed L-net model was evaluated under various
hyperparameter settings, and its classification performance was compared to baseline models.

Segmentation results were not analyzed since the L-net operated on images smaller than the
original 512 × 512 resolution of the dataset. Under these conditions, the segmentation results
would not be reliable. Although the model produces a segmentation of the tumor in the input
images, I focused solely on the classification performance, as in the previous test described in
Section 4.4.5. The results are presented in the following tables and figures.

Table 4.10 presents the precision, recall, F1 score, and accuracy values achieved by the L-
net model, along with the mean and standard deviation for each metric across the five folds of
cross-validation. For the first three metrics, the results were averaged across the three different
classes, and then the mean and standard deviation of these averages were reported in the table.
For accuracy, a single overall value was calculated for each fold, representing the proportion of
correct predictions.

The last row of the table also shows the best performance benchmarks obtained by the
baseline model. It is evident that even at the lowest image resolution, the proposed L-net model
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Table 4.10: Precision and recall values obtained by the L-net model.

Image Precision Recall F1 Score Accuracy
Size Mean ± Std Mean ± Std Mean ± Std Mean ± Std

16× 16 0.986743 ± 0.002653 0.986622 ± 0.002665 0.986633 ± 0.002656 0.986622 ± 0.002665
32× 32 0.989924 ± 0.002099 0.989884 ± 0.002121 0.989888 ± 0.002106 0.989884 ± 0.002121
64× 64 0.991222 ± 0.001860 0.991189 ± 0.001853 0.991187 ± 0.001865 0.991189 ± 0.001853

128× 128 0.996761 ± 0.001155 0.996737 ± 0.001153 0.996738 ± 0.001154 0.996737 ± 0.001153
Baseline 0.9817 ± 0.0068 0.9838 ± 0.0063 0.9827 ± 0.0066 0.9827 ± 0.0066

outperforms the previous modified VGG model running with its optimal settings. As image
resolution increases, the performance benchmarks improve significantly, with all values trending
closer to 1. Additionally, the L-net model demonstrates greater stability compared to the VGG
architecture, as indicated by the lower standard deviation of its accuracy metrics. At its peak
performance, the L-net model results in four times fewer misclassifications than the VGG model.

Figure 4.25: A boxplot for the precision, recall, and F1 score metrics. Lower axis indicates the
image size and metric as well.

Figure 4.25 shows the boxplots of different metrics at various image resolutions. As the image
resolution increases, all performance benchmarks make significant improvements, steadily ap-
proaching 1. A clear step-like increase can be seen: the median values rise, and the interquartile
range (IQR) narrows.

At the lowest resolution, L-net slightly outperforms the best results of the previously modified
VGG model. As the resolution doubles, the minimum values of the benchmarks become equal
to or higher than the median obtained at the smaller resolution. With further increases in
resolution, the range between quartiles continues to shrink, resulting in reduced variance across
the five test cases. This indicates that the network’s generalization ability becomes increasingly
stable.
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Table 4.11: AUC benchmarks obtained for different tumor classes

Image AUC Meningioma AUC Glioma AUC Pituitary
Size Mean ± Std Mean ± Std Mean ± Std

16× 16 0.996590 ± 0.001485 0.997482 ± 0.001324 1.000000 ± 0.000000
32× 32 0.998341 ± 0.000495 0.997849 ± 0.000825 1.000000 ± 0.000000
64× 64 0.997923 ± 0.001722 0.998192 ± 0.001595 0.999766 ± 0.000524
128× 128 0.999646 ± 0.000229 0.999554 ± 0.000664 0.999992 ± 0.000017

Notably, there is a sharp and sudden decrease in the IQR at the 128 resolution, suggesting
that at this point, the network achieves a high level of accuracy and consistency, significantly
reducing variability in the test results. This leads to more reliable and precise outcomes. In
other cases, there is already minimal variance in the tests. For example, at 64 resolution, the
variance is between 0.990 and 0.992. At 128 resolution, three test cases cluster closely around
0.997, with two outliers slightly below 0.996 and above 0.998.

Table 4.11 shows the AUC values for each tumor class, along with the mean and standard
deviation from the five cross-validation folds. Each row represents a specific image resolution,
arranged in ascending order of image size. Across all resolutions, the Pituitary tumor class
consistently achieves very high AUC values, often reaching 1 at lower resolutions. This indicates
that the models learn this class most effectively, with minimal confusion between it and other
classes, as reflected by its low variance.

For the Meningioma and Glioma classes, there is no significant difference in their mean AUC
values, with either class occasionally having a higher value depending on the resolution. Notably,
the AUC for the Glioma class surpasses the baseline model’s benchmark only at resolutions of
64× 64 and higher.

