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Abstract 

This dissertation discusses the effect of ultrasound on the inelastic deformation of metals. A model 

constructed in terms of the Synthetic theory of inelastic deformation has been developed. In the 

framework of the model, the following phenomena have been analytically described. (i) Ultrasonic 

temporary softening and residual softening or hardening; are recorded during the plastic flow of metals 

in the acoustic field. (ii) Ultrasound-assisted creep and stress relief (recovery). (iii) Ultrasound-assisted 

phase transformations (transformation plasticity and pseudoelastic deformation coupled with 

ultrasound). The extension of the synthetic theory is accomplished by introducing into its constitutional 

relationships new terms reflecting the impact of ultrasonic energy on the deformation state of sonicated 

material. The model results are consistent with the experimental data. 
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Nomenclature 

𝑇 Temperature, K 

𝜎 Hydrostatic stress, MPa 

𝜀 Strain 

𝐸 Young modulus, MPa 

𝑡 Time, s 

𝒮3 Ilyushin three-dimensional stress deviator space 

ℰ3 Ilyushin three-dimensional strain deviator space 

�⃗⃗�  Stress vector, MPa 

�⃗⃗� ̇ Stress rate vector, MPa/s 

�⃗�  Strain vector 

𝑒𝑖 Macro level deformation vector components 

�⃗⃗� 𝑖 𝒮3 unit vector 

�⃗� 𝑖 ℰ3 unit vector 

𝜎𝑖𝑗 Stress tensor component, MPa 

𝜀𝑖𝑗 Strain tensor component 

𝑆𝑖𝑗 stress deviator tensor components, MPa 

𝑒𝑖𝑗 strain deviator tensor components 

𝛿𝑖𝑗 Kronecker delta 

𝐽2 second scalar invariant of the stress deviator tensor, MPa 

|�⃗⃗� | Stress vector length, MPa 

𝑆1, 𝑆2, 𝑆3 Stress vector components, MPa 

𝜏0 Effective stress, MPa 

�⃗⃗�  Unit normal vector in 𝒮3 

𝑁1, ⋯ ,𝑁3 Components of vector �⃗⃗�  

𝐻𝑁 Plane distance, MPa 

𝛼, 𝛽, 𝜆 Spherical angels in 𝒮3 

𝜑𝑁 Plastic strain intensity 

𝜓𝑁 Defect intensity, MPa2 

𝐼𝑁 Rate integral, MPa 

𝑆𝑃 Creep limit, MPa 

𝜎𝑃 creep limit of metal under uniaxial tension, MPa 
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𝜏𝑃 creep limit of metal under pure shear, MPa 

𝛾 Stacking fault energy, mJ ∙ m−2 

𝐵 Model constant 

𝑝 Model constant, s-1 

𝑟 Material constant, MPa2 

𝑄 Creep activation energy, KJ/mol 

𝜎𝑆 Yield strength of material in uniaxial tension, MPa 

𝐾 Stress and temperature dependent function, 1/s 

𝜀̇ Strain rate, 1/s 

Φ The martensite fraction 

𝐴𝑠, 𝐴𝑓 Start and finish temperatures for austenite reaction, K 

𝑀𝑠, 𝑀𝑓 Start and finish temperatures for martensite reaction, K 

Φ̇ Martensite fraction rate 

�̇�𝑒 Rate of effective temperature, K/s 

𝑇𝑒 Effective temperature, K 

𝜏 Sonication duration, s 

ℎ Heaviside step function 

𝑒𝑈 Plastic deformation in acoustoplasticity 

𝑐 Speed of sound, m/s 

𝑓 Frequency, 1/s 

𝐴 Vibration amplitude, μm 

𝑆𝑚 Oscillating stress vector components amplitude 
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Chapter I. Introduction 

From the early decades of the 20th century, ultrasonic vibrations have been used to improve different 

types of manufacturing processes. Numerous investigations showed significant advantages of the plastic 

deformation method combined with ultrasonic oscillations to decrease forces and energy consumption, 

increase equipment capacity, and make it possible to deform materials that fail if treated by conventional 

methods. Ultrasonic vibration can significantly improve the plastic forming of metal, and the related 

technology has recently attracted much academic interest. Applying ultrasonic vibration in casting, 

welding, milling, drilling, drawing, extrusion, sheet forming processes, etc., has been widely studied. 

Another perspective branch of the utilization of ultrasound is the effect of ultrasound on the phase 

transformations of shape memory alloys. 

The improvement of existing ultrasonic materials technologies and the development of new ones require 

studies of the effect of ultrasound on the structure and properties of metals and alloys via modern 

experimental techniques and modeling and simulation methods. The effects of ultrasonic vibration on 

materials’ inelastic deformation and the potential mechanisms behind these phenomena have become 

foci for current research. 

Although a considerable amount of experimental and theoretical research about the potential benefits of 

applying ultrasonic energy has been performed for several decades, the underlying physical principles 

remain elusive, and the analytical modeling of ultrasound-assisted phenomena is still far from 

completion. 

Many vital phenomena were observed in metal deformation coupled with ultrasonic treatment. Their first 

group manifests itself during the plastic flow of metals in an acoustic field: ultrasonic temporary 

softening and ultrasonic residual hardening. While the former manifests itself during the simultaneous 

action of unidirectional and vibrating load, the latter enters into force in the post-sonicated state. The 

ultrasonic temporary softening is at the core of the energy consumption reduction during metal-forming 

processes because acoustic energy decreases the static stress value to induce/develop plastic deformation. 

The other aspect where ultrasound action can be revealed is the ultrasound-assisted time-dependent 

processes such as creep deformation and the recovery of work-hardened materials. Ultrasonic waves 

accelerate primary and secondary creep deformation and induce/intensify the recovery processes of 
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plastically pre-strained materials. Understanding and modeling these phenomena' processes is crucial for 

predicting the processed material's deformation state and mechanical properties (e.g., relief processes, 

etc.). 

Furthermore, ultrasonic vibrations have found wide application in shape memory alloy technology. It 

often happens that, because of structural features or other peculiarities, phase transformations 

(austenite/martensite) can not be induced for many applications in a direct way (heating/cooling). Other 

ways to initiate them are known: neutron irradiation, hydrostatic pressure, and ultrasonic action. The last 

method is the most attractive because ultrasonic vibration does not require expensive equipment like 

other methods. 

In order to model the phenomena presented above, the Synthetic theory of inelastic deformation is 

proposed to be utilized. Its main peculiarity is a two-level approach to calculating deformations: 

macrodeformation results from the processes occurring on the micro level of the material and is derived 

via the behavior of the carriers of inelastic deformation (the crystalline grid defects – dislocations, point 

defects, twins, etc.). This feature of the Synthetic theory gives great room for maneuvering, making it 

possible to solve a wide circle of non-classical problems. 

This dissertation aims to develop a model, in terms of the extended Synthetic theory, for the analytical 

description of inelastic deformation in the presence of ultrasound. 

 

  



3 
 

 

 

1.1 Objectives  

The primary purpose of this work is to establish a model to predict and calculate the effects of ultrasound 

on the inelastic deformation of metals. The model is constructed in terms of the Synthetic theory. The 

following topics are covered:  

I. Plastic deformation with ultrasound temporary and residual phenomena: 

A. Acoustoplasticity 

B. Residual hardening 

C. Residual softening 

 

II. The effect of ultrasound on the time-dependent processes 

A. Ultrasound-assisted primary and secondary creep in the case of periodic and continuous action of 

ultrasound 

B. Ultrasound recovery of work-hardened materials  

 

III. Ultrasound-assisted phase transformations 

A. Effect of ultrasound impulses on the austenite transformation 

B. Martensite transformation (pseudoelastic deformation) in the presence of ultrasound 
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1.2 Scope 

Chapter II emphasizes the progress that has been made, the present situation, and the open difficulties 

associated with the phenomenon studied in this dissertation. Examining findings derived from theory and 

experiment helps us understand the processes governing the phenomena to be modeled and support the 

analytical manipulations presented in Chapter IV. 

Chapter III reveals the Synthetic theory's fundamental formulations, ideas, and concepts. First of all, a 

two-level approach to calculating inelastic deformations is proposed. Then the notion of stress vector and 

strain vector within the three-dimensional stress/strain deviator space framework is introduced. The next 

step, which makes up the core of the synthetic theory, is to show the principles of the construction of the 

yield surface (i.e., to define a yield criterion) and the evolution of the loading surface (i.e., to define a 

hardening rule). Further, equations for the quantities describing a stress-strain state of material on its 

microscopic level - strain intensity, defect intensity, and their interrelation – are presented. Finally, the 

procedure of the calculation of macrodeformation is considered. Two cases are considered: irrecoverable 

(plastic/creep) deformation of metals and the deformation resulting from phase transformations of shape 

memory alloys. 

Chapter IV aims to model phenomena recorded in the experiments from Chapter II 

Section 4.1 concentrates upon the extension of the Synthetic theory to model the effects of ultrasound 

on the plastic straining of metals. Here two terms were inserted into the plastic flow rule, which governs 

the deformation characteristic of material both during sonication and after it. The first term reflects the 

promoting action of ultrasound during the simultaneous action of static and alternating load. The second 

one characterizes how the post-sonicated material's defect structure affects the plastic flow after the 

ultrasound action terminates (residual softening or hardening). 

Section 4.2 extends the Synthetic theory to model ultrasound-assisted temporary processes in metals. 

Introducing new terms that reflect the influence of acoustic energy on the processes governing the 

deformation state of metals enables us to solve/model the following problems: (i) creep deformation 

under the continuous and periodic action of ultrasound and (ii) ultrasound-induced recovery (relaxation) 

of work-hardened materials. 
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Section 4.3 aims to develop a model of the peculiarities of phase – direct (martensite) and reverse 

(austenite) –transformations of shape memory alloys in the ultrasound field. Manipulating with the 

central element of the Synthetic theory – effective temperature – responsible for developing 

transformation plasticity (austenite transformation) and pseudoelastic deformation (martensite 

transformation), we obtain relationships that lead to a good agreement with experimental data are derived. 
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Chapter II. State of Art 

Ultrasonic vibration is the physical vibration of molecules in the medium through which sound travels. 

Ultrasound refers to sound waves that exceed the audible frequency range, i.e., sound waves that are 

more than 20 kHz. Acoustic waves cause compressions and rarefaction (decompressions) in the medium 

particles as they travel through them. 

Ultrasonic technology is a convenient and accessible tool to assist many metalworking processes, such 

as machining, forming, joining, welding, microelectronic wire bonding, etc. Ultrasound shows various 

benefits: low energy consumption, high reliability, ampacity, "cold process," short process time, etc. That 

is why acoustoplasticity has received rapidly increasing interest from academics and industries. The 

outcome of ultrasonic integration in metal processing is sufficiently available in the literature: Yadav et 

al. (2005), Daud et al. (2006, 2007), Inoue (1984), Langenecker (1961, 1966), Kamarah et al. (1991), 

Siddiq et al. (2008a, 2008b), and Gallego et al. (2010). Ultrasonic application has become widespread in 

various metalworking processes (Kumar et al. (2008), Thoe et al. (1998), Deng et al. (2016), Rukosuyev 

et al. (2010), Brehl et al. (2008), Kumar, (2013)) (see Fig. 2.1). The use of ultrasonics in metallurgy dates 

to the early twentieth century (Schmid, 1935). Many studies on various forming processes with ultrasonic 

assistance have been conducted for decades since the Austrian scientists Blaha and Langenecker (1955) 

reported that the yield stress could be significantly reduced when ultrasonic vibration was superimposed 

in the tensile test of Zinc single crystal for the first time.  

The effect of ultrasound on the deformation properties of metals can be listed as follows: 

1) Ultrasonic hardening. 

2) Plastic deformation coupled with acoustic energy: 

a. ultrasonic temporary softening (acoustoplasticity), 

b. ultrasound residual effects: residual softening and residual hardening. 

3) Ultrasound-assisted creep and stress relaxation. 

4) Ultrasound-assisted phase transformation: austenite transformation and pseudoelastic 

deformation. 
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Fig. 2.1 Ultrasonics applied to metal forming processes. (Graff, 2015) 

2.1 Vibrating systems for the ultrasonic irradiation of metals 

Mechanical vibrations of ultrasonic frequency enable the conduction of accelerated aging tests of 

structural materials. A typical acoustic vibrating system is outlined in Fig. 2.2. It consists of 

(i) ultrasonic generator (1), 

(ii) transducer (2), which converts the electrical power into mechanical vibrations; 

it operates at the ultrasonic frequency spectrum (commonly between 15 

and 100 kHz; whichever technology is used, the output end of the 

transducer will be oscillating, typically with an amplitude of 20 – 40 μm.). 

The transducer can be either of the magnetostrictive or the piezo-electric 

type. The transducer is coupled to the waveguide system: 

(iii)ultrasonic horn, conical (4) and cylindrical section (5), (also known as 

acoustic horn, acoustic waveguide) is a device commonly used for 

augmenting the oscillation displacement amplitude provided by an 

ultrasonic transducer. The device is necessary because the transducers' 

amplitudes are insufficient for most practical power ultrasound 

applications. Another function of the ultrasonic horn is efficiently 

transferring the acoustic energy from the ultrasonic transducer into the 

treated media. 

(iv) sonicated specimen (6), 

(v) supporters (3) and (7), onto which the system is mounted, 

(vi) half-wave reflector (8). 
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An essential characteristic of an acoustic system is a resonant regime of its operating, which is possible 

only when the length of all the elements of the system equals 𝜆 2⁄  or is multiply of 𝜆 2⁄ . In this case, the 

superposition of direct and reflected waves constitutes a standing wave, which allows us to strictly 

determine the positions of stress/displacement nodes and antinodes along the specimen. 

 

Fig. 2.2 Setup for the sonication (Rusinko, 2012) 

Figs. 2.3 and 2.4 demonstrate vibrating systems for the simultaneous action of static and oscillating load 

for the cases of plastic deforming and creep testing, respectively. 

 

Fig. 2.3 Scheme of static load (F) combined with ultrasound: 1– specimen; 2 – concentrator, 3 – transducer, 4 – 

generator, 5 – displacement distribution along the specimen (Golyamina, I. et al., 1979) 
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Fig. 2.4 Creep test stand coupled with vibrating system: 1 – weights, 2 – specimen, 3 – concentrator, 4 – 

transducer powered via input terminal 5; (Severdenko, 1979) 

The following table collects the main ultrasound parameters and their relationships (Fitzpatrick, 2018), 

which will be used further throughout (see Fig. 2.2): 

Table 2.1 The main terms and relationships1 

Term Designation Units 

The amplitude of 

oscillation/displacement/vibration 
A μm 

The amplitude of alternating stress 𝜎𝑚 MPa 

Ultrasound intensity/sound energy density U J m3⁄ = MPa 

𝜎𝑚 = 𝐸𝐴
𝜔

𝑐
 

𝑈 =
1

2
𝜌𝐴2𝜔2 

𝑈 =
1

2
𝜌 (

𝑐𝜎𝑚

𝐸
)
2

 

Amplitude of ultrasonic deformation 𝜀𝑚 - 

𝜀𝑚 =
𝜎𝑚

𝐸
 

Density 𝜌 Kg m3⁄  

Speed of sound c m s⁄  

Young's modulus E Mpa 

 

 
1 Longitudional vibrations are considered only 
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2.2 Ultrasonic hardening 

Ultrasonic hardening is observed during the sonication of metals in the annealed state. The first research 

on the fine structure of metals was conducted by Langenecker (1966) on the wire specimens of 

monocrystal aluminum (99.99%). The specimens were subjected to ultrasound with an intensity of 

25 W/cm2. It was found that the ultrasonic irradiation increased dislocation density by several orders of 

magnitude; a grain structure was observed whose subgrains are stretched in the direction of the wave 

propagation. Later, employing X-raying, Langenecker directly observed dislocation multiplication in the 

acoustic field. 

Fig. 2.5 demonstrates the transmission electron micrographs of iron-foil (carbon content of 0.003 %) 

subjected to the action of ultrasound. As seen from Fig. 2.5, the dislocation distribution is strongly 

heterogeneous. As a rule, the dislocations are concentrated in tangles and tied into knots, with many 

immobile jogs. Many small dislocation loops formed by the agglomeration of vacancies are observed. 

Pileups of dislocations near the grain boundaries are also reported in the works of Westmacott (1965) 

and Langenecker (1966), and it can be assumed that the grain boundaries are the prevailing sources of 

dislocations under the action of ultrasound. 

 

Fig 2.5 The dislocation structure of iron subjected to ultrasonic irradiation (×50000): 𝑡 =  20°C, a, b – 

oscillating stress amplitude 𝜎𝑚 =  200 MPa; c – 𝜎𝑚 =  20 MPa; cycle numbers 2·106 oscillating frequency 𝑓 =

 20 kHz; (Kulemin, 1978). 

Fig. 2.6 shows the microstructure of the germanium surface after several impulses of ultrasound loading; 

the etching follows every impulse. It is easy to see that some fraction of etch-pits remain on their spots 

(immobile dislocations), while others move in appropriate directions (mobile dislocations). Therefore, 

despite the periodic change in the sign of vibrating loading, the dislocations move only in one direction. 
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This peculiarity is explained by crystal imperfections (point defects) that trail behind the moving 

dislocation. 

 

Fig. 2.6 Dislocation structure of germanium: a) initial surface of germanium (×450); b) and c) during sonication 

– sonication time 𝜏 = 3 min and 5 min at 𝑡 = 400℃, stress amplitude 𝜎𝑚 = 3 MPa (×270); d) layer-by-layer 

etching after the sonification of 𝜏 = 0.5 min, 𝜎𝑚 = 3 MPa (×450); e) electron micrograph of sonicated 

germanium 𝑡 = 600℃, 𝜎𝑚 = 3 MPa, 𝜏 = 10 min (×60000); (Kulemin, 1978). 