Figure 4.26: Boxplot for AUC metrics obtained for different tumor types and various imagesizes.
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Figure 4.26 displays the boxplots of the AUC metrics outlined in Table 4.11. Across all test
cases, the Pituitary class consistently hovers around an AUC of 1, indicating that it is easily
distinguishable from the other classes. For the Glioma class, the lowest performance is observed
at the 16×16 resolution, with the minimum AUC dropping to 0.9955. The median value is close
to, but not quite reaching, 0.998, meaning that in half of the tests, the Glioma classification
did not achieve an AUC of 0.998 at this resolution. Interestingly, at the 32 × 32 resolution,
Glioma tumors were detected less accurately than Meningioma tumors, a trend not seen at other
resolutions. At the 64×64 resolution, the median AUC value increases to nearly 0.999. However,
the minimum value remains close to that observed at the smallest resolution. At the highest
tested resolution, 128×128, significantly higher AUC scores are achieved compared to the lower
resolutions. Despite this improvement, there is an outlier among the five folds, which impacts
the Glioma class the most and the Pituitary tumor class the least. Table 4.12 shows the overall
confusion matrices for the baseline VGG model using its four best-performing configurations, as
well as those for the L-net architecture at image sizes ranging from 16×16 to 128×128. It is clear
that the L-net model outperforms the baseline, with 40, 32, 20, and 10 misclassifications across
the four image sizes, compared to 53 mistakes made by the best-performing baseline model on
the 3064 tumor images. The number of correctly identified Meningioma cases by the baseline
model matches the L-net’s performance at the 32×32 resolution, but at higher resolutions, L-net
makes fewer mistakes. For the other two classes, L-net, at any tested resolution, consistently
detects more tumors correctly than the baseline model in all configurations.

Table 4.12: Overall confusion matrices obtained by the best four VGG models [C7] (upper row),
andthe proposed L-net architecture at various image resolutions.
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Figure 4.27 presents examples of input images, one for each scenario from the overall confu-
sion matrix where applicable, illustrating the classification results of the best-performing L-net
model operating at a resolution of 128× 128.
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Figure 4.27: Some examples of correct and mistaken decisions made by the L-net architecture
at the image size 128× 128, organized in the format of a confusion matrix. The Pituitary class
has no false positives.

Overall, I have demonstrated that the proposed approach is effective. Using a U-net to
preprocess or transform input images into intermediate data, and then feeding this data into a
classifier, significantly improves decision accuracy. This is evidenced by the evaluation results
presented earlier. Furthermore, I have shown that the L-net model can perform well even with
smaller image sizes compared to CNN-based classification.

Table 4.10 presents the average results for different metrics and their standard deviations,
indicating that even at a resolution of 64× 64, the average F1-score exceeds 0.99. Additionally,
at 16 × 16 resolution, the results surpass those of my previous solution. Notably, the variance
consistently decreases with the proposed architecture, as illustrated in Figure 4.25. Higher image
resolutions result in lower benchmark variance, reflecting a more stable learning process.

Table 4.11 highlights the AUC metrics for each class, with particularly outstanding results
for the Pituitary class, though its best performance is not achieved at the highest resolution.
For the other classes, however, the 128× 128 resolution yields the best results.

The confusion matrices, shown in Table 4.12, clearly illustrate the superior classification
performance of the L-net model, with the total number of misclassifications reduced by up to
80% compared to previous solutions. In my best L-net model, the Pituitary tumor class has
no false positives and only a few false negatives. While there are more misclassifications in the
other two classes, the error rates are still significantly lower than earlier solutions.

These results represent a significant improvement, supporting the use of a U-net for feature
extraction in a CNN-based classification model. Our method achieves high accuracy in tumor
classification and also provides segmentation capabilities. This network structure is versatile and
can be used for classifying and detecting various diseases, particularly in cases where multiple
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output classes exist within a segmented region, such as Glioma, Meningioma, and Pituitary
tumors. However, adapting the network for other datasets will require retraining and possibly
adjusting the cost function.

4.4.9 Conclusion
In this research, I proposed a novel architecture for the classification of MRI tumor images,
which simultaneously performs tumor segmentation. The network consists of two main com-
ponents: first, a slightly modified U-net is used to segment the tumor from the input image,
with the output of the U-net’s penultimate layer serving as an extracted feature. This feature
is then passed to the second part of the architecture, a modified VGG network. Compared to
previous methods, my approach improves classification accuracy from 98.3% to 99.6%, reducing
misclassified cases by up to 80%.

In previous work, a traditional VGG model achieved the best classification accuracy at a
256 × 256 resolution. However, my model outperforms earlier models even with images as
small as 16 × 16. Nevertheless, using a 128 × 128 resolution is recommended for optimal clas-
sification performance. The L-net model exemplifies how training a neural network on two
tasks simultaneously—classification and segmentation—can lead to better results than address-
ing them separately.

The results show a significantly lower error rate, as reflected in the confusion matrix. Ad-
ditionally, the tables and boxplots demonstrate that the training process is highly stable at
128× 128 resolution, with minimal fluctuations, though outliers are present in some metrics.

Future work will focus on validating the L-net architecture across various medical image
datasets, a challenging task due to the limited availability of public datasets containing both
annotated segmentation and classification labels.

4.5 Thesis Summary – MRI Research
This chapter presents my contributions to medical image processing using magnetic resonance
imaging, covering two distinct research areas: infant brain tissue segmentation and brain tumor
classification. Both directions involved the design and development of deep learning models
with a focus on architectural innovation and performance optimization. The research resulted in
several novel methodologies that significantly improved segmentation and classification accuracy,
as validated through extensive experimentation.

Infant Brain Tissue Segmentation
The first part of this chapter focuses on the segmentation of infant brain tissues—namely cere-
brospinal fluid (CSF), gray matter (GM), white matter (WM)—from MRI scans. In my first
study [C8], I proposed a novel modification to the conventional U-net architecture: instead of
increasing the number of filters as the network depth increased, I designed a version where the
number of filters decreased. This approach led to a more compact and computationally efficient
network without compromising performance.

In my second study [J5], I explored both a larger 2D U-net and a compact 3D U-net model.
Although the 3D U-net used significantly fewer filters, it performed competitively with the
2D version, emphasizing the benefits of leveraging spatial context in volumetric data. I also
introduced a novel composite loss function that combined Categorical Cross Entropy and Dice
loss, each weighted equally (0.5). This hybrid cost function resulted in superior performance,
with segmentation accuracy reaching an average Dice Similarity Coefficient (DSC) of 0.891 across
tissue classes—outperforming baseline models that used only standard loss functions.

The third and most impactful innovation was the use of (2+1)D convolutions to model 3D MR
volumes as sequences, drawing inspiration from video classification networks. This architecture
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outperformed all previous models, providing the best segmentation results in terms of both Dice
score and generalization. The novelty lies in applying spatiotemporal convolutional modeling to
medical image segmentation, which is still an emerging approach in this field.

Brain Tumor Classification
The second research focus was brain tumor classification. Unlike traditional approaches that
detect tumor presence, my work focused on determining the tumor type—specifically glioma,
meningioma, or pituitary tumor—using T1-weighted MRI slices.

In my first study [C7], I developed a lightweight convolutional neural network and compared
it against established state-of-the-art models (such as VGG variants). I tested multiple training
strategies and found that selecting checkpoints based on maximum training accuracy led to more
stable and better-performing models than monitoring minimum loss. Additionally, reducing
the image resolution from 512 × 512 to 256 × 256 not only reduced computational cost but
also improved classification performance. The network achieved an F1 score of 0.982, and the
experiments revealed that dropout regularization was essential, while larger kernel sizes (e.g.,
9 × 9) did not enhance performance. One key finding was that dense layer size had minimal
influence on outcomes, which contrasts with common practices in CNN optimization.

The novelty of this study lies in showing that smaller, carefully optimized models can outper-
form deeper and more complex networks—an important consideration for real-time, resource-
constrained environments.

In my final study [J6], I proposed a novel architecture by integrating the U-net segmentation
network with the CNN-based classifier into a single multi-task learning framework. The final
convolutional layer of the U-net was connected to the input of the CNN, allowing simultaneous
segmentation and classification. This integration was made possible by the availability of tumor
segmentation masks in the dataset. At an input resolution of 128 × 128, the model achieved
an F1 score exceeding 0.99—surpassing the best result (0.982) from earlier single-task models.
This result validates the hypothesis that joint learning of spatial and semantic features can
significantly improve performance. The proposed L-net architecture thus represents both a
conceptual and practical innovation, capable of performing two diagnostic tasks within a single
end-to-end trainable pipeline.

In summary, my MRI-focused research yielded novel and effective deep learning architectures
for segmentation and classification. The achieved results—such as a Dice score of 0.891 for infant
brain tissue segmentation and an F1 score over 0.99 for tumor classification—demonstrate state-
of-the-art performance. The models are lightweight and suitable for real-world deployment on
personal computers or cloud-based services, offering practical solutions to assist clinicians in
accurate and efficient diagnosis.
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5. Conclusion

This dissertation presented a comprehensive investigation into the application of machine learn-
ing methods to solve critical challenges in healthcare, with a particular emphasis on diabetes
management and medical image analysis. The dual focus of the research—on physiological sig-
nal processing and image-based diagnostics—highlights the growing intersection between data-
driven modeling and medical practice. Throughout this work, we demonstrated that machine
learning is not only capable of modeling complex processes but can also be instrumental in
automating decision-making systems that improve clinical outcomes.

In the domain of diabetes informatics, novel methodologies were introduced for detecting
physical activity and food intake gestures using synthetic and real-world data from wearable
sensors. These models, ranging from traditional classifiers to advanced recurrent neural net-
works, proved effective in identifying behavior patterns crucial for glucose regulation. Further-
more, we proposed and implemented a reinforcement learning-based framework for automated
insulin control, showing that such systems can maintain blood glucose within a safe range, even
in the face of variability in patient behavior and physiology. These contributions are not merely
theoretical but lay the groundwork for next-generation, personalized artificial pancreas systems
that can reduce the burden of disease management on patients.

The second major contribution of this thesis lies in the field of medical image processing.
Through a series of carefully designed deep learning architectures, including 2D, 3D, and spa-
tiotemporal U-Net variants, we achieved high-accuracy segmentation of infant brain tissues.
Additionally, the introduction of the L-net—an integrated model combining segmentation and
classification—enabled robust classification of glioma, meningioma, and pituitary tumors in
MRI scans. The effectiveness of these methods was validated through extensive experimenta-
tion, demonstrating state-of-the-art performance and reinforcing the value of machine learning
in enhancing radiological workflows and diagnostic precision.

Across all research areas, particular attention was paid to the validation of models using
both synthetic and real clinical datasets. This pragmatic approach ensured the relevance and
applicability of the proposed methods in real-world settings. The modular and reproducible
nature of the solutions also ensures they can be extended or adapted to a wide range of medical
applications in the future.