The degree of ultrasonic hardening depends on the intensity and duration of acoustic action. Fig. 2.7 

demonstrates the dislocation density (𝑁𝑑) and hardness (ℎ𝜇) of aluminum and germanium as a function 

of sonication time (𝜏). As seen from this figure, the dislocation density first increases and then remains 

unchangeable after a certain sonication time. The saturation of the dislocation density results seemingly 

from the fact that dislocation sources tend to slow down their action due to the stresses induced by the 

dislocations nucleated at previous loading cycles. Annihilation of the dislocations of opposite signs 

emanating from sources located in parallel atomic planes explains the mechanisms governing the 

stabilization of the dislocation density. The manner of the growth of dislocation density repeats in the 

increase of the yield strength of annealed materials in the course of sonication (Fig. 2.8). 
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Fig. 2.7 Dislocation density and microhardness of aluminum (a) and (b) and germanium (c) as a function of 

ultrasound-action-time 𝜏: a) 𝑡 = 50℃, stress amplitude 𝜎𝑚 = 20 MPa; b) 𝑡 = 20℃, 𝜎𝑚 = 18 MPa; c) 𝑡 =

700℃, 𝜎𝑚 = 18 MPa; (Kulemin, 1978). 

 

Fig. 2.8 Dependence of the yield limit of copper (1 – stress amplitude 𝜎𝑚 = 67 MPa) and aluminum (2 – 𝜎𝑚 =

164 MPa) on the ultrasound action time 𝜏 (Kulemin, 1978). 

With the effect of the acoustic energy intensity (stress amplitude) on the ultrasonic hardening, a 

monotonic increase in the dislocation density, and therefore in yield strength and strength limit, is 

recorded in experiments (Figs. 2.9 and 2.10). It must be noted that a threshold for minimum vibrating 

stress amplitude exists, beneath which the hardening effect is absent. For various materials, its value is 

about 25-50 % of the magnitude of yield strength. 
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Fig. 2.9 𝑁𝑑 vs. 𝜎𝑚 plot for 1) copper at 𝑡 = 450℃ and 2) aluminum at  𝑡 = 20℃; (Kulemin, 1978). 

 

Fig. 2.10 Dependence of the yield strength 𝜎𝑆 (1) and strength limit 𝜎𝑏 (2) of copper (a) and aluminum (b) on the 

ultrasonic stress amplitude (𝜎𝑚); sonication time 𝜏 = 60 s; (Kulemin, 1978). 

Experiments conducted on copper by Weis et al. (1969) and Jobu et al. (1970) showed no essential 

difference in the dislocation distribution character for ultrasonic frequencies and low-frequency fatigue 

tests. Similar results were obtained by Gindin et al. (1970), where at the same oscillation amplitude, the 

change in frequency by 400 times practically does not affect the dislocation structure of nickel. Pines et 

al. (1968) investigation – Cu, Ni, NaCl, and LiF crystals were studied in the ultrasound field for frequency 

from 15 to 35 kHz – echo the above results. 

Following the results above, at least for ultrasonic 15-30 kHz diapason, the effects considered in this 

chapter will be considered vibration-frequency-independent. 

2.3 Acoustic Temporary Softening  

Acoustic temporary softening (acoustoplasticity) is observed during the simultaneous action of 

unidirectional and vibrating load and manifests itself in a considerable decrease in the stress needed to 

induce/develop plastic deformation. 



14 
 

Fig. 2.11 shows one of the earliest experimental results on the acoustoplasticity obtained by Blaha (1955) 

and Schmidt (1935). As shown in Fig. 2.11, heating the specimen can be similar in effect to ultrasonic 

action. However, according to Kumar et al. (2017) and Zohrevand et al. (2022), acoustic softening is 

thought to be more efficient than thermal softening-induced plasticity; experimental results reveal that 

the ultrasonic energy required to produce an identical amount of softening is 107 times less than the 

required thermal energy (Yadav et al., 2005). The researchers explain this fact by the difference in the 

material's thermal and acoustic energy absorption mechanism. While the former leads to the oscillation 

of the whole crystalline grid, the latter concentrates on the defects of the metallic structure. Blaha (1955) 

proposed that preferential absorption of ultrasonic energy at the crystalline lattice defects increases 

dislocation mobility and allows the metal to deform at a lower load. 

 

Fig. 2.11 Stress-strain diagrams of (a) zinc (Langenecker, 1963) (Blaha, (1955) and (b) aluminum (Schmid, 

1935) in the ultrasonic field. The diagrams from (b) show the equivalence of ultrasound treatment to increased 

temperature. 

The effect of ultrasound temporary softening has been widely used in many branches of contemporary 

metal-forming processes for decades. When ultrasonic vibration was used in Dry Creep-Feed Up-

Grinding (Abdullah et al. 2013), a reduction of up to 61% in maximum horizontal grinding force and 

46% in maximum vertical grinding force for Al 7075 specimens was measured. The reduction in steel 

X210Cr12 specimens was up to 54% in maximum horizontal grinding force and 75% in maximum 

vertical grinding force. The experimental results presented by Malekipour et al. (2020) demonstrated that 

continuous ultrasonic vibrations with an amplitude of 5 μm during the deep drawing process led to a 

5.6% decrease in average forming load and a 50% increase in drawing depth. Susan et al. (2007) 

examined cold-rolling of steel strips (yield strength 996 MPa) in the ultrasonic field (Fig. 2.12). They 

found that the application of ultrasound decreased the yield strength of the considered material. The yield 

strength in the acoustic field with the amplitude of the vibration of 10 µm becomes 910 MPa, and for 15 

µm is 899 MPa.  
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Fig. 2.12 Scheme of the metal strip rolling with ultrasonic activation. 1− transductor PMS 15A-18; 2, 5 − 

segments of backing-up rolls; 3 − workings rolls; 4 – metal strip; 6− fastening element; (Susan et al., 2007) 

The results presented above and many other reports in scientific literature led to an important conclusion 

that the acoustoplastic effect is enhanced by the increase in the ultrasonic energy injected into the 

material. 

Despite numerous experimental and numerical analyses about the potential benefits of applying 

ultrasonic energy, the underlying physical principles remain elusive. Two categories of interpretation can 

be indicated: (i) stress superposition and (ii) direct acoustic softening. 

Regarding the stress superposition theories, the softening effect results from the macroscopic 

superposition of steady and alternating stress. For example, Malygin (2000) implies that ultrasonic waves 

activate anchored dislocations hardened under ordinary deformation, reducing the stresses needed for 

further inelastic deformation. 

At the same time, the superposition hypothesis can only partially explain the drop in flow stress that 

occurs during ultrasonic vibration. The first reason for such a conclusion is the experimental results 

obtained by Daud et al. (2007), where the total amount of stress reduction on the stress-strain curve is 

generally higher than the result of stress superposition alone. Furthermore, the superposition hypothesis 

cannot substantiate residual hardening or softening effects (see the next point) observed after ultrasonic 

vibration is stopped. These can be attributed to the permanent changes in the material's microstructure 
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during ultrasonic sonication (direct acoustic softening). Deshpande et al. (2019), Lum et al. (2009), and 

Huang et al. (2009) suggest that these permanent changes are caused by dynamic annealing/softening 

induced by heat input from ultrasonic vibration. In other words, they draw an analogy between the effects 

of hot deformation and ultrasound action and indicate that similar microstructures evolve in thermal and 

ultrasonic fields. 

Another mechanism to be mentioned here that contributes to the permanent changes of a crystalline grid 

in an acoustic field is the decrease in the number of dislocations via dipole annihilation. Shao et al. (2021) 

suggest that dislocations travel longer distances in a jerky manner in the presence of ultrasound. As a 

result, there is a greater probability of opposite dislocation meetings and annihilation, and the dislocation 

density eventually decreases. The dislocation density drop makes the material's structure softer in the 

post-sonicated state. 

Despite the debates between the supporters of stress superposition and direct acoustic softening, the 

researchers agree that ultrasound temporary softening is contributed by both factors (Graff, 2015). 

The material from points 2.3 and 2.4 inspired A. Rusinko (2001, 2011) to extend the Synthetic theory to 

model the mechanical properties of metals in the presence of ultrasound, namely, the ultrasonic hardening 

and plastic deformation coupled with ultrasound. The results presented further form a backbone for my 

scientific interests. 

 

2.4 Ultrasonic residual effects 

The permanent microstructure changes cumulated during the abovementioned acoustoplasticity result in 

ultrasonic residual hardening and softening. 

Fig. 2.13 shows schematically the phenomena caused by ultrasonic energy. As one can see, switching on 

the ultrasound incurs a step-wise decrease in acting stress (AB). During simultaneous unidirectional and 

oscillatory load (acoustoplasticity), the material flows at less stress than when mechanical stress acts 

alone (BC). Portions AB and BC reflect the ultrasonic temporary softening considered in point 2.3. As 

ultrasound is off, two variants are possible: 

(i) residual hardening – beyond point D curve runs above that corresponding to the ordinary loading 

(Fig. 2.13a); 

(ii) residual softening – beyond point D curve is located beneath the ordinary one (Fig. 2.13b). 
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In summary, both figures demonstrate that acoustic softening exists only temporarily while the vibration 

is applied. At the same time, apart from temporary softening, the residual effects can be observed after 

the vibration terminates and causes different responses of post-sonicated material. 

 

Fig. 2.13 Ultrasonic effects 

Researchers attribute the residual acoustic effect to the net balance between ultrasound's dynamic 

annealing and its potential opposing effect on activating and multiplying dislocations. In other words, 

the residual effect refers to the phenomenon in which the flow stress rises above or below the flow curve, 

compared with the ordinary curve, without ultrasonic agitation involved during the subsequent 

deformation after the ultrasound is stopped. 

To better understand the behavior of metals in the post-sonicated state, one needs to consider processes 

from the previous point– ultrasound-assisted dynamic annealing – to interpret them from the point of 

view of the material's stacking fault energy (SFE). The mechanism of ultrasound-assisted dynamic 

annealing mainly depends on the sonicated material's stacking fault energy. Following Deshpande et al. 

(2018, 2019), even though aluminum and copper have the same face-centered cubic (FCC) crystal 

structure, they recover through different annealing mechanisms, which results in a markedly different 

microstructure after deformation in the presence of ultrasonic energy.  

It is well-known how stacking fault energy affects the recovering mechanism metals. Dislocations in the 

(111) closed packed slip plane for FCC metals move along (110) direction. The stacking fault energy of 

the material determines whether dislocations move as complete dislocations or by dissociation of 

dislocations into two partial dislocations (Shockley partial dislocations). The dislocation motion by 

dissociation into two partials is preferred for metals like gold, nickel, and copper with low to medium 

stacking fault energy because it requires less energy to create the wide stacking fault associated with 

dissociation. The dissociation and formation of this stacking fault inhibit climb and cross-slip, restricting 

recovery and increasing dislocation density. Beyond a specific limit, the local difference in dislocation 

density results in grain nucleation. This phenomenon of new grain nucleation and growth during 
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deformation is called discontinuous dynamic recrystallization (DDRX). For high stacking fault energy 

materials like aluminum, the dissociation of dislocations is not energetically favored. Hence, the motion 

of dislocations happens as perfect dislocations or with a stacking fault with a very small width. This 

promotes climbing and cross-slip, facilitating dynamic recovery (DRV). The resulting microstructure in 

the high stacking fault energy materials contains subgrains with grain interiors having much lower 

dislocation density. [Deshpande et al. (2019), Sakai et al (2014), Huang et al. (2016)]. 

 

Fig. 2.14 Normalized intrinsic softening vs. normalized stacking fault energy (Siu et al., 2019) 

Humphreys et al. (2012) sum up: the SFE extent affects the microstructural processes connected to the 

dislocation activity, such as recovery and recrystallization,  

Residual hardening 

Consider the experimental results of Zhou et al. (2017) devoted to investigating ultrasound's temporary 

and residual effects. This study used commercially pure aluminum Al1060 and titanium ERTA1ELI in 

an ultrasonic-assisted compression test (Fig. 2.15). The aluminum samples were cylinders, while the 

titanium samples were annealed titanium bars. The ultrasonic-assisted compression test (𝑓 = 30 kHz) 

was conducted on a universal testing machine (Hualong-WDW300), with the loading speed adjusted to 

maintain a constant strain rate of 0.005 s−1 for each sample. The surface of the ultrasonic horn was 

measured using a Doppler Vibro meter (PSV-400). 
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Fig 2.15 Experimental setup for ultrasonic vibration-assisted compressive tests (Zhou et al., 2017) 

Consider band contrast maps with grain boundaries of aluminum (a material with high SFE) shown in 

Fig. 2.16. It is evident that the compression (Fig. 2.1b) as well as the ultrasound-assisted compression 

(Fig. 2.16c) both introduce low angle (2–15°) grain boundaries to the samples compared with the initial 

sample (Fig. 2.16a). The most significant number of low-angle grain boundaries appear in the vibrated 

sample, and many of the low-angle grain boundaries have a closed shape within the large grains with 

high-angle grain boundaries, indicating that the compression increases the number of substructures, such 

as sub-grain boundaries in the aluminum and that, with the application of ultrasonic vibration, the 

formation of sub-grain is promoted (Zhou et al., 2017). It is clear that the microstructure from Fig. 2.16c 

formed during the simultaneous action of static and vibrating load requires greater stress to overcome the 

post-sonicated state's obstacles and continue plastic flow.  

Fig. 2.17 reported by Zhou et al. (2017) vividly demonstrates the residual hardening phenomenon; the 

σ~ε curves for aluminum after the ultrasound is off run above the ordinary stress-strain diagram. This 

effect depends on the ultrasonic vibration amplitude and shows an increasing manner. 

 

Fig.2.16 Band contrast map for aluminum with grain boundaries for (a) initial state, (b) compression, and (c) 

ultrasound-assisted compression (Zhou et al., 2017) 
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Fig. 2.17 Softening and residual hardening effects of ultrasonic vibration with different vibration amplitudes on 

aluminum samples (Zhou et al., 2017) 

Another factor affecting the amount of residual hardening is the duration of sonication. Inspect Fig. 2.18, 

showing schematically the course of vibration-assisted 𝜎~𝜀 diagrams. As ultrasound is on at points 𝐴1 

and 𝐵1, the stress drop (∆𝜎) is observed. It must be noted that ∆𝜎𝐵1𝐵2
> ∆𝜎𝐴1𝐴2

 at the same intensity of 

ultrasound applied. Therefore, the greater the stress is, the more significant effect from the sonication 

can be expected. In other words, the greater deformational energy accepts the additional ultrasonic one, 

the more remarkable softening occurs.  𝐴2𝐴3  and 𝐵2𝐵3  portions show identical tendencies: the 

simultaneous action of unidirectional and vibrating stresses results in smaller stress values needed to 

continue the plastic deforming (temporary ultrasonic softening). 

 

Fig. 2.18 Schematic stress~strain diagrams with the sonications of different durations 

As the ultrasound is off (points 𝐴3 and 𝐵3), the plastic deformation starts after elastic portions 𝐴3𝐴4  and 

𝐵3𝐵4. That is where the ultrasonic residual hardening can manifest itself. This phenomenon strongly 

depends, among other things, upon the sonication duration. As the ultrasound is off at point 𝐴3, i.e., after 

eight seconds of sonication, the plastic straining develops at a higher stress level than at ordinary loading. 

At the same time, the plastic straining, which follows a two-second sonication, returns on 𝜎~𝜀 curve 
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corresponding to the ordinary loading. Therefore, the ultrasound intensity and its duration influence post-

sonicated material behavior. To put this another way, if the ultrasound energy does not provide 

substantial changes in the defect structure of the material, the residual effects are not observed. 

The experimental confirmation of the considerations above is presented in Fig. 2.19, plotted by Zhou et 

al. (2017). While the time of sonication (τ) is 12 s and 24 s, no residual effect is observed; for 𝜏 = 48 s 

and 𝜏 = 60 s, a considerable increase in stress appears. Thus, together with acoustic intensity, the time 

of ultrasound application plays an important role. In other words, the amount of ultrasonic energy injected 

into the material determines the degree of residual effects. 

 

Fig. 2.19 Softening and residual hardening effects of ultrasonic vibration with different vibration durations on 

aluminum samples (Zhou et al., 2017) 

Another confirmation for Fig. 2.18 can be seen from the vibration-assisted compression tests conducted 

by Yao et al. (2012) for commercially pure aluminum (Al 1100) in the annealed condition. The 

dimensions of each sample are 2.032 mm in diameter and 2 mm in length. They used a DC motor to 

control the compression motion, while a magnetostrictive transducer generates high-frequency 

oscillation applied to the specimen. Stress-strain curves are obtained from force sensors and laser 

displacement sensors. A titanium horn is used as the compression punch, amplifying the vibration 

generated by the transducer. The vibration at the horn tip is measured using an inductive displacement 

sensor connected to a DSP lock-in amplifier. The working frequency is 9.6 kHz. 
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Fig. 2.20 Experimental setup for vibration-assisted upsetting tests a) and their results b) (Yao et al., 2012) 

 

Residual softening 

Liu et al. (2022) conducted experimental research for copper (a material with low SFE), ultrasound-

assisted tension of 200 μm thick T2 copper foil to study this phenomenon. Stress-strain parameters 

revealed the existence of acoustic softening and acoustic residual softening. (Figs. 2.21 and 2.22). 