Ultimately, the work presented in this dissertation reflects a step forward in the develop-
ment of intelligent systems for healthcare. By integrating domain knowledge with data-centric
modeling, we have shown that it is possible to create robust, adaptive, and clinically meaning-
ful solutions. The findings underscore the transformative potential of artificial intelligence in
medicine and point toward a future where machine learning systems become integral components
of both preventive and diagnostic care.

The interdisciplinary nature of the research—combining biomedical knowledge, sensor tech-
nologies, and machine learning—reflects the direction in which healthcare innovation is evolving.
As data becomes increasingly central to clinical decision-making, the methodologies developed
herein can play a key role in enabling more proactive, patient-specific, and efficient healthcare
delivery systems.

This dissertation thus contributes to the broader vision of building AI-driven frameworks
that do not simply automate processes, but enhance human understanding, improve outcomes,
and ultimately empower both patients and healthcare professionals alike.
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6. Future Research Directions

This chapter outlines future research directions based on the foundations laid by this dissertation.
The proposed extensions aim to enhance the robustness, generalizability, and clinical relevance
of the methods developed, while also opening new lines of inquiry. These suggestions are not
presented as corrections to prior work, but rather as logical and valuable extensions informed
by current trends in machine learning and medical informatics.

6.1 Detection of Physical Activity
The current models for physical activity detection successfully demonstrated the feasibility of
integrating CGM and heart rate data using both classical and deep learning methods. In fu-
ture work, extending this with additional sensor modalities (e.g., accelerometers or gyroscope
data) could further improve recognition accuracy under varied physical conditions. Moreover,
personalized modeling approaches could be explored more deeply to account for patient-specific
physiological responses. While simple neural architectures were sufficient for this study, fu-
ture work might incorporate attention-based temporal models or transformer-based networks to
capture long-term dependencies more effectively.

6.2 Gesture Detection
The current system for gesture detection using inertial data from wearable sensors provides a
promising foundation for recognizing carbohydrate intake events. Future research could involve
expanding the gesture vocabulary, increasing subject diversity in training data, and refining
real-time performance. Moreover, integrating additional contextual signals (such as meal timing
or self-reports) may improve classification accuracy. Exploring alternative model architectures
like temporal convolutional networks (TCNs) or lightweight transformer models may offer both
efficiency and performance benefits. These directions aim to scale up the current system for
deployment in real-world, patient-facing applications.

6.3 Reinforcement Learning-Based Insulin Regulation
The reinforcement learning framework proposed in this thesis demonstrated that data-driven
policy and value networks can successfully regulate insulin dosing in simulated environments.
To further this line of research, future work may focus on refining the virtual patient model
with more physiological detail and inter-individual variability. Additionally, hybrid approaches
combining reinforcement learning with control-theoretic models (e.g., MPC or PID tuning) may
improve safety and convergence rates. While PPO was used as the learning algorithm in this
study, future comparisons with other actor-critic methods such as A3C or SAC could help
identify more efficient learning strategies.
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6.4 Infant Brain Tissue Segmentation
The proposed U-Net variants provided robust segmentation of neonatal brain tissues. Future
research could investigate the performance of alternative architectures such as TransU-net, which
offer distinct advantages in terms of feature granularity and context-aware learning. These
explorations would extend the current methodology, offering comparative insights and possibly
hybridized architectures. Furthermore, incorporating spatial priors or anatomical atlases as
regularization methods may improve segmentation quality, particularly in low-contrast regions.
Additionally, longitudinal segmentation studies over time-series MRI scans could open the door
to developmental trajectory analysis.

6.5 Brain Tumor Detection
The L-net framework presented in this dissertation successfully integrated segmentation and
classification into a unified architecture. Future work could examine more granular tumor sub-
types or expand to multi-sequence MRI data (e.g., FLAIR, T2) to capture broader diagnostic
features. Additionally, exploring semi-supervised or self-supervised pretraining strategies could
enable improved generalization, especially in low-data scenarios. Another promising direction
involves explainability—using attention mechanisms or saliency maps to provide clinicians with
interpretable outputs that support trust in AI-assisted diagnosis.

In all these areas, the continued integration of domain knowledge, patient-specific modeling,
and advanced neural architectures will be key to translating research into clinically impactful
tools.

137



7. Contribution in publications

• [C8] Conceptualization, Methodology, Writing, Visualization

• [J5] Conceptualization, Methodology, Writing, Visualization, Resource

• [C7] Methodology, Writing, Visualization

• [C5] Conceptualization, Methodology, Writing, Visualization

• [J1] Conceptualization, Methodology, Writing, Visualization, Software, Investigation, Data
Curation

• [C4] Conceptualization, Methodology, Writing, Visualization, Validation

• [C3] Conceptualization, Methodology, Writing, Visualization, Investigation

• [C2] Conceptualization, Methodology, Writing, Visualization

• [C1] Conceptualization, Methodology, Writing, Visualization

• [J2] Conceptualization, Methodology, Writing, Visualization, Software, Investigation, Data
Curation

• [C6] Conceptualization, Data Curation, Writing, Visualization

• [J3] Writing, Visualization, Validation, Resources, Methodology, Formal analysis, Data
curation, Conceptualization.

• [J4] Conceptualization, Methodology, Validation, Writing, Visualization

• [J6] Methodology, Software, Validation, Writing, Visualization

• [J7] Conceptualization, Methodology, Validation, Resources, Data Curation, Writing, Vi-
sualization

138



8. Appendix

8.1 Physical activity supplementary
In addition to the F1-score discussed in the main text, an analysis was conducted to determine
which parameter configurations are sufficient to achieve the desired performance. To accomplish
this, various parameters are plotted as box plots alongside their values. The metrics used in this
analysis include Accuracy, Precision, and Recall. These metrics were evaluated numerically for
the top 30 models for both GRU and LSTM architectures and visualized using box plots. This
section complements the F1 score results presented earlier in the Results section.

8.1.1 Precision

Figure 8.1: Precision value for different number off RNN cell

I start by examining the box plot results in Figure 8.1, which displays precision values for different
RNN cell sizes (16, 32, 64, 128). The median precision values for each cell size are calculated
and grouped according to other variables. Notably, all four configurations show instances of
high performance based on precision metrics, with maximum values nearing one. However, it’s
important to note that the median precision value tends to decrease as the number of RNN cells
increases. This can be explained by the gradient vanishing problem, where larger recurrent stacks
lead to more significant information loss. Despite this, models with larger numbers of recurrent
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cells generally perform better than those with only 16 cells. Moreover, the upper quartile values
are higher for configurations with 32, 64, and 128 cells. However, performance starts to plateau
for configurations with 64 and 128 cells. Thus, from a precision perspective, using 64 recurrent
layers is sufficient for good performance. Additionally, using a higher number of cells results in
longer learning times. Nonetheless, the number of RNN cells does not significantly impact the
model’s overall performance.

Figure 8.2: Precision value for different number off Look back

Let’s examine how the look-back window affects the Precision metric, as shown in Figure
8.2. The median Precision value is calculated for each look-back window, ranging from 3 to
24. These values correspond to data observations taken at 5-minute intervals, resulting in a
look-back window ranging from 15 minutes to two hours, with a 15-minute difference between
each value.

The box plot reveals a noticeable staircase pattern, with the median values gradually in-
creasing from a look-back value of 3 to 15. A similar trend is observed for the upper quartile
and maximum values. However, beyond a look-back value of 15, no further improvements are
noted. While the upper quartile values continue to rise, the median values begin to decline, and
the maximum values level off. This indicates that a look-back value of 15 is sufficient for achiev-
ing good performance. Nonetheless, using the maximum look-back value of 24 might result in
slightly better outcomes, though it would require longer learning times
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Figure 8.3: Precision value for different datatype

Figure 8.3 shows box plots comparing performance metrics based on the type of data used.
Three scenarios are considered: using only blood glucose level data, using blood glucose level
and heart rate data, and using blood glucose level and step count data. The analysis focuses on
the median Precision values.

Initially, it is clear that relying solely on blood glucose level data is inadequate due to the
model’s delayed response to changes in blood glucose levels, as these changes are reflected with
a lag. However, adding step count or heart rate data helps the model handle sudden changes
until blood glucose level adjustments occur. Notably, using step count data results in better
performance compared to heart rate data. Interestingly, the minimum Precision value is not
zero when heart rate data is included. Overall, models perform best when incorporating step
count data along with blood glucose level data.
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Figure 8.4: Precision value for different number off Drop out rate

Figure 8.4 illustrates the examination of different dropout rates, including 0.0, 0.2, and 0.5.
Dropout rates are used to prevent overfitting, but excessively high dropout rates can hinder the
model’s ability to learn effectively from the dataset.

In this analysis, it is observed that using a dropout rate of 0.0, meaning no dropout, allows
the model to achieve significantly high performance. In contrast, the introduction of dropout
leads to a decline in model performance. Specifically, as dropout rates increase, the lower quartile
values approach zero, indicating poorer performance. Moreover, for a dropout rate of 0.5, the
median value is also near zero, further indicating reduced model effectiveness at higher dropout
rates.
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Figure 8.5: Precision value for different number off Dense neurons

Figure 8.5 shows the analysis of Precision values in relation to the number of neurons in
the dense layer, ranging from 64 to 1024. The analysis of median Precision values reveals
that this parameter has minimal or no noticeable effect on model performance. The median
values show little variation across different neuron counts, with the exception of 256 neurons,
which exhibits a relatively high value. Additionally, the upper quartile values are highest for
the 256-neuron configuration, although the differences are not significantly greater than those
in median values. Furthermore, the maximum Precision values remain consistent across all
configurations, indicating that each neuron count has a configuration capable of achieving values
close to 1. Thus, the number of neurons in the dense layer does not significantly impact the
model’s performance, as each configuration can achieve high Precision values.
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8.1.2 Recall

Figure 8.6: Recall value for different number off RNN cell

Figure 8.6 examines the Recall metric for different RNN cell sizes. While similar trends to those
seen with Precision are observed, there are some notable differences. The median values in the
box plots are generally lower for Recall than for Precision. A significant difference is also noted
in the upper quartile, with the highest value for Recall occurring at 64 RNN cells. Despite these
differences, it is clear that models with various numbers of RNN cells perform well, as each
configuration can achieve Recall values close to 1. However, the results suggest that using more
than 64 RNN cells does not significantly improve model performance.
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Figure 8.7: Recall value for different number off Look back