 

 

Fig. 2.21 Ultrasound-assisted tension system (Liu et al., 2022) 
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Fig. 2.22 Stress-strain diagrams of copper with different ultrasonic amplitudes (a) and sonication durations (b) 

(Liu et al., 2022) 

Kang et al. (2020) conducted an electron backscatter diffraction (EBSD) analysis for copper plastically 

deformed in the ultrasound field. The ultrasonic-assisted micro-tensile test frame was developed from an 

apparatus developed for testing single-crystal materials at Ohio State University (Fig. 2.23). They 

revealed that ultrasonic vibrations promote preferential grain re-orientation and reduce internal 

misorientation within grains. In addition, the quantity of low-angle boundaries (the obstacles for plastic 

deformation in the sonicated state) is decreased in the ultrasonically tested circumstances (Fig. 2.24) 

compared to the same amount of deformation under unidirectional loading. This fact explains why the 

plastic flow in the post-sonicated states requires less stress value. 

 

 

Fig. 2.23 Schematic illustration of the micro-tensile test (Kang et al., 2020) 



24 
 

 

Fig. 2.24 EBSD results: (a), (b), (c) are image quality (IQ) map, average kernel misorientation (KAM) map, and 

geometrically necessary dislocation (GND) density map without ultrasound, respectively; (b), (d), (f) are the 

corresponding results with ultrasound (Kang et al., 2020) 

Similar results were recorded by Lum et al. (2009) when utilizing ultrasound to superimpose Cu and Au 

wire bonding. They also explained residual softening by dynamic annealing and dislocation theory. Shao 

et al. (2021) summarize the above results: "The dislocation density reduction, grain rotation, and 

misorientation reduction are considered to be the reasons for the residual softening phenomenon." 

Another mechanism responsible for the residual softening is twinning, primarily inherent in materials 

with low SFE. Zhou et al. (2017) examined the fraction of twinning boundaries, abundant in many metals 

with low stacking fault energy. They showed that ultrasonic vibration promotes the saturation of twinning 

and reduces the fraction of twinning boundaries. Since the twinning boundary is a hardening factor to 

titanium, the titanium sample exhibits a residual softening effect with fewer twinning boundaries 

(Fig. 2.25). As a result, Fig. 2.26 demonstrates that the development of plastic deformation occurs at 

lower stress values after the ultrasound is off. Again, one can see that the magnitude of the stress 

reduction after the ultrasonic action depends on two quantities – the ultrasound amplitude and the 

sonication time. 
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Fig. 2.25 Band contrast map for titanium with twinning boundaries of initial sample(a), compressed sample(b), 

and the sample compressed with ultrasound (c) (Zhou et al., 2017) 

 

 

Fig. 2.26 Softening and residual effects of ultrasonic vibration with (a) different vibration amplitudes (b) with 

different vibration durations on samples of titanium (Zhou et al., 2017) 

Recent theoretical research 

The acoustic effects have been modeled using a variety of constitutive material theories. Based on the 

presumption that the absorption of acoustic energy is highly localized at dislocations and grain 

boundaries, Siddiq et al. (2011) proposed a phenomenological crystal plasticity model. They modified 

the plastic flow rule to reduce the critical resolved shear stress for each slip system in the presence of 

acoustic energy. A constitutive model based on the thermal activation of dislocation gliding was 

developed by Sedaghat et al. (2019), where the acoustic energy is included as a decrease of the activation 

energy. Deshpande et al. (2018) included the ultrasonic effect in their dislocation density evolution 

model, which predicts how dislocation density relates to the plastic shear strain rates. 

Malygin (2000) proposed a stress superimposition mechanism, implying that ultrasonic waves activate 

blocked dislocations hardened under ordinary deformation and decrease stresses for further plastic 
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deformation. In other words, this theory proposes that dislocations preferentially absorb ultrasonic 

energy, reducing the activation energy needed for dislocations to overcome lattice impediments and 

increasing their mobility, which contributes to decreasing macroscale stress. 

2.5 Ultrasound-assisted creep 

Like in the case of plastically deforming materials in the acoustic field, ultrasound intensifies the 

processes governing the development of creep deformation. According to Graff (2015), Tsimbalistyj and 

Vlasenko (1983), and Kulemin (1978), the creep deformation coupled with ultrasound shows an increase 

in both primary and secondary portions (Figs. 2.27 and 2.28). 

 

Fig. 2.27 Creep curves of aluminum at a temperature of 40°C and stress 𝜎0 = 10 MPa: 1 – ordinary creep 2 - 4 – 

ultrasound-assisted creep with oscillating stress amplitudes of 𝜎𝑚 = 0.6 MPa (2), 𝜎𝑚 = 1.3 MPa (3), 𝜎𝑚 =
2 MPa (4) (Kulemin, 1978) 

 

Fig. 2.28 Strain vs. Time curves of copper for ordinary (1) and ultrasound-assisted loading (2,3) (Kulemin, 

1978). The creep diagrams are shown alone (without the initial plastic deformation 
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Results from Figs. 2.27 and 2.28 were obtained by Kulemin, who conducted ultrasound-assisted creep 

tests on a specially designed installation. The basis of the installation was the АИМА-5-1 machine for 

testing materials for high-temperature creep, to one rod of which an ultrasonic magnetostrictive 

transducer with a conical concentrator fed from the УЗН- 10М  generator was attached. The test sample 

was screwed to the concentrator. The installation had an electric furnace to regulate the temperature of 

the sample. During the experiment, the amplitude of displacements along copper and aluminum samples 

was measured using a non-contact sensor. 

Figure 2.28 shows strain-time diagrams for copper at 20℃ in uniaxial tension, 𝜎 = 30 MPa. Curve 1 in 

Fig. 2.28 is an ordinary creep diagram under static stress alone. Since the experiments were conducted at 

room temperature, the steady-state creep rate tends to be zero. Curve 2 depicts the development of 

deformation with time under the simultaneous action of the static and oscillating load (oscillating stress 

amplitude 𝜎𝑚 = 2.6 MPa). It is easy to see that the acoustic energy induces a significant increase in the 

primary creep deformation compared to the ordinary creep. At the same time, there is no change in the 

secondary creep rate, which can be attributed to the experiment's low temperature. However, Kulemin's 

experiments at higher temperatures show that ultrasound increases the secondary creep rate. 

Another distinctive feature of ultrasound-assisted creep is an increase in the duration of its primary 

portion (≈ 60 min against 20 min for the ordinary creep). Finally, Curve 3 was obtained when the 

ultrasound with 𝜎𝑚 = 2.6 MPa is switched on periodically for 20-minute periods: [20-40], [60-80], and 

[100-120]. One can see that the deformation begins to grow each time the ultrasound is on, but the 

deformation increments decay with the number of ultrasound switches, and there comes the point when 

the ultrasound exerts no effect. Remarkably, the primary creep lasts 60 seconds for continuous ultrasound 

and terminates at the end of the third 20-minute portion of the sonication. Another interesting result is 

that the total effect from the periodic action of ultrasound (3 × 20 min) is greater than when ultrasound 

acts continuously for 60 min. 

To interpret/explain the results of the experiments, we utilize the dislocation mechanism of irrecoverable 

deformation. As well known, creep deformation develops mainly via dislocation climbs initiated by 

vacancy flows. The primary creep's driving force is energy stored in the material during active loading 

before the creep, and when this energy is exhausted, the material goes into a steady-state creep. 

Despite numerous experimental and theoretical research on ultrasonic technology, the ultrasound 

mechanism is still controversial and requires further investigation. It can be summarized as: 

(i) A stress superimposition mechanism proposed by Malygin (2000) implies that ultrasonic waves 

activate anchored dislocations hardened under ordinary deformation and reduce stresses needed for 
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further inelastic deformation. However, according to Daud et al. (2007), one should avoid adding 

unidirectional and oscillatory stresses. For example, consider Fig. 2.29, where the creep rate of 

aluminum at 𝜎 = 10 MPa and 𝑇 = 40℃ is shown as a function of additional static stress ∆𝜎 (1) and 

ultrasonic stress amplitude 𝜎𝑚 (2). It is easy to see that, for example, the creep rate in the ultrasonic 

field with 𝜎 + 𝜎𝑚 is about five times greater than that under the action of static stress 𝜎 + ∆𝜎, where 

 ∆𝜎 = 𝜎𝑚 = 2.0 MPa. 

(ii) Deshpande et al. (2019) draw an analogy between the effects of hot deformation and ultrasound 

action, and they indicate that similar microstructure evolution can be observed when thermal energy 

is replaced with ultrasonic energy. As a result, numerous investigators (e.g., Lum et al. (2009) and 

Huang et al. (2009)) suggest that ultrasonic vibration induces sufficient heat input to the sample to 

produce some softening of the microstructure. 

(iii) Kulemin (1978) investigated ultrasound's effect on copper and germanium creep. The increase in 

creep rate was supposed to be attributable to the nucleation of point defects. 

 

 

Fig. 2.29 Dependence of the strain rate of aluminum on the additional static loading (1) and the additional 

ultrasound stress amplitude (2) (Kulemin, 1978) 

The greater creep in the acoustic field can be explained by the combined action of the factors proposed 

above, namely (i) the activation of blocked and hindered dislocation via the inflow of ultrasound-

nucleated-vacancies, (ii) sonication boosts slips in the active slip systems and involve new ones, and (iii) 

ultrasound softens the material, similarly to heat energy. Now, the creep diagrams from Fig. 2.28 become 

more apparent. Injecting acoustic energy into material with some deformation energy leads to an even 

more significant effect (compare curves 2 and 3 in Fig. 2.28). The increase in the number of defects 

involved in ultrasound-assisted creep necessarily entails the growth of time needed to transmit the 

material structure into an equilibrium state inherent to the steady-state creep (about 20 min for the 

ordinary creep 1 and above 60 min for the ultrasound-assisted creep 2). The fact that the creep increments 
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decay with the number of ultrasonic actions (sonication for 140-160 minutes period results in no effect 

on curve 3) correlates well with the peculiarity of the defects nucleated in the ultrasonic field shows a 

saturation of their number with time (see Fig. 2.8). 

2.6 The effect of ultrasound on the strain-hardened metals 

Another effect of ultrasonic vibrations on the deformational characteristics of materials is the 

recovery/softening of plastically deformed metals. 

Kulemin's (1978) X-ray investigation studied the evolution of interference patterns for plastically 

prestrained aluminum specimens in the ultrasonic field at room temperature (Fig. 2.30). Clear 

interference spots with a 0.3–1.0 mm radius on the annealed specimen fade out to 8 mm and 2-3 mm in 

the azimuthal and radial directions due to plastic deformation. After the ultrasound action, there is a 

reduction in interference spot blurring in both the radial and polar directions, which attests to the 

relaxation of second-kind stresses caused by the elastic distortions of crystalline grids during plastic 

deformation. The reduction in dislocation density due to the sonication of plastically hardened aluminum 

at 20°C is shown in Fig. 2.31. As can be seen, as a function of the sonication time, the dislocation density 

for the deformed material monotonically declines to its original value (annealed state). 

 

Fig. 2.30 X-ray micrograph of aluminum specimen – a) annealed state, b) plastic deformation of 5 %, c) 

sonication of the deformed specimen; oscillating stress amplitude 16 MPa, duration 100 min (Kulemin, 1978) 

 

Fig. 2.31 Dislocation density vs. sonication time plot for aluminum at vibrating stress amplitude 16 MPa, initial 

plastic deformation 5% (Kulemin, 1978) 
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One of the possible temporary mechanisms responsible for stress relaxation and material recovery is 

polygonization, when dislocations arrange into low-energy configurations. The plastically deformed 

lattice is realigned into blocks free of stress and separated by borders made up of the dislocations of one 

sign. The dislocations must climb parallel planes and leave their slip planes to form the polygonized 

substructure. The dislocation climbs require active vacancy inflow, which can be stimulated by high 

thermal energy (for example, in elevated-temperature creep or during annealing). Since the results from 

Figs. 2.30 and 2.31 were obtained at room temperature, the ultrasonic energy alone may be considered 

responsible for the material recovery via polygonization. This suggestion is consistent with the well-

known fact that sonication is characterized by an abundance of point defects (vacancies). Fig. 2.32 

supports the idea of the dislocation-climb nature of ultrasonic recovery. Indeed, the plastic deformation's 

straight slip lines (Fig. 2.32a) are divided into several intersecting wavy lines (Fig. 2.32b). 

 

Fig. 2.32 Slip lines on the surface of aluminum specimen × 400 – a) after the plastic deformation of 2%, b) after 

the sonication (𝜏 = 50 min,  𝜎𝑚 = 10 MPa) of the plastically deformed specimen, 𝑡 =  20°C (Kulemin, 1978) 

With the intensity of the ultrasonic recovery, the following can be summarized (Kulemin, 1978, 

Blagoveshchenskii, V., Panin, 2007): 

(i) there is a lower limit for the oscillating stress (𝜎𝑚) beneath which the recovery effect is not 

observed (for example, while 𝜎𝑚 = 4.3 MPa   and 𝜎𝑚 = 5.6 MPa  gives no changes in the 

hardening decrease, 𝜎𝑚 = 8.4 MPa already yields the recovery effect (Kulemin, 1978); 

(ii) the increase in 𝜎𝑚 leads to a much steeper decrease in the hardness/yield strength of the strain-

hardened material; 

(iii) at a given value of 𝜎𝑚 , the acoustic energy causes more intensive recovery for more 

significant plastic deformations – the ultrasound-assisted recovery mechanisms accelerate at 

greater deformation energy cumulated in the material; 

Consider the experimental results of Zohrevand et al. (2021) for 304SS and 316SS alloys. Tensile 

specimens were initially strained to 10%, and after unloading, the samples were sonicated with the input 

power of 300 W for 4 min. 
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The following conclusions can be made from this research. 1) Microhardness tests evidently show the 

softening effect of ultrasound on the strain-hardened structure (Fig. 2.33). 2) The XRD peak shifting to 

lower angles after the ultrasonic action reflects the relaxation of tensile residual stress in both alloys. 3) 

Active de-twining processes are observed during sonication, which can be attributed to the oscillatory 

shear stress induced by the ultrasonic vibration (Fig. 2.34). 4) Low-strain regions formed on triple 

junctions and near the grain boundaries imply the static recrystallization in the 316SS alloy during 

ultrasonic irradiation (Fig. 2.35). 

 

Fig. 2.33 Microhardness test results for 316SS (gray columns) and 304SS (black columns) (Zohrevand et al., 

2021) 

 

Fig. 2.34 Twining boundary map for steels 304SS and 316SS; (a and c) plastically deformed specimens, (b and 

d) after the ultrasound action (Zohrevand et al., 2021). 
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Fig. 2.35 The grain boundary map for 304SS and 316SS; (a and c) plastically deformed specimens, (b and d) 

after the ultrasound action (Zohrevand et al., 2021) 

2.7 The effect of ultrasound on the phase transformations in shape memory alloys  

Today, Shape Memory Alloys (SMAs) are already commercially applied in many technical fields. SMAs 

have been developed since the early 1960s, and since then, they have been successfully used for medical 

(Bansiddhi et al. 2008, Morgan 2004 and Sun et al. 2012), robotic (Kim et al. 2006, Qin et al. 2004 and 

Wang et al. 2008), aerospace (Hartl et al. 2007, 2010a and 2010b), and automobile applications (Bellini 

et al. 2009 and Stoeckel, 1990). 

The superior property of SMA is that it can go through solid-state phase transformations, meaning it can 

be stretched, bent, heated, cooled, and still remember its original shape. SMAs are widely used for 

medical implants due to their kink resistance, stress constancy, high elasticity, and corrosion resistance. 

Regarding electronic devices and robotic systems, SMA actuators, sensors, and controllers have drawn 

significant attention and interest due to their unique properties and are expected to be equipped in many 

modern vehicles at competitive market prices (Jani et al. 2014). The essential advantage is that active 

elements (e.g., SMA wire or spring) can be deformed by applying minimal external force and retain their 

previous form when subjected to certain stimuli such as thermomechanical or magnetic changes. In 

aerospace, SMA release devices can be actuated slowly, avoiding satellite shock failures. This application 
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is essential for satellites because it can also be used for 'microsatellites' since compact separation devices 

with minimal SMA release triggers can be made (Wanhill et al. 2017). 

In this thesis, I deal with the following two cases: 

(i) The effect of ultrasound on the austenite transformation. 

(ii) Pseudoelastic deformation (martensite transformation) in ultrasonic field. 

 

Ultrasound-assisted austenite transformation 

As mentioned above, SMAs can recuperate their original shape while heating above specific critical 

temperatures (shape memory effect). In other words, they can recover a large inelastic deformation or 

create high recovery stress on heating within the temperature range of martensitic transformation. 

However, heating the SMA elements cannot be carried out for many applications. Other ways to initiate 

shape memory effects may be applied in these cases. It is known that strain recovery may be initiated by 

neutron irradiation, hydrostatic pressure, and ultrasonic action (Belyaev et al. 2014). The last method is 

the most attractive because ultrasonic vibration does not require expensive equipment like other methods. 

Experimental observations in Figs. 2.36 and 2.37 demonstrate the effect of ultrasound on the reverse 

(austenite) transformation on heating at constant stress. These figures show that the ultrasonic impulses 

of equal intensity injected into the material at different temperatures during the transformation result in 

step-wise deformation decreases (2 impulses and 4 impulses in Figs. 2.36 and 2.37, respectively). 

The abovementioned results can be summarized as follows (Klubovich et al. 1997, Rubanik et al. 2008, 

Buchelnikov et al. 2004, Steckmann et al. 1999, Breczko et al. 1999 and Bao et al. 2013): 

I. Ultrasonic vibrations impulsively added to austenitic transformation result in negative strain 

jumps. In other words, acoustic energy can initiate strain variations of SMA. The lattice is very soft 

during transformation, and the phase boundaries are easily movable. In this case, any external action, for 

instance, alternate stress, results in the appearance of an additional quantity of preferably oriented 

domains, which leads to a further strain variation. 

II. The magnitude of the strain jumps increases with the ultrasonic vibration amplitude. 

III. The effect of insonation strongly depends on the moment the ultrasound is applied. Acoustic 

energy has no effect if it acts outside the austenite transformation temperature range. Further, the 

magnitude of the ultrasound-induced strain jumps is not distributed uniformly within the austenite 

transformation temperature range. This phenomenon reaches its maximum if the alternate stresses are 
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applied approximately in the middle of the temperature range of phase transformations. It can be 

explained by the fact that the number of phase boundaries reaches its maximum when half of the alloy is 

transformed into the austenite phase (Belyaev et al., 2014), and ultrasound manifests itself in full force. 

 

Fig. 2.36 State diagram of NiTi alloy in deformation-temperature coordinate. The sample is subjected to uniaxial 

tension 𝜎 = 30 MPa. The arrows show the moments of switching-on (↑) and switching-off (↓) of ultrasonic 

vibrations (vibration amplitude 5 μm) (Rubanik et al., 2008) 

 

 

Fig. 2.37 Phase transformation in Ni-Ti alloy with ultrasonic impulses: a) 𝜀~𝑇 diagram, b) the magnitudes of 

deformation drops induced by the impulses. The amplitude of ultrasonic deformations (impulses) is 5 × 10−5; 

𝜎 = 100 MPa = const (Steckmann et al., 1999) 

IV. It was found that the series of ultrasonic impulses led to the finish temperature being less than 

during conventional heating. Since acoustic energy boosts the transformation processes, it is logical to 
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assume that they sooner reach their completeness. In other words, the temperature needed to finish the 

transformation is partially compensated by ultrasound heating. 

V. After switching off ultrasound, the further realization of SME occurs according to the reverse 

transformation kinetics. However, immediately after the ultrasound is off, some "backsliding" in 

austenitic deformation, a slight increase of deformation, is observed; 67-77℃ temperature range in 

Fig. 2.36. This aftereffect is assumed to be due to a) the decrease in temperature after ultrasound is off 

and b) the action of ultrasound, which "left a trail" in the form of ultrasound-assisted defect 

conglomeration, reducing the development of the phase transformations. Therefore, while the central 

portion of acoustic energy converts irreversibly into the phase deformation increment, some fraction of 

it recovers. 

Experimental investigations clearly show that stress and temperature are equal stimuli for initiating 

austenite transformations, i.e., the same mechanical effects can be achieved by employing both stress and 

temperature. Since ultrasound is a carrier of both these effects – alternating stress and increase in 

temperature caused by them – the physical substantiation of the phenomena observed above can be 

summarized as follows (Klubovich et al. 1997, Rubanik et al. 2008, Buchelnikov et al. 2004, Steckmann 

et al. 1999, Breczko et al. 1999 and Bao et al. 2013): 

I. The variation (increase) in austenite deformation can be explained by ultrasonic heating of the 

sample due to ultrasound waves' energy dissipation. 

II. Acoustic energy increases the mobility of interfaces (phase and domains) by decreasing the 

efficient friction force caused by alternate stresses. 

III. The superposition of alternate stresses induces the movement of interface and martensitic domain 

boundaries (within the temperature range of reverse martensitic transformations). 

 

Ultrasound-assisted martensite transformation 

Consider the ultrasound-assisted 𝜎~𝜀  diagram of Ni-Ti-Re alloy in uniaxial stress at constant 

temperature recorded by Steckmann et al. (1999). While line 1 in Fig. 2.38 illustrates the ordinary 

pseudoelastic course of deformation, line 2 is obtained when unidirectional and vibrating stresses act 

simultaneously from the beginning of the experiment. It is simple to notice the following characteristics 

of the pseudoelasticity in combination with ultrasound: 
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I. The initial and middle portions of line 2 run beneath line 1, and the inelastic deformation in the acoustic 

field starts at a lower stress than for the static loading (compare 48 MPa for line 2 to about 100 MPa for 

line 1). 

II. Line 2 crosses line 1 at the deformation of about 6.3% and has a steeper slope angle than line 1, i.e., 

greater stress values are required at the final stage of martensite transformation. 

 

Fig. 2.38 Pseudoelastic deformation of Ni-Ti-Re alloy in uniaxial tension, temperature 283 K; 1 – without 

ultrasound, 2 – under superimposed ultrasound with the deformation amplitude of 𝜀𝑚 = 2 × 10−4 (Steckmann et 

al., 1999) 

Experimental studies (Rubanik et al. (2003, 2008), Mercier et al. (1979), Breczko et al. (1999), 

Steckmann et al. (1999), Belyaev et al. (2014), Buchelnikov et al. 2004, Klubovich et al. (1997), 

Samigullina et al. (2018)) describe the mechanisms driving the ultrasound-assisted martensite 

transformation as follows: 

I. Ultrasound increases the mobility of interfaces (phases and domains) by decreasing the efficient 

friction force caused by alternate stresses.  

II. The superposition of alternate stresses induces the movement of defects (dislocations and twins) and 

martensitic domain boundaries (within the temperature range of martensitic transformation). In addition, 

acoustic energy results in the appearance of an additional quantity of preferably oriented domains that 

leads to further strain variation. 

Further, Malygin's (2001) and Sapozhnikov's (1996) investigations show that the superimposed 

ultrasound can favor either increasing or decreasing the static stress needed to develop pseudoelastic 

deformation. This is because, at the initial stage of pseudoelastic deformation, the oscillatory stress 

causes the fraction of the martensite phase to increase during positive half-cycles, which leads to an 

additional deformation and, hence, to a decrease in the applied stress. In the case of large stresses, the 
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effect of the oscillatory stress is more significant during negative half-cycles leading to a decrease in the 

volume fraction of martensite and, hence, an increase in the applied stress. Therefore, the sign of the 

effect of acoustic energy on the development of martensite transformation varies during pseudoelastic 

deformation. This result correlates with that indicated by Steckmann et al., (1999), where the ultrasound-

assisted stress-strain diagram (line 2 in Fig. 2.35) has a greater hardening coefficient at the final stage of 

the transformation and, therefore, crosses the ordinary diagram. 

Using relationships obtained by Lichachev and Malinin (1993) in the framework of the Structural-

analytic theory of elasticity, Rusinko A and Rusinko K. (2012) developed a model to describe phase 

transformation in terms of the Synthetic theory. 

 

The first steps in modeling ultrasonic effects were made in terms of the synthetic theory of inelastic 

deformation: a new term, ultrasonic defect intensity, was introduced into the constitutive relationships 

by Rusinko (2001, 2011). In this form, the theory catches the temporary ultrasonic softening alone when 

the ultrasound is superimposed from the very beginning of loading. At the same time, it does not cover 

the ultrasound-induced stress drops on the stress~strain diagram, acoustic residual hardening effects, 

and phenomena occurring at ultrasound-assisted creep and phase deformation. 

My research within this dissertation focuses on the further extension of synthetic theory to model the 

peculiarities of metal deformation in the acoustic field indicated in points 2.4-2.7. 
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Chapter III. The synthetic theory of inelastic deformation 

 

3.1 Basic principles 

The analytical description of the phenomena listed in the previous chapter is presented in terms of the 

synthetic theory of inelastic deformation outlined in Rusinko, A. & Rusinko, K.'s monography (2011). 

The synthetic theory incorporates the Batdort-Budiansky slip concept (Batdorf & Budiansky, 1949) and 

the Sanders (1954) flow theory and falls within the category of models for strain-hardened materials. 

The synthetic theory works in the Ilyushin three-dimensional stress and strain deviator space (Ilyushin, 

1963), 𝒮3 and ℰ3 respectively. The components of the stress and strain vector �⃗⃗� = 𝑆𝑖�⃗⃗� 𝑖 and �⃗� = 𝑒𝑖�⃗� 𝑖 

(the vectors �⃗⃗� 𝑖 and �⃗� 𝑖 are unit vectors; they are coaxial but have different dimensions) can be defined as 

follows: 

𝑆1 = √3 2⁄ 𝑆𝑥𝑥,    𝑆2 = 𝑆𝑥𝑥 √2⁄ + √2𝑆𝑦𝑦,    𝑆3 = √2𝑆𝑥𝑧 ,  (3.1.1) 

   𝑒1 = √3 2⁄ 𝑒𝑥𝑥,    𝑒2 = 𝑒𝑥𝑥 √2⁄ + √2𝑒𝑦𝑦,    𝑒3 = √2𝑒𝑥𝑧, (3.1.2) 

where 𝑆𝑖𝑗 and 𝑒𝑖𝑗 (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧) denote the stress and strain deviator tensor components. These are: 

𝑆𝑖𝑗 = 𝜎𝑖𝑗 − 𝜎𝛿𝑖𝑗, (3.1.3) 

𝑒𝑖𝑗 = 𝜀𝑖𝑗 − 𝜀𝛿𝑖𝑗, (3.1.4) 

where 𝛿𝑖𝑗 is the Kronecker delta, 

𝜎 =
1

3
∑ 𝜎𝑘𝑘

3

𝑘=1

, (3.1.5) 

𝜀 =
1

3
∑ 𝜀𝑘𝑘

3

𝑘=1

. (3.1.6) 

The length of the vector �⃗⃗�  is related to the second scalar invariant 𝐽2 of the stress deviator tensor as 
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|�⃗⃗� | = 2√3𝐽2. (3.1.7) 

Like the slip concept, the synthetic theory has a two-level nature, i.e., macro deformation is affected by 

the processes occurring on the micro level of the material. In the case of plastic or creep flowing, 

deformation at a point of the body (macrodeformation) is calculated as a sum (three-fold integration) of 

plastic shifts in active slips systems (microdeformations): 

�⃗� = ∭𝜑𝑁�⃗⃗� 𝑑𝑉

𝑉

. (3.1.8) 

In Eq. (3.1.8), 𝜑𝑁 – plastic strain intensity – is an average measure of plastic deformation within one slip 

system, which, according to the Schmidt law, takes place if the resolved shear stress exceeds the material 

yield strength. The orientation of the slip system is defined through the unit vector �⃗⃗� . 𝑑𝑉 is an elementary 

set of slip systems involved in the plastic flow. 

Yield criterion 

In the framework of the synthetic theory, following Sanders' ideas, we work not with a yield surface itself 

but with its tangent planes, i.e., the yield surface is treated as an inner envelope of the tangent planes. 

Therefore, the von-Mises yield criterion, which is adopted in terms of the synthetic theory, 

𝑆1
2 + 𝑆2

2 + 𝑆3
2 = 𝑆𝑆

2, (3.1.9) 

is treated as a set of equidistant planes in all directions (Fig. 3.1a); 𝑆𝑆 = √2 3⁄ 𝜎𝑆, where 𝜎𝑆 is the yield 

strength of material in uniaxial tension. 

Hardening rule 

During loading, the stress vector moves (shifts) at its endpoint (load point) a set of planes from their 

initial position. The movements of the planes located at the endpoint of the vector �⃗⃗�  are translational, i.e., 

the plane orientations remain unchangeable. Those planes which are not at the endpoint of the vector �⃗⃗�  

remain unmovable. 

The plane's displacement at the stress vector's endpoint symbolizes the development of plastic 

microdeformation within the corresponding slip system. Figs. 3.1b and 3.2 show the loading surface for 

the case when the loading trajectory is a straight line (proportional loading). It consists of two parts: a) a 

sphere that is the inner envelope of stationary planes and b) a cone whose generators are formed by the 

boundary planes shifted by the vector �⃗⃗� . The planes shifted by the stress vector are located on the top of 

this cone. 
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The loading surface's transformation described above has a great advantage over the theories where the 

loading surface kinetics is prescribed in advance. 

 

Fig 3.1 Yield and loading surfaces in 𝑆1-𝑆2  coordinate plane. 

 

 

Fig. 3.2 Loading surface in 𝒮3 (planes are not shown). 

The position of the planes is defined via their distances (𝐻𝑁) and unit normal vectors (�⃗⃗� ) as shown in 

Fig. 3.3. 

A brief word about the angle λ (Fig. 3.4). Even though we work with the condition �⃗⃗� ∈ 𝒮3, the planes 

tangential to the five-dimensional yield surface must also be considered. Consider Fig. 3.4 where, for 

simplicity, the yield surface in 𝒮5 is shown as a sphere, and its projection in 𝒮3 is a circle. To distinguish 

between the plane tangential to the yield surface in 𝒮3 (red) and that from 𝒮5 (blue), the angle 𝜆 is 

introduced. 
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Fig. 3.3 Orientation of �⃗⃗�  in 𝒮3. 

The coordinates of the unit vector �⃗⃗�  in 𝒮3 are defined through spherical angels 𝛼, 𝛽, and 𝜆 as follows 

(Rusinko, A and Rusinko, K., 2011) 

𝑁1 = cos𝛼 cos 𝛽 cos 𝜆 , 𝑁2 = sin𝛼 cos 𝛽 cos 𝜆 , 𝑁3 = sin𝛽 cos 𝜆. (3.1.10) 

 

Fig. 3.4 Interplay between the tangent planes from 𝒮5 and 𝒮3. 

Fig. 3.5 demonstrates the notions presented above for the case of one plane. It is assumed that an 

elementary plastic strain vector is perpendicular to the plane translated by the stress vector. The fact that 

a tangent plane is located at the endpoint of the stress vector �⃗⃗�  is expressed by the following relationship: 

𝐻𝑁 = �⃗⃗� ∙ �⃗⃗� . (3.1.11) 

The scalar product �⃗⃗� ∙ �⃗⃗�  determines the resolved shear stress acting within one slip system. It is clear that 

the plane distance 𝐻𝑁 reflects the hardening of the material because the greater 𝐻𝑁 is, the grater �⃗⃗�  is 

needed to reach the plane. 
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Fig. 3.5 Movement of tangent plane at the endpoint of stress vector. 

The elementary set of planes displaced during infinitesimal increment in load is determined by the 

elementary volume 𝑑V standing in Eq. (3.1.8): 

𝑑𝑉 = cos𝛽 𝑑𝛼𝑑𝛽𝑑𝜆. (3.1.12) 

 

Fig. 3.6 Elementary volume of planes expressed via angles 𝛼, 𝛽, and 𝜆. 

Flow rule 

To formulate the flow rule accepted in the framework of the Synthetic theory, the plastic strain intensity 

𝜑𝑁 from Eq. (3.1.8) must be defined. For this purpose, the Synthetic theory proposes the following 

differential equation: 

𝑑𝜓𝑁 = 𝑟𝑑𝜑𝑁 − 𝐾𝜓𝑁𝑑𝑡, (3.1.13) 

where 𝜓𝑁 is defect intensity, 𝑡 is time, 𝑟 is the material constant, and 𝐾 is a function of the homologous 

temperature and the effective stress (see below). 
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The defect intensity reflects an average scalar continuous measure of the number of dislocations, 

vacancies, interstitial defects, and other structural defects that form during inelastic straining in a slip 

system. 

To relate the extent of material's strain hardening (𝐻𝑁) to the development of crystalline grid defects 𝜓𝑁, 

the following relationship is proposed: 

𝜓𝑁 = 𝐻𝑁
2 − 𝐼𝑁

2 − 𝑆𝑃
2 = {

(�⃗⃗� ∙ �⃗⃗� )
2
− 𝐼𝑁

2 − 𝑆𝑃
2 𝑓𝑜𝑟 𝑝𝑙𝑎𝑛𝑒𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑏𝑦 �⃗⃗� : 𝐻𝑁 = �⃗⃗� ∙ �⃗⃗�   

0 𝑓𝑜𝑟 𝑝𝑙𝑎𝑛𝑒𝑠 𝑛𝑜𝑡 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑏𝑦 �⃗⃗� : 𝐻𝑁 > �⃗⃗� ∙ �⃗⃗� 
. (3.1.14) 

In the formula above, the term 𝐼𝑁 is another element affecting the material's hardening, referred to as rate 

integral. 𝐼𝑁 reflects the extent of the crystalline grid distortions induced by the development of crystal 

imperfections. It is defined as 

𝐼𝑁(𝑡) = 𝐵 ∫
𝑑�⃗⃗� 

𝑑𝑠
∙ �⃗⃗� exp(−𝑝(𝑡 − 𝑠))𝑑𝑠

𝑡

0

, (3.1.15) 

where 0 < 𝐵 < 1 and 𝑝 are model constants. 

By integrating in (3.1.15) for the loading regime from Fig. 3.7 (�⃗⃗� ̇ ≥ 0 for 𝑡 ∈ [0, 𝑡𝑀] and �⃗⃗� ̇ = 0 for 𝑡 >

𝑡𝑀) we get the following formulae: 

𝐼𝑁 =
𝐵

𝑝
(�⃗⃗� ̇ ∙ �⃗⃗� ) [1 − exp(−𝑝𝑡)], 𝑡 ∈ [0, 𝑡𝑀] (3.1.16) 

𝐼𝑁 =
𝐵

𝑝
(�⃗⃗� ̇ ∙ �⃗⃗� ) [exp(𝑝𝑡𝑀) − 1]exp(−𝑝𝑡),     𝑡 ≥ 𝑡𝑀 (3.1.17) 

 

Fig. 3.7 𝐼𝑁 ~ 𝑡  plot (𝑆 is the length of the stress vector). 

The formulae (3.1.16) and (3.1.17) mirror temporary deformation properties of materials as a function of 

the loading rate �⃗⃗� ̇, namely: 
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1) During active loading (�⃗⃗� ̇ ≥ 0), when the number of tangled and locked dislocations increases 

monotonically, the rate integral grows, expressing the increase in the crystalline grid distortion. 

Therefore, Eq. (3.1.16) correctly reflects the well-known fact that the distortion's extent directly depends 

on the loading rate. 