Figure 8.7 examines the Recall metric concerning the look-back time. There is noticeably
greater variability compared to Precision, which is expected given that Recall metrics often
have more false negatives than false positives, especially when there are fewer positive classes.
Analysis of the graph reveals that smaller look-back values offer little benefit. Models begin to
perform well with a look-back of 9, achieving Recall values above 0.8. However, most models
struggle to reach 0.2, as indicated by median values below this threshold. The highest median
value occurs at a look-back of 15, but there is a significant decrease in the median for larger
look-back values compared to Precision. Nonetheless, using a look-back of 24 is more beneficial,
as indicated by the highest upper quartile value and a maximum value approaching 1. Despite
the longer learning time associated with higher look-back values, the performance gains outweigh
the increased learning time.
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Figure 8.8: Recall value for different datatype

Figure 8.8 illustrates the different datasets and analyzes their respective Recall metric results.
The datasets include blood glucose level alone, blood glucose level with heart rate, and blood
glucose level with step count. The chart analysis reveals that relying solely on blood glucose data
is generally suboptimal, as only a few outlier values approach 1 in the Recall metric. However,
it is notable that some models achieve high performance using this data alone. When heart rate
data is combined with blood glucose levels, the median Recall value remains below 0.2, indicating
poor performance. Nevertheless, there are models that achieve maximum Recall values close to 1,
although without outliers. The most effective dataset configuration is observed when step count
data is included with blood glucose level data. This configuration has the highest median value
among the three datasets, indicating superior performance. Additionally, the upper quartile
value exceeds a Recall of 0.8, meaning that 25% of the models achieve a Recall greater than 0.8.
However, this performance improvement is specific to this particular data configuration.
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Figure 8.9: Recall value for different number off Drop out rate

Figure 8.9 examines the impact of different dropout rates on the Recall metric. A dropout
rate of 0.5 shows the poorest performance, with no model configuration reaching a Recall value
of 0.4. Similarly, a dropout rate of 0.2 produces suboptimal results, though slightly better than
a 0.5 dropout rate. While the maximum Recall value reaches 0.9 with a 0.2 dropout rate, it is
still inferior to the performance with a dropout rate of 0.0. It is clear that a dropout rate of 0.0
consistently delivers the best results, with a median Recall value exceeding 0.8. Additionally,
both the upper quartile and maximum values can reach 1, indicating optimal model performance.
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Figure 8.10: Recall value for different number off Dense neurons

Figure 8.10 plots the dense layer neuron counts based on the Recall metrics. Although there
is slightly more variability compared to the Precision case, the differences are not statistically
significant. Other parameters have a more substantial impact on the results. Using 256 or
512 neurons in the hidden layers may be slightly more beneficial, but these configurations do
not significantly outperform others. In all cases, there is a configuration capable of achieving a
maximum Recall value close to 1.

148



8. Appendix 8.1. Physical activity supplementary

8.1.3 Accuracy

Figure 8.11: ACC value for different number off RNN cell

Figure 8.11 presents a plot of precision as a function of the number of RNN cells, along with
their corresponding box plots. Unlike the consistent patterns observed in Precision, Recall, and
F1 score values, the accuracy metric shows variations across different RNN cell counts. Models
using 16 cells perform significantly worse than those with larger cell counts. In particular, models
with 64 and 128 cells demonstrate superior performance, with upper quartile values exceeding
95%. Therefore, using these two cell numbers is recommended to achieve higher accuracy.
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Figure 8.12: ACC value for different number off looc back

Figure 8.12 shows the different look-back windows ranging from 15 minutes to two hours.
As the look-back window size increases, there is a noticeable improvement in performance.
Outlier values exceed 80% for the 6th look-back, while for the 9th look-back, outlier values
reach approximately 85% and can achieve results better than 95%. At the 12th look-back,
no outliers are displayed, yet an outlier still reaches above 90%. A significant improvement is
seen at the 15th look-back, where the upper quartile reaches 95%, and the best median value
is achieved. As larger look-back windows are used, there are slight improvements in the upper
quartile values. Interestingly, as performance improves, the minimum values decrease, indicating
that while larger look-back windows yield better results, proper adjustment of other parameters
is crucial. Based on accuracy, utilizing a 24-hour look-back window is advantageous.
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Figure 8.13: ACC value for different datatype

Figure 8.13 plots accuracy for different feature datasets. Using only blood glucose levels
results in the poorest performance. However, similar to F1 score, Precision, and Recall, there
are outlier configurations where good results can be achieved. The second-best feature set is
when blood glucose levels and heart rate values are used. Unlike other metrics, outlier values
are evident here. The best feature set is when both blood glucose levels and step counts are
utilized. In this case, there are no outliers, and the median accuracy is the highest. Additionally,
the upper quartile exceeds 90% only in this configuration.
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Figure 8.14: ACC value for different number off Drop out rate

Figure 8.14 examines the impact of dropout rates on accuracy. Similar to the cases of
Precision, Recall, and F1 score, the worst performance is observed when dropout rates are
applied. Conversely, the best performance is achieved without dropout rates. This is evident in
the box plots, which show that models without dropout rates have superior accuracy. Although
outliers with a dropout rate of 0.2 can achieve accuracy exceeding 95%, this is not true for
a dropout rate of 0.5. Furthermore, when no dropout rate is used (dropout rate of 0.0), the
median accuracy can reach nearly 95%.
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Figure 8.15: ACC value for different number off Dense neurons

Figure 8.15 examines the impact of different dense layer neuron counts on accuracy. Similar
to the other metrics studied, there is no significant deviation in performance trends. For all
neuron counts, there is a model capable of achieving an accuracy of 1. Notably, neuron counts
of 256 and 512 appear to stand out, although overall, this parameter has the least impact on
model performance.