2) Under constant stress (�⃗⃗� ̇ = 0), 𝐼𝑁 decreases, reflecting the reduction of the crystalline grid distortion 

– favorable conditions arise to unlock the dislocations from their obstruction toward more favorable 

energetic positions, i.e., material relaxation/recovery takes place. The condition 𝐼𝑁 → 0 implies that 

𝜓𝑁(𝑡) =  const in Eqs. (3.1.14), indicating that recovery balances hardening. A condition like this is 

typical for steady-state creep; therefore, the transition between primary and secondary creep can be 

expressed as 𝐼𝑁 → 0. 

Now, we can explain the term 𝑆𝑃 from (3.1.14) and relate it to the yield strength 𝑆𝑆. 𝑆𝑃 is the yield strength 

of a material as the loading rate tends to zero; its other name is creep limit. 𝑆𝑆. and 𝑆𝑃 are related to each 

other as 

𝑆𝑆
2 = 𝑆𝑃

2 + 𝐼𝑁
2 . (3.1.18) 

Table 3.1 shows the units of the terms included in the formulae (3.1.13) -(3.1.15) 

Table 3.1 Units in terms of the synthetic theory 

Quantity Unit 

𝐻𝑁 MPa 

𝜓𝑁 MPa2 

𝜑𝑁 1 

𝑟 MPa2 

𝐾 s−1 

𝑝 s−1 

𝐵 1 

 

3.2 Partial cases 

Let us examine the constitutive relationship of the synthetic theory (3.2.3) for different types of 

deformation 

I. Steady-state creep 

Since a balance between the work hardening and recovery processes is peculiar to the secondary creep, 
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the defect intensity is assumed to be constant, 𝜓𝑁(𝑡) =  const. As a result, 𝑑𝜓𝑁 = 0, and Eq. (3.1.13) 

leads to a constant value of the strain intensity rate: 

𝑟�̇�𝑁 = 𝐾𝜓𝑁 = const, (3.2.1) 

or 

𝑟𝜑𝑁 = 𝐾𝜓𝑁𝑡. (3.2.2) 

This formula, together with (3.1.8), models a linear portion on the 𝜀~𝑡 creep diagram. The slope of the 

secondary creep diagram is regulated by the function 𝐾, which is defined as (Rusinko, A. and Rusinko, 

K., 2011) 

𝐾 = 𝐾1(𝑇)𝐾2(𝜏0), 𝐾1 = exp (−
𝑄

𝑅𝑇
), 

𝐾2 =
9√3𝑐𝑟

2√2𝜋
𝜏0

𝑘−2 , 𝑐 and 𝑘 = const, 

(3.2.3) 

where 𝑄 is the creep activation energy, and 𝜏0 is effective stress. 

II. Primary creep deformation 

The integration in (3.1.13) gives 

𝑟𝜑𝑁 = 𝜓𝑁 + 𝐾 ∫ 𝜓𝑁𝑑𝑡
𝑡

0

. (3.2.4) 

Since, as it was found out above, the term 𝐾 governs the secondary creep rate (which, as well known, 

takes extremely small values), the second term on the right-hand side of Eq. (3.2.4) can be ignored as 

primary creep deformation is considered alone. If so, we obtain 

𝑟𝜑𝑁 = 𝜓𝑁 , (3.2.5) 

The temporary change in the strain rate 𝜑𝑁 is governed by the rate integral 𝐼𝑁 included in 𝜓𝑁. 

III. Plastic deformation 

As the duration of plastic deformation is far less than that in creep condition (𝑡 → 0), we can ignore the 

rate integral 𝐼𝑁 in the formula for the defect intensity (3.1.14). In this case, we write down Eq. (3.2.5) as 

𝑟𝜑𝑁 = 𝜓𝑁 = (𝐻𝑁
2 − 𝑆𝑆

2). (3.2.6) 

IV. Stress relaxation 
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After complete or partial unloading, when the increment in permanent deformation is terminated, 𝑑𝜑𝑁 =

0, Eq. (3.1.13) becomes 

𝑑𝜓𝑁 = −𝐾𝜓𝑁𝑑𝑡. (3.2.7) 

This formula correctly mirrors the processes occurring in the work-hardened crystalline grid after 

removing the external load. Namely, the temporary relaxation processes occurring via the annihilation 

of opposite-sign dislocations, grain boundary collapse, lowering the effectiveness of barriers to hinder 

dislocation motion, etc. 

In summary, as shown above, the synthetic theory, via the sole equation (3.1.13), covers a large circle of 

the material deformation states: 

a) plastic straining (3.2.6), 

b) primary (3.2.5) and secondary (3.2.1) creep, 

c) defect relaxation (3.2.7). 

The use of Eq. (3.2.4) can be found in Rusinko's paper (2015), where modeling the deformation of 

materials with low melting points, such as tin, at room temperature is considered. 

Once again, it must be emphasized that in terms of the Synthetic theory, a single term is used – 

irrecoverable deformation –which manifests itself as an "instantaneous" or time-dependent deformation 

depending on the concrete loading/temperature regime. 

3.3 The isotropy postulate and formulae for uniaxial stress states 

According to Ilyushin (1963), the isotropy postulate reads that if the stress path is rotated in the stress 

deviator space, then the corresponding strain path is rotated by the same amount (this postulate is valid 

only for von Mises' medium). 

Consider an arbitrary loading path as shown in Fig. 3.8. Let the corresponding strain vector be �⃗� , which 

makes angle 𝜂 with the stress vector �⃗⃗� . Now, we rotate the loading path by a certain angle, 𝛿. To 

demonstrate the fulfillment of the isotropy postulate, we rotate the coordinate system by the same angle 

𝛿. Within the rotated coordinate system, we obtain an analog of the previous loading, and therefore, it is 

easy to conclude that the angle between vectors �⃗⃗� ′ and �⃗� ′ must be the same as in the initial case. It is 

clear that the strain value strongly depends on the inner geometry of the loading path, but the rotation of 

the loading path as a rigid figure does not affect the relationship between vectors �⃗⃗�  and �⃗�  and �⃗⃗� ′ and �⃗� ′ 
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at any point of loading trajectory. 

 

Fig. 3.8 On the postulate of isotropy 

Consider two uniaxial stress states, torsion (pure shear) and tension. For the former, according to 

Eq. (3.1.1), the stress vector has coordinate �⃗⃗� (0,0, √2𝜏), i.e., is aligned along the 𝑆3-axis. For the latter, 

the stress vector �⃗⃗� (√2 3⁄ 𝜎, 0,0) elongates along the 𝑆1-axis. The loading surfaces for the considered 

stress states, Fig. 3.9, show that the loading surface for tension can be obtained from that for pure shear 

by rotating the latter as a rigid object. Consequently, the postulate of isotropy can be utilized, and the 

formulae derived for the tension can be directly used for the uniaxial tension. 

Pure shear is more convenient for the integration in (3.1.8) due to the formula for the plane distance 

(3.1.11), together with (3.1.10), 

𝐻𝑁 = 𝑆3𝑁3 = √2𝜏 sin 𝛽 cos 𝜆, (3.3.1) 

does not contain angle 𝛼, and instead of triple integral, we have double integral over angles 𝛽 and 𝜆. In 

the case of plastic deformation, Eqs. (3.3.1), (3.2.6) and (3.1.8) give 

𝑒3 = 2𝜋 ∫ ∫ 𝜑𝑁𝑁3𝑑𝑉

𝛽𝜆

=
4𝜋

𝑟
∫ ∫ [(𝜏 sin 𝛽 cos 𝜆)2 − 𝜏𝑆

2]sin 𝛽 cos 𝜆 cos 𝛽

𝜋 2⁄

𝛽1

𝑑𝛽𝑑𝜆

𝜆1

0

, (3.3.2) 

where 𝜏𝑆 is the yield strength of material in pure shear. 
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A B 

Fig. 3.9 Loading surfaces for torsion (A) and tension (B) 

According to the isotropy postulate, the formulae above hold if to replace the 𝑆3 by 𝑆1 and 𝜏𝑆 by 𝜎𝑆 √3⁄  

(the von Mises medium): 

𝑟𝜑𝑁 =
2

3
[(𝜎 sin 𝛽 cos 𝜆)2 − 𝜎𝑆

2], (3.3.3a) 

𝑒1 =
2𝜋

𝑟
∫ ∫ 𝜑𝑁 sin 𝛽 cos 𝜆 cos 𝛽 𝑑𝜆𝑑𝛽

𝜆2

0

=

𝜋 2⁄

𝛽2

=
4𝜋

3𝑟
∫ ∫ [(𝜎 sin 𝛽 cos 𝜆)2 − 𝜎𝑆

2]sin 𝛽 cos 𝜆 cos𝛽

𝜋 2⁄

𝛽1

𝑑𝛽𝑑𝜆

𝜆1

0

=
4𝜋𝜎𝑆

2

3𝑟
∫ ∫ [

sin2𝛽cos2𝜆

𝑏2
− 1] sin 𝛽 cos 𝜆 cos 𝛽

𝜋 2⁄

𝛽1

𝑑𝛽𝑑𝜆

𝜆1

0

. 

(3.3.3b) 

The boundary value 𝜆1 and 𝛽1 are defined from the conditions 𝜓𝑁 = 0 and 𝜆 = 0 (Rusinko, A. & 

Rusinko, K., 2009, 2011): 

sin 𝛽1 =
𝜎𝑆

𝜎
≡ 𝑏,    cos 𝜆1 =

𝜎𝑆

𝜎 sin 𝛽
. (3.3.4) 

Integrating (3.3.3) for the boundary (3.3.4) yields 

𝑒1 = 𝑎0Φ(𝑏), (3.3.5) 

𝑎0 =
𝜋𝜎𝑆

2

9𝑟
,  (3.3.6) 
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Φ(𝑏) =
1

𝑏2
[2√1 − 𝑏2 − 5𝑏2√1 − 𝑏2 + 3𝑏4ln

1 + √1 − 𝑏2

𝑏
]. (3.3.7) 

Total elastoplastic deformation for the case of a uniaxial stress state is calculated as 

𝑒 = 𝑎0Φ(𝑏) +
𝜎

𝐸
 (3.3.8) 

Fig. 3.10 shows the plot of Φ(𝑏), a monotone decreasing function of 𝑏. Therefore, the increase in 𝜎 

implies the decrease in the 𝑏 , which, in turn, means the growth of Φ and, consequently, deformation. 

 

Fig. 3.10 Φ(𝑏) plot 

Creep deformation 

Again, consider the case of uniaxial tension when the stress vector components (3.1.1) are (𝑆1, 0,0), 𝑆1 =

√2 3⁄ 𝜎. Eq (3.1.14), together with (3.1.15), takes the following form (Rusinko, A. & Rusinko, K., 2011): 

𝑟𝜑𝑁 = 𝜓𝑁 =
2

3
[(𝜎 sin 𝛽 cos 𝜆)2 − (𝐼 sin 𝛽 cos 𝜆)2 − 𝜎𝑃

2] = (𝑆1
2 − 𝐼2)Ω2 − 𝑆𝑃

2

= 𝑆𝑃
2 (

Ω2

𝑏2
− 1), 

(3.3.9) 

where Ω = sin 𝛽 cos 𝜆, 𝐼 = 𝐵 ∫ �̇�1
𝑡

0
𝑒−𝑝(𝑡−𝑠)𝑑𝑠, 

𝑏 =
𝑆𝑃

√𝑆1
2 − 𝐼2

=
𝜎𝑃

𝜎√1 − 𝐵2𝑒−2𝑝𝑡
. (3.3.10) 

The incremental form of (3.1.13) is 

Δ𝜓𝑁 = 2(𝑆1Δ𝑆1 − 𝐼Δ𝐼)Ω2. (3.3.11) 

Here we use the symbol Δ to distinguish the increments due to the acting stress and time from those over 

angles (𝑑) in integral (3.1.8). Eqs. (3.3.9) and (3.1.13) give 
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𝑟Δ𝜑𝑁 = 2(𝑆1Δ𝑆1 − 𝐼Δ𝐼)Ω2 + 𝐾𝑆𝑃
2 (

Ω2

𝑏2
− 1)Δ𝑡. (3.3.12) 

Simple manipulations lead to 

𝑟Δ𝜑𝑁 = 𝑆𝑃
2Δ(

Ω2

𝑏2
− 1) + 𝐾𝑆𝑃

2 (
Ω2

𝑏2
− 1) Δ𝑡. (3.3.13) 

Integration in (3.1.8) with (3.3.13) gives the deformation increment as 

Δ𝑒 =
1

𝑟
∭[𝑆𝑃

2Δ(
Ω2

𝑏2
− 1) + 𝐾𝑆𝑃

2 (
Ω2

𝑏2
− 1)Δ𝑡] Ω cos 𝛽 𝑑𝛼𝑑𝜆𝑑𝛽 = 𝑎0(ΔΦ + 𝐾ΦΔ𝑡),

𝛼𝛽𝜆

 (3.3.14) 

where 𝑎0 and Φ are expressed via (3.3.6) and (3.3.7) because the integrands in (3.3.14) are identical to 

that in (3.3.3b), with the only difference being that now 𝑏(𝑡) is defined via (3.3.10). 

Finally, creep deformation in uniaxial tension, Eq. (3.2.4), takes the following form: 

𝑒 = 𝑎0 [Φ(𝑏) + ∫𝐾Φ(𝑏)𝑑𝑡

𝑡

𝑡𝑆

], (3.3.15) 

where 𝑡𝑆 is the instant of the start of plastic deformation. 

To model the creep deformation alone, we subtract from the formula above the value of plastic 

deformation: 

𝑒𝐶𝑟𝑒𝑒𝑝 = 𝑎0 [Φ(𝑏) − Φ(𝑏𝑀) + ∫𝐾Φ(𝑏)𝑑𝑡

𝑡

𝑡𝑀

], (3.3.16) 

where 𝑏𝑀 is calculated by (3.3.10) at the end of active loading, 𝑡 = 𝑡𝑀 (Fig. 3.7). 

We can write the formula above as 

𝑒𝐶𝑟𝑒𝑒𝑝 = 𝑎0 [Φ(𝑏) − Φ(𝑏𝑀) + 𝐾 ∫(Φ(𝑏) − Φ(
𝑆𝑃

𝑆1
))𝑑𝑡

𝑡

𝑡𝑀

+ 𝐾Φ(
𝑆𝑃

𝑆1
) (𝑡 − 𝑡𝑀)], (3.3.17) 

where fraction 𝑆𝑃 𝑆1⁄  is obtained from 𝑏 as 𝐼 → 0, i.e., it corresponds to the secondary creep. 

So, we decompose the creep deformation into two portions, primary and secondary: 
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𝑒𝐶𝑟𝑒𝑒𝑝 = 𝑒𝐶𝑟𝑒𝑒𝑝I + 𝑒𝐶𝑟𝑒𝑒𝑝II

= 𝑎0 [Φ(𝑏) − Φ(𝑏𝑀) + 𝐾 ∫(Φ(𝑏) − Φ(
𝑆𝑃

𝑆1
))𝑑𝑡

�̃�

𝑡𝑀

] + 𝑎0𝐾Φ(
𝑆𝑃

𝑆1
) (𝑡 − 𝑡𝑀), 

(3.3.18) 

where �̃� is the moment of the transition to stationary creep. 

Since the active loading and primary creep account for a small portion of the whole duration of creep 

experiments, we simplify the above equation as follows: 

𝑒𝐶𝑟𝑒𝑒𝑝 = 𝑎0 [Φ(𝑏) − Φ(𝑏𝑀) + 𝐾Φ(
𝑆𝑃

𝑆1
) 𝑡]. (3.3.19) 

Further througout, we use  

𝑒𝐶𝑟𝑒𝑒𝑝I = 𝑎0[Φ(𝑏) − Φ(𝑏𝑀)] (3.3.20) 

and 

𝑒𝐶𝑟𝑒𝑒𝑝II = 𝑎0𝐾Φ(
𝑆𝑃

𝑆1
) 𝑡. (3.3.21) 

 

3.4 Mathematical model of deformation under phase transformations (PT) 

As SMAs find ever-wider applications, the challenge of predicting their behavior when thermal and/or 

mechanical loadings are applied emerges. Numerous mathematical models have been developed to 

explain the deformation of SMAs (Liang et al., 1997, Muller ,1979,1980,1985, 1987, Achenbach et al., 

1986). It is important to highlight the V.A. Lichachov and V.G. Malinin (1993) monographs since certain 

key ideas from them were used to create the model of PT-induced deformation using the synthetic theory 

presented in the following works: Goliboroda et al. (1999), Rusynko and Shandrivskyi (1996), Rusinko, 

A., and Rusinko, K. (2011). The following are the central tenets of this theory regarding phase 

transformations. 

To apply Eq. (3.1.8) to the description of deformations induced by phase transformations, we relate the 

strain intensity rate to the rate of martensite fraction (Φ): 

𝑟�̇�𝑁 = Φ̇, (3.4.1) 

where 𝑟 is the model constant. We define Φ̇ as 
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Φ̇ = −
�̇�𝑒

𝑀𝑠 − 𝑀𝑓
, (3.4.2)  

where 𝑀𝑠 and 𝑀𝑓 are the martensite start and finish temperatures, respectively, and �̇�𝑒 is the rate of 

effective temperature, which will be defined below. Formula (3.4.2) holds for martensitic transformation 

at 

�̇�𝑒 < 0  and  𝑀𝑓 < 𝑇𝑒 < 𝑀𝑠. (3.4.3)  

For austenitic transformation, we write 

Φ̇ = −
�̇�𝑒

𝐴𝑓 − 𝐴𝑠
, �̇�𝑒 > 0  and  𝐴𝑠 < 𝑇𝑒 < 𝐴𝑓 , (3.4.4)  

where 𝐴𝑠 and 𝐴𝑓 are the austenite start and finish temperatures, respectively. 

Formulae (3.4.2)-(3.4.4) give a linear relationship between the martensite fraction and effective 

temperature, which is widely accepted in the scientific community (Fig. 3.11). 