8.1.4 Analyzation of the best 30 models
In this subsection, I ranked the top 30 models based on their F1 scores. The F1-score criterion
provides a robust evaluation metric that balances precision and recall, ensuring that the selected
models perform well across both aspects of classification accuracy. Due to the large size of the
data, I divided the results into three tables. The top 30 models were ranked according to the
median F1 score across five test cases. This ranking is presented in Table 8.1, which illustrates
the accuracy of the AUC metric. Table 8.2 displays the Precision and Recall, while Table 3.8
shows the F1 score values.

Let’s begin the analysis with Table 8.1, which presents models with different parameter set-
tings. This table focuses on two metrics: AUC and precision. The models are listed in descending
order based on their F1 scores. Most models use LSTM-based networks and incorporate both
blood glucose and heart rate data. While the majority of models have a look-back window of
24, two models use a window length of 21. Interestingly, among the top thirty, there is a model
with a look-back window of 18. As for the drop out rate, it is quite clear that all models in the
best 30 used a dropout rate of zero. Regarding RNN cells, most models use either 128 or 64
cells, with some employing 32 cells, suggesting that this parameter may have a limited impact
on model performance. The number of neurons in the dense layer appears to have the least
influence, as the top thirty models utilize neuron counts of 64, 128, 256, 512, and 1024.

Examining the AUC metrics in the table reveals that all 30 models exhibit highly favorable
results, with AUC values ranging from 0.998 to 0.999. The median value closely aligns with the
mean, indicating minimal variance across the models, as supported by the standard deviation
(STD) column, where the maximum standard deviation for the best model is 0.002.
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Model Data Window Dropout RNN Dense Precision Recall
Type Size Rate Cells Neurons Mean Median STD Mean Median STD

LSTM Glucose and HR 24 0 32 64 0.9981 0.9985 0.0020 0.9930 0.9949 0.0026
LSTM Glucose and HR 21 0 128 128 0.9994 0.9995 0.0002 0.9944 0.9942 0.0011
LSTM Glucose and HR 24 0 16 1024 0.9994 0.9996 0.0005 0.9927 0.9940 0.0031
LSTM Glucose and HR 24 0 128 512 0.9994 0.9993 0.0004 0.9930 0.9940 0.0023
GRU Glucose and HR 24 0 128 1024 0.9997 0.9997 0.0002 0.9942 0.9936 0.0025
LSTM Glucose and HR 24 0 64 64 0.9993 0.9993 0.0005 0.9925 0.9936 0.0020
GRU Glucose and HR 24 0 128 256 0.9992 0.9993 0.0001 0.9929 0.9932 0.0021
LSTM Glucose and HR 21 0 128 64 0.9995 0.9996 0.0003 0.9933 0.9930 0.0005
LSTM Glucose and HR 24 0 128 64 0.9996 0.9997 0.0004 0.9935 0.9932 0.0020
GRU Glucose and HR 24 0 128 64 0.9996 0.9997 0.0003 0.9932 0.9928 0.0016
LSTM Glucose and HR 21 0 128 1024 0.9994 0.9993 0.0003 0.9926 0.9930 0.0024
LSTM Glucose and HR 24 0 64 128 0.9989 0.9986 0.0006 0.9920 0.9932 0.0022
LSTM Glucose and Steps 24 0 128 128 0.9992 0.9991 0.0004 0.9919 0.9921 0.0020
LSTM Glucose and HR 24 0 16 256 0.9990 0.9991 0.0007 0.9918 0.9928 0.0022
LSTM Glucose and HR 18 0 128 256 0.9995 0.9996 0.0003 0.9929 0.9927 0.0007
LSTM Glucose and HR 24 0 128 128 0.9997 0.9997 0.0001 0.9929 0.9932 0.0011
LSTM Glucose and Steps 24 0 128 256 0.9992 0.9995 0.0007 0.9917 0.9921 0.0008
GRU Glucose and HR 24 0 128 128 0.9992 0.9992 0.0004 0.9926 0.9928 0.0013
GRU Glucose and Steps 24 0 128 128 0.9995 0.9994 0.0002 0.9918 0.9921 0.0027
LSTM Glucose and HR 24 0 64 256 0.9991 0.9994 0.0007 0.9920 0.9923 0.0021
LSTM Glucose and HR 24 0 128 256 0.9992 0.9993 0.0006 0.9927 0.9923 0.0013
LSTM Glucose and HR 24 0 32 256 0.9989 0.9990 0.0007 0.9911 0.9928 0.0036
LSTM Glucose and HR 24 0 32 512 0.9993 0.9991 0.0005 0.9933 0.9923 0.0020
LSTM Glucose and Steps 24 0 128 64 0.9991 0.9992 0.0002 0.9915 0.9912 0.0014
GRU Glucose and HR 24 0 64 256 0.9995 0.9996 0.0002 0.9918 0.9923 0.0012
LSTM Glucose and HR 21 0 128 512 0.9988 0.9989 0.0008 0.9906 0.9921 0.0042
GRU Glucose and Steps 24 0 128 64 0.9992 0.9993 0.0004 0.9912 0.9917 0.0020
GRU Glucose and HR 24 0 64 512 0.9993 0.9992 0.0003 0.9917 0.9923 0.0018
GRU Glucose and HR 21 0 64 1024 0.9988 0.9995 0.0015 0.9904 0.9921 0.0041
LSTM Glucose and HR 24 0 32 128 0.9991 0.9992 0.0005 0.9923 0.9923 0.0015