 

Fig. 3.11 Φ ∼ 𝑇𝑒 graph plotted via Eqs. (3.4.2) -(3.4.4) 

In Eq. (3.4.4), 𝑇𝑒 is effective temperature proposed in terms of the structural-analytic model by 

Likhachov, V.A. and Malinin, V. G. (1993), through the Clausius-Clapeyron equation, as 

𝑇𝑒 = 𝑇(1 − 𝐷�⃗⃗� ∙ �⃗⃗� ), (3.4.5)  

where 𝐷 is the model constant. Eq. (3.4.5) enables one to account for the shift of the characteristic 

temperatures caused by loading. Summarising, formulae (3.4.2)-(3.4.5) define the amount of martensite 

as a single-valued function of temperature and acting load. The scalar product �⃗⃗� ∙ �⃗⃗�  gives the resolved 

shear stress acting in the element with �⃗⃗� -orientation. This fact reflects the well-known fact that external 

load manifests differently depending on how preferable the element's/slip system's orientation is. 

Austenite transformation 
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Differentiating in (3.4.5), formulae (3.4.1) and (3.4.4) give 

𝑟�̇�𝑁 = −�̇�𝑒 = −�̇�(1 − 𝐷�⃗⃗� ∙ �⃗⃗� ) + 𝐷𝑇�⃗⃗� ̇ ∙ �⃗⃗� . (3.4.6)  

In the formula above, the constant 𝑟 includes 𝐴𝑓 − 𝐴𝑠. 

Consider austenitic transformation on heating when the material is under the action of constant stress, 

�⃗⃗� ̇ = 0.Eq.  (3.4.6) gives 

𝑟�̇�𝑁 = −�̇�(1 − 𝐷�⃗⃗� ∙ �⃗⃗� ) (3.4.7)  

Let us apply the above formula for the case of uniaxial tension (Fig. 3.12) when the stress vector, 

according to (3.1.1), has only one non-zero component, 𝑆1 = √2 3⁄ 𝜎 ≡ 𝑆 = 𝑐𝑜𝑛𝑠𝑡. We have 

𝑟�̇�𝑁 = −�̇�(1 − 𝐷𝑆 sin 𝛽 cos 𝜆). (3.4.8) 

 

Fig. 3.12 Strain-temperature diagram in austenite transformation 

The effective temperature from (3.4.5) for uniaxial tension is 

𝑇𝑒 = 𝑇(1 − 𝐷𝑆 sin 𝛽 cos 𝜆). (3.4.9)  

Fig. 3.13 demonstrates the change in effective temperature from (3.4.9) for differently orientated 

elements (for simplicity, we set 𝜆 = 0). As one can see, the start and finish of the transformation strongly 

depend on the orientation of the element we consider. 

On integrating in (3.4.8), we have 

 

𝑟𝜑𝑁 = −𝑇(1 − 𝐷𝑆 sin 𝛽 cos 𝜆) + 𝐶. (3.4.10) 
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Fig. 3.13 Effective temperature for different directions (𝑆 = const). 

The integration constant 𝐶 is determined from the condition that the austenite reaction terminates (𝜑𝑁 =

0) as the effective temperature reaches the austenite finish temperature, 𝐴𝑓. Since the transformation 

completion takes place at 𝛽 = 𝜋 2⁄  and 𝜆 = 0, we can calculate the austenitic transformation finish 

temperature, 𝑇𝑓. Equating 𝑇𝑒 from (3.4.9) for the specified angle values to 𝐴𝑓, we obtain 𝑇𝑓 =

𝐴𝑓 (1 − 𝐷𝑆)⁄ . Now, Eq. (3.4.10) at 𝜑𝑁 = 0, 𝑇 = 𝑇𝑓, 𝛽 = 𝜋 2⁄ , and 𝜆 = 0 gives 𝐶 = 𝐴𝑓. So 

Fig. 3.14 schematically shows the 𝜑𝑁~𝑇 graphs plotted with Eq. (3.4.11) for different values of 𝛽. 

Again, it is easy to see that different elements are involved in the transformation for different temperature 

ranges. Fig. 3.14 demonstrates the 𝜑𝑁~𝛽 graphs plotted with Eq. (3.4.11) for different effective 

temperatures. As one can see, at the start of the austenite transformation, 𝜑𝑁 takes non-zero values over 

the whole diapason of angle 𝛽 (lines 1 and 2). As the temperature increases, the domain of angles 𝛽 with 

positive strain intensities decreases and finally shrinks into the point 𝛽 = 𝜋 2⁄  where Φ = 0. The 

boundary values of angles 𝜆 and 𝛽 (points 1, 1′, 1′′ for lines 3-5) are obtained from conditions 𝜑𝑁 = 0 

and 𝜆 = 0: 

Here, we assume that 𝑇 > 𝐴𝑓; for 𝑇 < 𝐴𝑓 we let 𝛽1 = 0 and 𝜆1 = 𝜋 2⁄ . 

Therefore, the initial stage of the martensite-austenite transition is described by Eq. (3.1.8) with the 

integration diapason 0 ≤ 𝛼 ≤ 2𝜋, 0 ≤ 𝛽 ≤ 𝜋/2, and 0 ≤ 𝜆 ≤ 𝜋/2 (lines 1 and 2 in Fig. 3.15), and in 

the course of temperature increase, when the domain of non-zero strain intensities shrinks (lines 3-5 in 

Fig. 3.15), the integral (3.1.8) becomes 

𝑟𝜑𝑁 = −(𝑇 − 𝐴𝑓) + 𝑇𝐷𝑆 sin 𝛽 cos 𝜆. (3.4.11)  

cos 𝜆1 =
1

𝐷𝑆 sin 𝛽
(1 −

𝐴𝑓

𝑇
) , sin 𝛽1 =

1

𝐷𝑆
(1 −

𝐴𝑓

𝑇
). (3.4.12)  
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𝑒 = ∫ ∫ ∫ 𝜑𝑁 sin 𝛽 cos 𝜆 cos 𝛽 𝑑𝛼𝑑𝛽𝑑𝜆

𝜋 2⁄

𝛽1

𝜆1

0

2𝜋

0

. (3.4.13)  

 

 

Fig. 3.14 𝜑𝑁~𝑇 plots for different angles 𝛽 (𝜆 = 0, 𝑆 = const). 

 

Fig. 3.15 𝜑𝑁~𝛽 plots for different effective temperatures (𝜆 = 0, 𝑆 = const). 

Martensite transformation (pseudoelastic deformation) 

Consider a material in a full austenite state at a constant temperature 𝑇0. To induce martensite 

transformation, we apply load to the material, and the martensite fraction will increase according to 

Eq. (3.4.2) starting from the condition that the effective temperature achieves the martensite start 

temperature 𝑀𝑠. Eqs. (3.4.1), (3.4.2), and (3.4.5) in uniaxial tension give  

𝑇𝑒 = 𝑇0(1 − 𝐷𝑆 sin 𝛽 cos 𝜆), (3.4.14)  

𝑟𝜑𝑁 = 𝑀𝑠 − 𝑇𝑒 = 𝑀𝑠 − 𝑇0(1 − 𝐷𝑆 sin 𝛽 cos 𝜆). (3.4.15)  
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In the formula (3.4.15), the constant 𝑟 includes 𝑀𝑠 − 𝑀𝑓. 

First, derive a formula for the first value of tensile stress (𝑆𝛷) inducing martensitic transformation in the 

material (Fig. 3.16). Equating the minimum value of 𝑇𝑒 from (3.4.14) – 𝛽 = 𝜋 2⁄  and 𝜆 = 0 – to 𝑀𝑠, we 

obtain 

𝑆𝛷 =
1

𝐷
(1 −

𝑀𝑠

𝑇0
). (3.4.16)  

 

Fig. 3.16 Pseudoelastic stress-strain diagram 

The range of the angles 𝛽 and 𝜆 giving positive values for 𝜑𝑁 from (3.4.15) are 

𝛽1 ≤ 𝛽 ≤ 𝜋 2⁄  and 0 ≤ 𝜆 ≤ 𝜆1, (3.4.17)  

where 𝜆1 and 𝛽1 are calculated from conditions 𝜑𝑁 = 0 and 𝜆 = 0, respectively: 

cos 𝜆1 =
1

𝐷𝑆 sin 𝛽
(1 −

𝑀𝑠

𝑇0
) , sin 𝛽1 =

1

𝐷𝑆
(1 −

𝑀𝑠

𝑇0
). (3.4.18)  

Outside the range (3.4.17), we set 𝜑𝑁 = 0. 

Substituting the strain intensity 𝜑𝑁 from formula (3.4.15) to Eq. (3.1.8), we get the pseudoelastic strain 

component in uniaxial tension (𝑒1 ≡ 𝑒) as 

𝑒 =
2𝜋

𝑟
∫ ∫ [𝑀𝑠 − 𝑇0(1 − 𝐷𝑆 sin 𝛽 cos 𝜆)] sin 𝛽 cos 𝜆 cos 𝛽 𝑑𝛽𝑑𝜆

𝜋 2⁄

0

𝜋 2⁄

0

 (3.4.19)  

The factor 2𝜋 stands here because Equation (3.4.15) does not contain angle 𝛼. 
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Fig. 3.17 Development of martensite transformation in the angle coordinates. 

Fig. 3.17 explains what angles give positive values of the strain intensity during the integration by 

formula (3.4.19). In the initial stages of transformation (Fig. 3.17a), the integration is conducted on the 

angle range determined via Equations (3.4.17) and (3.4.18) as 

𝑒 =
2𝜋

𝑟
∫ ∫ [𝑀𝑠 − 𝑇0(1 − 𝐷𝑆 sin 𝛽 cos 𝜆)] sin 𝛽 cos 𝜆 cos 𝛽 𝑑𝛽𝑑𝜆

𝜋 2⁄

𝛽1

𝜆1

0

 (3.4.20)  

At the same time, as Φ becomes equal to 1 for given microvolumes, the further development of martensite 

transformation terminates, and there is no further increment in the deformation for these directions (Fig. 

3.16b, domain Φ = 1 ). When the condition Φ = 1 extends to the whole range of angles – 0 ≤ 𝛽 ≤ 𝜋 2⁄ , 

and 0 ≤ 𝜆 ≤ 𝜋 2⁄  – we obtain a fully martensitic state of the material. The further increase in the loading 

will result in elastic deformation only. The first moment (stress 𝑆𝑓) when the condition Φ = 1 fulfills is 

calculated from Equation (3.4.14) by letting 𝑇𝑒 = 𝑀𝑓 at 𝛽 = 𝜋 2⁄  and 𝜆 = 0: 

𝑆𝑓 =
1

𝐷
(1 −

𝑀𝑓

𝑇0
). (3.4.21)  

 

Summary 

Beyond the problems considered above, Synthetic theory has proved itself a powerful tool for modeling 

a wide range of non-classical problems such as negative creep, the creep delay, the Feigin phenomena, 

the Haazen-Kelly effect, and the impact of direct current on inelastic deformation (Rusinko, A., 

2012,2014 and 2016; Rusinko, A., Varga, P. 2018 and 2019; Varga, P., Rusinko, A., 2019). 

My next chapter is devoted to extending Synthetic theory to the mathematical description of the inelastic 

deforming of metals in the ultrasonic field.  
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Chapter IV. Extension of the Synthetic theory to the ultrasound-

assisted inelastic deformation 

 

This chapter aims to model phenomena recorded in the experiments from Chapter II: ultrasound-assisted 

plastic and creep deformation and deformation during phase transformation. To accomplish this goal, a 

new term – common designation 𝑈 – is entered into the equation that governs the development of the 

carriers of inelastic deformation, the defects of the crystalline grid. The logic for the presentation of 𝑈 is 

dictated by the kinematics of the nucleation and multiplication of the crystal’s imperfections in the 

ultrasound field. According to numerous experiments, see Figs. 2.7-2.10, ultrasonic defect intensity 

increases as a function of the ultrasonic energy intensity and time. A power function can model the impact 

of the former factor. The latter can be mathematically described through an exponential function, which 

mirrors that the ultrasonic defect intensity comes to saturation with sonication time. Therefore, the term 

𝑈 , responsible for the inelastic deformation superimposed by acoustic vibrations, is a product of 

ultrasound energy (power function) and sonication duration (exponential function). 

 

4.1 Extension of the Synthetic theory to the case of plastic deformation with 

ultrasonic temporary and residual phenomena 

 

In order to model the effects of ultrasound on the plastic straining of metals, we extend Eqs. (3.1.14) by 

two terms, 𝑈𝑡 and 𝑈𝑟, as follows 

𝜓𝑁𝑈 = 𝐻𝑁
2 + 𝑈𝑡

2 + 𝑓(𝛾)𝑈𝑟
2 − 𝑆𝑆

2, (4.1.1) 

where 𝛾 is stacking fault energy. Now Eq. (3.2.6) – flow rule within one slip system – gets 

𝑟𝜑𝑁𝑈 = 𝐻𝑁
2 + 𝑈𝑡

2 + 𝑓(𝛾)𝑈𝑟
2 − 𝑆𝑆

2. (4.1.2) 

The term 𝑈𝑡 reflects the temporary softening action of ultrasound because its presence in the formula 

above makes it possible to maintain a given value of strain intensity at less value of unidirectional stress 

�⃗⃗� . We define 𝑈𝑡 as 
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𝑈𝑡 = 𝐴1𝑈
𝐴2(2 − 𝑒−𝑝𝑡)(�⃗⃗� ∙ �⃗⃗� ),    𝑡 ∈ [0, 𝜏] (4.1.3) 

where 𝑈 is ultrasonic energy density J m3⁄ , �⃗⃗�  is a unit vector indicating the vibration mode (longitudinal, 

torsional, etc.). For longitudinal sonication, the �⃗⃗�  vector has (1,0,0) coordinates in 𝒮3. The ultrasonic 

energy is readily expressed via vibration- or stress-amplitude ( 𝐴  and  𝜎𝑚 , respectively: 𝑈 =

(1 2⁄ )𝜌𝐴2𝜔2 and 𝜎𝑚 = 𝐸𝐴𝜔/𝑐; Fitzpatrick (2018)). Further, 𝜏 is the sonication duration, and 𝑝 and 𝐴𝑘 

(𝑘 = 1,2 ) are model constants. If to denote through �⃗⃗⃗�  the vector 𝐴1𝑈
𝐴2(2 − 𝑒−𝑝𝑡)�⃗⃗� , Eq. (4.1.3) 

becomes 𝑈𝑡 = �⃗⃗⃗� ∙ �⃗⃗� , i.e., the action of ultrasound is presented by a vector whose component depends on 

acoustic energy/vibration amplitude and time. 

Eq. (4.1.3) reflects numerous studies carried out on many metals (zinc, cadmium, aluminum, copper, and 

steel (Bagherzadeh et al. (2015), Geibler et al. (2009), Huang et al. (2009), Lum et al. (2009), Yao et al. 

(2012), Zhou et al. (2018)). They report that the magnitude of ultrasonic temporary softening depends on 

the vibration amplitude. According to this, we relate the temporary softening effect to the ultrasonic 

energy (stress amplitude) via power function, 2𝐴1𝑈
𝐴2. Further, the product 𝐴1𝑈

𝐴2𝑒−𝑝𝑡 corresponds to 

the temporary multiplication of ultrasound-induced defects (𝜓𝑁𝑈), which is proposed in Rusinko’s early 

work (2011). The 𝑒−𝑝𝑡  function reflects the well-known fact that the number of ultrasound defects 

increases with time and then reaches a plateau (Tyapunina et al.,1982, Kulemin, 1978). Therefore, 

Eq. (4.1.3) is of dual nature. On the one hand, the ultrasound defects harden the material, but on the other 

hand, they become centers of softening processes. As evident from (4.1.3), since the term (2 − 𝑒−𝑝𝑡) is 

always positive, the net effect is a prevalence of softening mechanisms during simultaneous action of 

unidirectional and oscillating load. 

We define 𝑈𝑟 as 

𝑈𝑟 = ℎ(𝜀 − 𝑈) × 𝐴3 ∫𝑈𝐴4𝑑𝑡

𝜏

0

, (4.1.4) 

where ℎ is the Heaviside step function, 𝜀 is any positive infinitesimally small number so that ultrasound 

of any intensity results in a negative value of 𝜀 − 𝑈 difference. The presence of ℎ(𝜀 − 𝑈) function means 

that the term 𝑈𝑟 takes effect only after the ultrasound is off. Again, we propose a power function to 

express the dependence of ultrasonic residual hardening upon the ultrasound intensity with model 

constants 𝐴3 and 𝐴4. At the same time, the intensity of sonication is not the only parameter governing 

the magnitude of the hardening effect. Namely, the duration of sonication plays a vital role as well. In 

other words, the time-integral in (4.1.4) reflects the time-dependent magnitude of ultrasonic energy 

injected into the material. Summarizing, 𝑈𝑟 reflects a post-sonicated defect pattern leading to the change 

in material characteristics/response after the acoustoplasticity. 
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Fig. 4.1 demonstrates the temporary behavior of functions 𝑈𝑡 and 𝑈𝑟, which is based on Eqs. (4.1.3) and 

(4.1.4). For vibrating-assisted deformation, 𝑡 ∈ [0, 𝜏], 𝑈𝑡 increases in the way prescribed by (4.1.3). At 

the same time, due to ℎ = 0, 𝑈𝑟 = 0 for  𝑡 ∈ [0, 𝜏]. For the post-sonication period, we have an opposite 

situation. While, due to 𝑈 = 0  for 𝑡 > 𝜏 , 𝑈𝑡 = 0 , the integral from (4.1.4) gives a nonzero value 

(ℎ(𝜀) = 1 ⇒ 𝑈𝑟 > 0). 

 

Fig.4.1 Temporary and residual terms in Eq. (4.1.2) as a function of ultrasonic action 

 

Fig.4.2 𝑓(𝛾) function 

The effect from the product 𝑓(𝛾)𝑈𝑟
2 in Eq. (4.1.2) depends on its sign. If to define 𝑓(𝛾) as a decreasing 

function of 𝛾, see its schematical plot in Fig. 4.2, it takes a negative value for high stacking fault energies. 

In this case, we obtain the case of residual ultrasonic hardening because the negative term 𝑓(𝛾)𝑈𝑟
2 in 

Eq. (4.1.2) suppresses the development of plastic slips 𝜑𝑁𝑈. Or vice versa, for positive values of 𝑓(𝛾), 

which is typical for materials with small 𝛾, we arrive at the case of residual softening. Alas, so far, there 

is not enough experimental data on the effect of SFE upon the post-sonicated deformation for a wide 
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range of metals. If so, further we propose a linear relationship for 𝑓(𝛾), when the comparison between 

the plastic deformation of titanium and aluminum will be studied. 

 

4.1.1 Acoustoplasticity 

Now, let ultrasound inspect how formula (4.1.2) works at points 𝐴1, 𝐴2 ⋯ in Fig. 2.18. 

As vibration starts, formulae (4.1.2) and (4.1.3) at 𝑡 = 0 give for uniaxial stress state (e.g., ultrasound-

assisted compression or tension) 

𝑟𝜑𝑁𝑈 = 𝐻𝑁
2 + 𝑈𝑡

2 − 𝑆𝑆
2 = 

= (�⃗⃗� ∙ �⃗⃗� )
2
+ [𝐴1𝑈

𝐴2(�⃗⃗� ∙ �⃗⃗� )]
2
− 𝑆𝑆

2 = 

=
2

3
[(𝜎𝑈 sin 𝛽 cos 𝜆)2 +

3

2
[𝐴1𝑈

𝐴2 sin 𝛽 cos 𝜆]2 − 𝜎𝑆
2]. 

(4.1.5) 

The boundary angles 𝛽 and 𝜆 where 𝜑𝑁𝑈 = 0 are 

sin 𝛽1𝑈 =
𝜎𝑆

√𝜎𝑈
2 +

3
2

(𝐴1𝑈
𝐴2)2

≡ 𝑏𝑈, 

cos 𝜆1𝑈 =
𝜎𝑆

√𝜎𝑈
2 +

3
2

(𝐴1𝑈𝐴2)2 sin 𝛽

. 

(4.1.6) 

To ensure the stress drop at the constant value of deformation, we demand that 𝜑𝑁𝑈  equal 𝜑𝑁  from 

(3.2.6) at the same set of planes where the strain intensity is positive (𝛽1𝑈 = 𝛽1, compare Figs. 4.3a and 

b). Equating 𝑏𝑈 and 𝑏 from (4.1.6) and (3.3.4) yields the value of stress (𝜎𝑈) which maintains the same 

deformation as before the ultrasound was on: 

𝜎𝑈 = √𝜎2 −
3

2
(𝐴1𝑈𝐴2)2. (4.1.7) 

The formula above enables us to calculate the ultrasound-induced stress drop. 

As seen from Fig. 4.3b, the loading surface preserves its shape due to the compensation element �⃗⃗⃗� , i.e., 

less unidirectional stress is needed to keep the deformation at the instant as the ultrasonics vibration 

starts. 



62 
 

During simultaneous action of unidirectional loading and ultrasound, 𝑡 ∈ [0, 𝜏], Eq. (4.1.5) gets 

𝑟𝜑𝑁𝑈 =
2

3
[(𝜎𝑈 sin 𝛽 cos 𝜆)2 +

3

2
[𝐴1𝑈

𝐴2(2 − 𝑒−𝑝𝑡) sin 𝛽 cos 𝜆]2 − 𝜎𝑆
2]. (4.1.8) 

Plastic deformation in acoustoplasticity (𝑒𝑈) is calculated by Eq. (3.3.3b), which is a partial case of 

Eq (3.1.8) for a uniaxial stress state, with the integrand from (4.1.8). As a result, 

𝑒𝑈 = 𝑎0Φ(𝑏𝑈), 𝑏𝑈 =
𝜎𝑆

√𝜎𝑈
2 +

3
2 (𝐴1𝑈𝐴2(2 − 𝑒−𝑝𝑡))

2
. 

(4.1.9) 

 

Fig.4.3 Evolution of loading surface during the sonication (tangent planes are not shown): a) ordinary plastic 

strain, b) ultrasound on, c) simultaneous action of static and vibrating load (A) and ultrasound off (B). 

Comparing Eq. (4.1.8) to (3.3.3a), we have that the presence of ultrasonic energy requires less stress to 

develop plastic deformation of a specimen (portion 𝐴2-𝐴3 in Fig. 2.18). The inner surface in Fig. 4.3c, 

which corresponds to the end of sonication, clearly demonstrates that the loading point 𝐴 is reached by 

the joint action of static (�⃗⃗� ) and acoustic (�⃗⃗⃗� ) vector-portions. 
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It is the Eqs. (4.1.5)-(4.1.9) that describe the phenomenon of temporary ultrasonic softening analytically. 

 

4.1.2 Residual hardening2 

For simplicity, suppose that 𝑓(𝛾) = −1, i.e., consider the case of residual ultrasonic hardening alone 

when the term 𝑈𝑟 enters Eq. (4.1.2) with a negative sign: 

𝑟𝜑𝑁𝑈 = 𝐻𝑁
2 + 𝑈𝑡

2 − 𝑈𝑟
2 − 𝑆𝑆

2. (4.1.10) 

After the ultrasound is off (𝑡 ≥ 𝜏), 𝑈𝑡 = 0 and 𝑈𝑟 > 0 (Fig. 4.1), the plastic strain intensity (4.1.10) loses 

the term 𝑈𝑡, which facilitated the strain intensity, but includes the negative 𝑈𝑟. As a result, the plastic 

strain intensity becomes of negative sign, i.e., the development of plastic deformation ceases. Eqs. (4.1.2) 

and (4.1.4) give that 

𝐻𝑁
2 = 𝑟𝜑𝑁𝑈 +

3

2
[𝐴3𝑈

𝐴4𝜏]2 + 𝑆𝑆
2, (4.1.11) 

where 𝜑𝑁𝑈 is the plastic strain intensity cumulated during the acoustoplasticity. Eq. (4.1.11) says that, as 

the ultrasound is off, the plane distances obtain jump-wise increments in all directions by the magnitude 

of 𝑈𝑟 (Fig. 4.3c). Therefore, now, the endpoint of the stress vector is inside the loading surface, and 

plastic deformation will resume only when the stress vector reaches the first tangent plane, point 𝐵. In 

other words, until plastic strain intensity from (4.1.10), 

𝑟𝜑𝑁𝑈 =
2

3
[(𝜎 sin 𝛽 cos 𝜆)2 −

3

2
[𝐴3𝑈

𝐴4𝜏]2 − 𝜎𝑆
2] , (𝜎 > 𝜎𝑈) (4.1.12) 

remains negative, we have only an elastic deformation increment corresponding to the linear portions 

𝐴3-𝐴4 in Fig. 2.14. Comparing (4.1.12) to (3.3.3a), it is clear that the material has been harder after the 

sonication, i.e., greater stresses are needed to develop the same deformation as for the ordinary 𝜎~𝜀 

diagram. This fact reflects the phenomenon of ultrasonic residual hardening. 

The increment in plastic strain intensity (∆𝜑𝑁𝑈 ), after the elastic portion (beyond the point 𝐴4  in 

Fig. 2.18), is calculated as the difference of strain intensities from Eqs. (4.1.12) and (4.1.8) 

∆𝜑𝑁𝑈 =
2

3𝑟
{(𝜎 sin𝛽 cos 𝜆)2 − [(𝜎𝑈 sin𝛽 cos 𝜆)2 +

3

2
[𝐴1𝑈

𝐴2(2 − 𝑒−𝑝𝜏) sin𝛽 cos 𝜆]2]

−
3

2
(𝐴3𝑈

𝐴4𝜏)2}. 

(4.1.13) 

 
2 Relationships to calculate the plastic deformation under the simultaneous action of unidirectional and oscillating 
loading remains the same as in point 4.1.1. 
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where 𝜎𝑈 is the stress value at 𝑡 = 𝜏. 

Plastic strain increment (∆𝑒) after the elastic portion is calculated by Eq. (3.3.3b) as 

∆𝑒 =
2𝜋

𝑟
∫ ∫ ∆𝜑𝑁𝑈 sin 𝛽 cos 𝜆 cos 𝛽 𝑑𝜆𝑑𝛽

𝜆2

0

𝜋 2⁄

𝛽2

. (4.1.14) 

The integration boundaries in (4.1.14) are determined from Eq. (4.1.13) at ∆𝜑𝑁 = 0 and 𝜆 = 0.  

The total deformation starting from the instant the ultrasound is off takes the following form 

𝑒 = 𝑒𝑈 + ∆𝑒 +
𝜎

𝐸
, (4.1.15) 

where 𝑒𝑈 is calculated via (4.1.9) at the end of sonication (𝑡 = 𝜏). 

 

4.1.3 Model results: stress drop, acoustoplasticity, residual hardening. Material – Aluminum 

This point aims (i) to construct model stress~strain curves in the compression tests for pure aluminum 

according to the sonication regimes shown in Fig. 2.18, (ii) to compare the analytic results with those 

obtained by Yao et al. (2012). 

A) First, select the constant model 𝑟 to fit the ordinary (base) 𝜎~𝜀 diagram to the experimental one as 

best as possible. The analytic 𝜎~𝜀 curve in Fig. 4.4, which is plotted via Eqs. (3.3.4)-(3.3.7) at 𝑟 =

1.3 × 104 MPa2, 𝐸 = 68 GPa, and 𝜎𝑆 = 45 MPa, shows good agreement with experimental data. 

B) The next step is the instant when the ultrasound is on. I utilize Eq. (4.1.7) to calculate the ultrasound-

induced stress drop for ultrasonic energy 𝑈 = 126.6 J m3⁄ ; the ultrasonic vibration starts at 𝜎1 =

93.9 MPa. Constants 𝐴1 = 18.5 (m3 J⁄ )𝐴2 and 𝐴2 = 0.25 in Eq. (4.1.7) lead to the correct result (point 

2 in Fig. 4.4). Further, Eq. (4.1.9) serves as an analytical tool to plot 𝜎~𝜀 diagram under the action of 

ultrasound. Portion 2-3 in Fig. 4.4 is constructed at 𝑝 = 0.034 s−1 for sonication time 𝜏 = 8 s. 

C) Finally, the deformation of post-sonicated material, portion 3-4 in Fig. 4.4, is plotted via Eqs. (4.1.13)-

(4.1.15) at 𝐴3 = 3.5 × 10−7 (m3 J⁄ )𝐴4 and 𝐴4 = 4. It can be clearly seen that the model result shows 

good agreement with experimental data. 

 

https://context.reverso.net/translation/english-russian/as+best+as+possible
https://context.reverso.net/translation/english-russian/as+best+as+possible
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Fig.4.4 Vibration-assisted stress~strain diagram for aluminum; lines – model, ○ – experiment; (Yao et al., 2012). 

D) To test the model constants selected above, first, we utilize Eq. (4.1.7) to calculate the ultrasound 

induced stress drop for different values of ultrasonic energy: 𝑈𝑘 = 5.89, 22.0, 60.33, 126.6 J m3⁄  

(ultrasound is on at 𝜎1 = 93.9 MPa). Figure 4.5, plotted via Eq. (4.1.7) with the model constants selected 

above, demonstrates that the magnitudes of stress drops correlate well with the experiment. 

 

Fig. 4.5 Stress-drop due to different values of ultrasound energy;  – model, ○ – experiment; (Yao et al., 2012). 

E) Inspect the deformation of aluminum for the case when the ultrasound with 𝑈 = 126.6 J m3⁄  starts at 

𝜎5 = 128.7 MPa and acts only for 2 seconds (𝜏 = 2 s). As stated above, the deformation state of the 

material impacts the magnitude of the stress drop caused by ultrasonic energy. To take this into account, 

we enter constant 𝐴1′, which is related to 𝐴1 as 𝐴1′ = 𝐴1 (1 + 𝑎1
𝜎5

𝜎1
). Now, Eq. (4.1.7) at 𝑎1 = 0.205 
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gives a more significant stress drop (5-6) compared to that observed at 𝜎1 . The further deformation 

portion (6-7-8) is plotted through the same formulae and constants as in points A)-C). As evident from 

Fig. 4.4, the sonication of duration 𝜏 = 2 s leads to a negligible deviation from the base 𝜎~𝜀 diagram, 

i.e., the effect of residual hardening is not observed, which is in full conformity with the experimental 

record. 

 

Fig.4.6 𝑈𝑡 and 𝑈𝑟 plots for different sonication times 

Fig. 4.6 gives relations between 𝑈𝑡 and 𝑈𝑟, Eqs. (4.1.3) and (4.1.4), for the 8 and 2 seconds sonication 

time. As one can see, the value of 𝑈𝑡, when the ultrasound starts at the greater deformation (ultrasound 

On 2 – ultrasound Off), exceeds that for ultrasound On 1 – ultrasound Off. This fact correlates with 

experimental observations saying that the stress drop increases with the plastic deformation cumulated 

in the material. Another fact fitting the experiments is the value of 𝑈𝑟 for 2-seconds-sonication is in order 

of magnitudes lower than that for 8 seconds. This means that the material structure transformations 

occurring during short sonication times do not affect the material deforming in the post-sonicated state. 

 

4.1.4 Residual softening3 

Now, suppose that 𝑓(𝛾) = 1, i.e., consider the case of residual ultrasonic softening alone when the term 

𝑈𝑟 enters Eq. (4.1.2) with a positive sign: 

𝑟𝜑𝑁𝑈 = 𝐻𝑁
2 + 𝑈𝑡

2 + 𝑈𝑟
2 − 𝑆𝑆

2. (4.1.16) 

 
3 Relationships to calculate the plastic deformation under the simultaneous action of unidirectional and oscillating 
loading remains the same as in point 4.1.1. 

https://context.reverso.net/translation/english-russian/full+conformity
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As the ultrasound is off, similar to the previous point, the plastic straining ceases because of the 

termination of ultrasonic energy inflow. At the same time, according to Eq. (4.1.16) at 𝑈𝑡 = 0 and 𝑈𝑟 >

0 and Eq. (4.1.4), the plane distances move in a jump-wise manner toward the origin of coordinates 

(Fig. 4.7d) by the magnitude of  
3

2
[𝐴3𝑈

𝐴4𝜏]2: 

𝐻𝑁
2 = 𝑟𝜑𝑁𝑈 −

3

2
[𝐴3𝑈

𝐴4𝜏]2 + 𝑆𝑆
2. (4.1.17) 

This fact means that the stress vector reaches the loading surface in the post-sonicated state at less stress 

value. In other words, the plastic straining will be restored at the stress less than that without the residual 

softening effect: 𝜎𝐶 < 𝜎𝐴 (Fig. 4.7d). 

 

Fig.4.7 Evolution of loading surface during and after the sonication (tangent planes are not shown) 

The strain intensity (4.1.16) in the uniaxial stress state for the post-sonicated period is 



68 
 

𝑟𝜑𝑁𝑈 =
2

3
[(𝜎 sin 𝛽 cos 𝜆)2 +

3

2
[𝐴3𝑈

𝐴4𝜏]2 − 𝜎𝑆
2] (4.1.18) 

Comparing formula (4.1.18) and (3.3.3a) it is clear that 𝜑𝑁𝑈 > 𝜑𝑁, meaning that plastic deformation 

occurs with less stress compared to the case of unidirectional load alone. Therefore Eqs. (4.1.17) and 

(4.1.18) model the effect of the ultrasonic residual softening when the 𝜎~𝜀 curve locates beneath that, 

where unidirectional load acts alone. 

The last step is to utilize Eqs. (4.1.14) and (4.1.15) where 

∆𝜑𝑁𝑈 =
2

3𝑟
{(𝜎 sin𝛽 cos 𝜆)2 − [(𝜎𝑈 sin𝛽 cos 𝜆)2 +

3

2
[𝐴1𝑈

𝐴2(2 − 𝑒−𝑝𝜏) sin𝛽 cos 𝜆]2]

+
3

2
(𝐴3𝑈

𝐴4𝜏)2}. 

(4.1.19) 

 

4.1.5 Model results: stress drop, acoustoplasticity, residual softening. Material – Copper 

This point aims to inspect the relationships derived from the synthetic theory regarding their 

compatibility with experimental data obtained for the plastic deforming of copper in the ultrasonic field. 

Consider Fig. 4.8 showing the compression test results recorded by Kang et al. (2020). Once the stress 

reaches 218 MPa, the ultrasound with oscillating amplitude and frequency 𝐴 = 1.3 μm and 𝑓 = 20 kHz, 

respectively, is On (point 1). At point 2, the ultrasound action terminates, and the plastic straining 

continues under static loading alone. It is easy to see that the phenomenon of ultrasound residual softening 

is observed. 

Utilizing formulae from previous points, I start to construct the model curve. 

A) Initially, the value of model constant 𝑟  must be selected to achieve the best fit to the ordinary 

experimental 𝜎~𝜀 curve (without ultrasound). The theoretical 𝜎~𝜀 diagram in Fig. 4.8, which is plotted 

via Eqs. (3.3.4)-(3.3.8) at 𝑟 = 40000 MPa2 shows good agreement with experimental data (the Young 

modulus and yield strength are 𝐸 = 128 GPa, and 𝜎𝑆 = 160 MPa, respectively). 