Table 8.1: The 30 best model AUC and ACC scores
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Model Data Window Dropout RNN Dense Precision Recall
Type Size Rate Cells Neurons Mean Median STD Mean Median STD

LSTM Glucose and HR 24 0 32 64 0.9871 0.9873 0.0026 0.9816 0.9865 0.0109
LSTM Glucose and HR 21 0 128 128 0.9913 0.9910 0.0050 0.9841 0.9853 0.0030
LSTM Glucose and HR 24 0 16 1024 0.9821 0.9801 0.0082 0.9857 0.9814 0.0090
LSTM Glucose and HR 24 0 128 512 0.9828 0.9868 0.0071 0.9865 0.9869 0.0058
GRU Glucose and HR 24 0 128 1024 0.9869 0.9868 0.0068 0.9877 0.9888 0.0047
LSTM Glucose and HR 24 0 64 64 0.9846 0.9833 0.0058 0.9825 0.9830 0.0055
GRU Glucose and HR 24 0 128 256 0.9822 0.9797 0.0091 0.9858 0.9848 0.0042
LSTM Glucose and HR 21 0 128 64 0.9850 0.9817 0.0073 0.9855 0.9871 0.0050
LSTM Glucose and HR 24 0 128 64 0.9867 0.9865 0.0046 0.9844 0.9865 0.0064
GRU Glucose and HR 24 0 128 64 0.9868 0.9878 0.0032 0.9839 0.9840 0.0043
LSTM Glucose and HR 21 0 128 1024 0.9865 0.9892 0.0085 0.9817 0.9804 0.0048
LSTM Glucose and HR 24 0 64 128 0.9809 0.9828 0.0077 0.9832 0.9845 0.0049
LSTM Glucose and Steps 24 0 128 128 0.9865 0.9860 0.0041 0.9814 0.9815 0.0052
LSTM Glucose and HR 24 0 16 256 0.9828 0.9818 0.0061 0.9813 0.9798 0.0076
LSTM Glucose and HR 18 0 128 256 0.9867 0.9858 0.0039 0.9820 0.9806 0.0050
LSTM Glucose and HR 24 0 128 128 0.9843 0.9850 0.0054 0.9837 0.9817 0.0057
LSTM Glucose and Steps 24 0 128 256 0.9839 0.9833 0.0045 0.9831 0.9834 0.0053
GRU Glucose and HR 24 0 128 128 0.9803 0.9813 0.0042 0.9873 0.9868 0.0032
GRU Glucose and Steps 24 0 128 128 0.9848 0.9851 0.0034 0.9824 0.9814 0.0110
LSTM Glucose and HR 24 0 64 256 0.9871 0.9868 0.0076 0.9784 0.9778 0.0032
LSTM Glucose and HR 24 0 128 256 0.9847 0.9854 0.0062 0.9832 0.9849 0.0081
LSTM Glucose and HR 24 0 32 256 0.9812 0.9807 0.0091 0.9788 0.9790 0.0092
LSTM Glucose and HR 24 0 32 512 0.9872 0.9852 0.0043 0.9830 0.9816 0.0069
LSTM Glucose and Steps 24 0 128 64 0.9852 0.9856 0.0076 0.9815 0.9806 0.0070
GRU Glucose and HR 24 0 64 256 0.9860 0.9853 0.0031 0.9788 0.9761 0.0051
LSTM Glucose and HR 21 0 128 512 0.9800 0.9866 0.0109 0.9773 0.9772 0.0100
GRU Glucose and Steps 24 0 128 64 0.9843 0.9832 0.0034 0.9802 0.9832 0.0056
GRU Glucose and HR 24 0 64 512 0.9770 0.9776 0.0058 0.9861 0.9887 0.0061
GRU Glucose and HR 21 0 64 1024 0.9809 0.9823 0.0105 0.9767 0.9754 0.0109
LSTM Glucose and HR 24 0 32 128 0.9874 0.9869 0.0015 0.9779 0.9793 0.0087

Table 8.2: The 30 best model Precision and Recall scores

In the accuracy column, the mean, median, and standard deviation are plotted similarly.
Interestingly, although the second model has a higher average accuracy than the first, the median
accuracy of the first model surpasses that of the second. Notably, the first model, considered
the best, shows a much higher standard deviation, as indicated by the STD column, where
the second model has half the value of the first. Despite this variance, minimal differences are
observed between the top models. It is possible that the first model’s superiority stems from
its ability to learn the data better in a two-training case due to its smaller size, though this
observation may not be generalizable.
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8.2 Reinforcement learning based insulin control supplementary

Figure 8.16: Value network
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Figure 8.17: Policy network
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