B) To plot the acoustoplastic stress-strain diagram, we use formula (4.1.9), where the oscillating stress 

amplitude (𝜎𝑚) replaces the ultrasound energy intensity. These quantities are easily interchangeable due 

to the well-known relationships: 𝑈 = (1 2⁄ )𝜌𝐴2𝜔2  and 𝜎𝑚 = 𝐸𝐴𝜔/𝑐  (Fitzpatrick, 2018). The 

oscillating stress amplitude is related to 𝐴 through the following formula (Fitzpatrick, 2018): 
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𝜎𝑚 = 𝐸
2𝜋𝑓

𝑐
𝐴, (4.1.20) 

where 𝑐 is the speed of sound in copper 𝑐 = 4760 m s⁄  (Nevil et al., 1957). As a result, 𝜎𝑚 = 4.39 Mpa. 

 

 

Fig. 4.8 Stress~strain compression diagrams for copper. 

Formula (4.1.9) with the model constants 

𝐴1 = 43 × 10−2(1 MPa⁄ )𝐴2, 𝐴2 = 0.5, and 𝑝 = 1 × 10−3 s−1 

leads to accurate results (see Fig. 4.8). 

C) Finally, to model the deformation of post-sonicated material (residual softening) Eqs. (4.1.14), 

(4.1.15) and (4.1.19) to be used. To obtain the best fit with the test result, I selected the model constants 

𝐴3 = 2.1 × 10−7 (1 MPa⁄ )𝐴4 and 𝐴4 = 1.1. 

Again, Fig. 4.8 indicate satisfactory agreement between the model results and experimental data. 

 

4.1.6 General case 

Let us utilize formula (4.1.2) in its general form, i.e., including 𝑓(𝛾), for two materials – aluminum and 

titanium – that possess high and low stacking fault energy (SFE) values, respectively. Since the term 
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𝑓(𝛾)𝑈𝑟
2 enters into force only after the ultrasound is off, this formula for the post-sonicated deformation 

(𝑈𝑡 = 0) gives 

𝑟𝜑𝑁𝑈 = 𝐻𝑁
2 + 𝑓(𝛾)𝑈𝑟

2 − 𝑆𝑆
2. (4.1.21) 

Due to the absence of reliable information about the effect of SFE on what type of deformation reaction 

for different materials will be observed after the ultrasound is off, residual hardening or softening, we 

propose to define 𝑓(𝛾) for two materials only. Relying on the experimental results conducted by Zhou 

et al. (2017), where aluminum demonstrates residual hardening and titanium residual softening, we define 

𝑓(𝛾) in a linear manner as 

𝑓(𝛾) = 𝑘(𝛾Al − 𝛾) − 1, (4.1.22) 

where 𝑘 > 0 is a model constant, i.e., we take 𝛾Al as a base value. It is easy to see that 𝑓(𝛾Al) = −1, and 

𝑓(𝛾Ti) takes a positive value because 𝛾Al > 𝛾Ti. 

Now, Eqs. (4.1.21) and (4.1.22) lead to the following strain intensities of aluminum and titanium in the 

post-sonication state when they are deformed under static load alone. 

Aluminum: 

𝑟𝜑𝑁𝑈 =
2

3
[(𝜎 sin 𝛽 cos 𝜆)2 −

3

2
[𝐴3𝑈

𝐴4𝜏]2 − 𝜎𝑆
2]. (4.1.23) 

Titanium: 

𝑟𝜑𝑁𝑈 =
2

3
[(𝜎 sin 𝛽 cos 𝜆)2 +

3

2
𝑓(𝛾Ti)[𝐴3𝑈

𝐴4𝜏]2 − 𝜎𝑆
2]. (4.1.24) 

All that is left now is to compare Eqs. (4.1.23) and (4.1.24) to (3.3.3a). 

Comparing formula (4.1.23) to (3.3.3a), it is evident that the strain intensity of aluminum after the 

sonication is less than that for ordinary loading. In other words, greater stress values are needed to 

maintain the plastic deforming, i.e., the stress~strain curve runs above that corresponding to ordinary 

loading. Therefore, formula (4.1.23) models the phenomenon of ultrasonic residual hardening, which is 

observed for aluminum. 

With titanium, it is clear from (4.1.24) and (3.3.3a) that 𝜑𝑁𝑈 > 𝜑𝑁. Therefore, the material in the post-

sonicated state flows at lower stress values compared with ordinary loading. In other words, the 

stress~strain curve is located beneath that where the unidirectional load acts alone. Here, we obtain the 

case of ultrasonic residual softening typical for titanium. 
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Therefore, depending on SFE, function 𝑓(𝛾) (4.1.22) correctly regulates, at least for two materials, their 

deformation behavior in the post-sonication state. 

 

4.1.7 Model results: stress drop, acoustoplasticity, residual hardening and softening. Materials – 

Aluminum and Titanium 

This section aims to plot ultrasound-assisted stress~strain curves for a pair of materials, aluminum and 

titanium, i.e., to inspect formulae (4.1.21) and (4.1.22) about their ability to catch the ultrasonic residual 

hardening and softening depending on the stacking fault energy value. The model results will be 

compared to those obtained in Zhou’s experiments for ultrasound-assisted compression (Zhou et al., 

2017). Since the relationships for the case of acoustoplasticity are the same as in the previous points, we 

only write down the formulae for the inelastic strain intensities in the post-sonicated period.  

Aluminum: 

∆𝜑𝑁𝑈 =
2

3𝑟
{(𝜎 sin𝛽 cos 𝜆)2 − [(𝜎𝑈 sin 𝛽 cos 𝜆)2 +

3

2
[𝐴1𝜎𝑚

𝐴2(2 − 𝑒−𝑝𝜏) sin𝛽 cos 𝜆]2]

−
3

2
(𝐴3𝜎𝑚

𝐴4𝜏)2}. 

(4.1.25) 

Titanium: 

∆𝜑𝑁𝑈 =
2

3𝑟
{(𝜎 sin𝛽 cos 𝜆)2 − [(𝜎𝑈 sin𝛽 cos 𝜆)2 +

3

2
[𝐴1𝜎𝑚

𝐴2(2 − 𝑒−𝑝𝜏) sin𝛽 cos 𝜆]2]

+
3

2
𝑓(𝛾Ti)(𝐴3𝜎𝑚

𝐴4𝜏)2}. 

(4.1.26) 

The difference between the above equations lies in the sign of the last term on their right-hand sides. 

While this term is of negative sign for aluminum, meaning the suppression of plastic straining (residual 

hardening), for titanium, the positive sign symbolizes that the plastic strain develops at less stress than 

in the ordinary case (residual softening). 

Aluminum 

A) The first step is to select the appropriate value of 𝑟 to match the ordinary 𝜎~𝜀 diagram (no vibration) 

to the experimental one. The theoretical 𝜎~𝜀  curve in Fig. 4.9, which is plotted ultrasounding 

Eqs. (3.3.4)-(3.3.8) at 𝑟 = 6700 MPa2, 𝐸 = 70 GPa, and 𝜎𝑆 = 45 MPa, exhibits good agreement with 

experimental data. 
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B) According to Zhou’s records, the ultrasound starts when the unidirectional stress is about 79.2 MPa 

and acts for 24 seconds (𝜏 = 24 s). Four ultrasound amplitudes (𝐴) with frequency 𝑓 = 30 kHz were 

applied: 4.06, 4.36, 4.65, 4.97 μm . Eq. (4.1.20) gives the following vibrating stress amplitudes 

corresponding to the values of 𝐴 – 𝜎𝑚1 = 8.3 MPa, 𝜎𝑚2 = 8.9 MPa, 𝜎𝑚3 = 9.6 MPa, 𝜎𝑚4 = 10.2 MPa 

– which are obtained at the speed of sound for aluminum 𝑐 = 6420 m s⁄ . 

Now, via formula (4.1.9) with the constants 𝐴1 = 1.9515 × 10−2 (1 MPa⁄ )𝐴2 , 𝐴2 = 0.5 , and 𝑝 =

5.5 × 10−3 s−1, we plot 𝜎~𝜀 diagrams for the plastic straining coupled with acoustic energy. As is seen 

from Fig. 4.9, the selected model constants lead to correct results for different values of ultrasound 

intensity (stress amplitude). 

C) The final step is the deformation of post-sonicated material, which is calculated via Eqs. (4.1.14), 

(4.1.15), and (4.1.25). These relationships at 𝐴3 = 2.1 × 10−7 (1 MPa⁄ )𝐴4  and 𝐴4 = 4  agree with 

experimental data (see Fig. 4.9), i.e., the model curves correctly model the phenomenon that the post-

sonicated plastic straining requires great stress than in ordinary loading. In other words, after the 

sonication, the stress-strain curves locate above the ordinary 𝜎~𝜀 plot, and this tendency increases with 

the amplitudes of the applied ultrasound. 

 

Titanium 

The titanium specimens were sonicated with the following amplitudes 𝐴: 5.63, 6.44, 8.49, 10.37 μm. 

The frequency and duration of ultrasound were 𝑓 = 30 kHz and 𝜏 = 24 s, respectively. Eq. (4.1.20) at 

𝑐 = 3300 m s⁄  gives the following values of stress amplitude: 𝜎𝑚1 = 37.3 Mpa , 𝜎𝑚2 = 42.6 Mpa , 

𝜎𝑚3 = 56.25 Mpa, 𝜎𝑚4 = 68.7 Mpa. 

A) Similarly to the previous case, first, we choose an appropriate value of 𝑟  to match the model 

stress~strain diagram to the experimental one. Calculations in Eqs. (3.3.4)-(3.3.8) at 𝑟 = 4.6 ×

105 MPa2 , 𝐸 = 116 GPa  and 𝜎𝑆 = 350 MPa  exhibit good agreement with the experimental data 

(Fig. 4.10, no vibration). 

B) As ultrasound starts, which is about at 𝜎 = 538 MPa in Fig. 4.10, temporary ultrasonic softening 

occurs.  Now, Eq. (4.1.9) comes into play, which, with constants 𝐴1 = 59 (1 MPa⁄ )𝐴2 , 𝐴2 = 0.5, and 

𝑝 = 1.0 × 10−3 s−1, leads to correct results (see Fig. 4.10). 
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Fig. 4.9. Stress~strain compression diagrams of aluminum in the ultrasonic field (points – experimental data 

(Zhou et al., 2017); lines – model curves). 

 

Fig. 4.10 Stress~strain compression diagrams for titanium in the ultrasonic field (points – experimental data 

(Zhou et al., 2017); lines – model curves).  

C) Finally, we plot 𝜎~𝜀 diagrams for the post-sonicated period. If to utilize Eqs. (4.1.14), (4.1.15), and 

(4..1.26) at 𝛾Al = 166 mJ m2⁄ , 𝛾Ti = 15 mJ m2⁄ , 𝐴3 = 2.5 × 10−5 (1 MPa⁄ )𝐴4 , 𝐴4 = 2 , and 𝑘 =

1.0 m2 mJ⁄ , we achieve the conformity of the analytical results to experimental ones (see Fig. 4.10).  

The results regarding section 4.1 are published in 

Rusinko, A. & Alhilfi, A. (2020) 

Alhilfi, A. & Rusinko, A. (2021) 

Alhilfi, A. & Rusinko, A., (2022) a,b  
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Thesis I 

 

In terms of the Synthetic theory, a model for the analytical description of the plastic flow of metals in the 

ultrasound field has been developed. The extension of the Synthetic theory is conducted by inserting into 

its governing relationships a term accounting for the effect of ultrasonic energy on the mechanical 

properties of materials. The proposed extension leads to correct results when considering the following 

phenomena: 

(i) Stress drop on the stress~strain diagram as the ultrasound is on 

(ii) Acoustoplasticity – stress~strain diagrams under the simultaneous action of unidirectional and 

vibrating load 

(iii) Ultrasound residual hardening/softening – stress~strain diagram for the post-sonicated state of 

the metals. 
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4.2 Extension of the synthetic theory to the case of ultrasound-assisted time-

dependent processes 

 

Here, the modeling of time-dependent processes in an acoustic field is presented. Two cases are 

considered: 

(i) creep deformation coupled with ultrasound. 

(ii) relaxation processes of the work-hardened material under the action of ultrasound. 

 

4.2.1 Ultrasound-assisted primary creep 

Adhering to the overall concept of modeling ultrasound's effect on irrecoverable deformation, the basic 

relationship of the synthetic theory, Eq. (3.1.14), is to be extended by the term responsible for acoustic 

energy: 

𝜓𝑁 = 𝐻𝑁
2 − 𝐼𝑁

2 − 𝑆𝑃
2 + 𝑈𝐶

2. (4.2.1) 

We define 𝑈𝐶 (index 𝐶 stands for Creep) as 

where �⃗⃗⃗�  is defined via ultrasound-induced defects intensity proposed by Rusinko in its early work (2011) 

as 

In the formula above, 𝑆𝑚 is the oscillating stress vector amplitude, and �⃗⃗�  is a unit vector indicating the 

vibration mode (longitudinal, torsional, etc.). For longitudinal sonication, the �⃗⃗�  vector has (1,0,0) 

coordinates in 𝒮3 , and 𝑆𝑚 = √2 3⁄ 𝜎𝑚 . 𝐴1 , 𝐴2 , and 𝑤  are model constants to be chosen to fit the 

theoretical results to experimental ones. The scalar product in (4.2.2) means that the ultrasound effect 

strongly depends on the slip system orientation. 

𝑈𝐶  from (4.2.1) symbolizes the increase of plastic slip within one slip system (ultrasonic softening) 

caused by the nucleation and development of ultrasound-induced defects. To avoid misunderstanding 

𝑈𝐶 = �⃗⃗⃗� ∙ �⃗⃗� , (4.2.2) 

�⃗⃗⃗� = 𝐴1𝑆𝑚
𝐴2(1 − 𝑒−𝑤𝑡)�⃗⃗� . (4.2.3) 
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that the increasing number of defects would harden the material, we address Kulemin's (1978) 

explanation: "When external loading couples with ultrasonic irradiation, both hardening and softening 

occur. The softening, however, is more intensive, and we observe the phenomenon of temporary 

softening". Therefore, Eq. (4.2.1) is dual; on the one hand, the ultrasound defects harden the material, 

but on the other hand, they become centers of softening processes. 

To reflect the fact that the effect of sonication depends on the material's deformation state, we propose 

to write down 𝐴1 from (4.2.3) as a linear function of deformation 

Remark. The proposition to modify/extend the rate integral in (4.2.1) by "ultrasound parameters" is not 

promising because, according to the experiment in Fig. 2.28, the periodic sonication starts at the end of 

the primary creep portion, 𝐼𝑁 → 0, and there is no effect from the rate-integral. Besides, when the 

ultrasound is off, the creep develops with the same velocity as during ordinary loading. 

 

4.2.2 Primary creep coupled with ultrasound 

A) Simultaneous action of unidirectional loading and ultrasound 

According to (4.2.1)-(4.2.3) and (3.2.5), the strain intensity in the acoustic field (𝜑𝑁𝑈) for the case of 

uniaxial tension and longitudinal sonication is 

 

The range of non-zero values of 𝜑𝑁𝑈 is 

where 

𝐴1 = 𝐴1
′ |�⃗� | + 𝐴1

′′,     𝐴1
′ , 𝐴1

′′ = const. (4.2.4) 

𝜑𝑁𝑈 =
2

3𝑟
[(𝜎 sin 𝛽 cos 𝜆)2(1 − 𝐵2𝑒−2𝑝𝑡) + (𝐴1𝜎𝑚

𝐴2(1 − 𝑒−𝑤𝑡) sin 𝛽 cos 𝜆)2 − 𝜎𝑃
2] (4.2.5) 

0 ≤ 𝜆 ≤ 𝜆1𝑈, 𝛽1𝑈 ≤ 𝛽 ≤
𝜋

2
,  (4.2.6) 

cos 𝜆1𝑈 =
𝜎𝑝

sin 𝛽 √𝜎2(1 − 𝐵2𝑒−2𝑝𝑡) + (𝐴1𝜎𝑚
𝐴2(1 − 𝑒−𝑤𝑡))

2
,

sin 𝛽1𝑈 =
𝜎𝑝

√𝜎2(1 − 𝐵2𝑒−2𝑝𝑡) + (𝐴1𝜎𝑚
𝐴2(1 − 𝑒−𝑤𝑡))

2
≡ 𝑏𝑈. 

(4.2.7) 
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Formulae (3.1.8) and (4.2.5)-(4.2.7) give the ultrasound-assisted inelastic deformation as 

Comparing the creep deformation from the formula above to that obtained for ordinary creep – 𝑎0Φ(𝑏) 

from (3.3.19) – it is easy to conclude that the appearance of 𝑈𝐶  in (4.2.5) lead to greater creep 

deformation values because of 

(i) 𝜑𝑁𝑈 > 𝜑𝑁  (3.3.9), acoustic intensity increases deformation within active slip 

systems 

(ii) 𝑏𝑈 < 𝑏 (3.3.10), ultrasound increases the number of active slip systems where 

irrecoverable deformation occurs. 

To obtain graphs as in Fig. 2.28, we use the following formula: 

where 𝑏𝑈0 = 𝑏𝑈(𝑡 = 0). 

Formally, the fact that both Φ(𝑏𝑈) and Φ(𝑏𝑈0) are greater than Φ(𝑏) and Φ(𝑏0), respectively, does not 

necessarily mean the same for their differences. To simplify derivations, let us apply the approximated 

relationship for function Φ (Rusinko, A, and Rusinko, K., 2011): 

Using formulae (4.2.9), (3.3.20), and (4.2.10), inspect the sign of  

where index "M" in (3.3.20) corresponds here to "0". 

The result is 

Since 𝑒−2𝑝𝑡 < 1 as 𝑡 > 0, one can conclude from the formula above that ∆> 0. 

B) Periodic switch of ultrasound during creep deformation 

ℰ𝑈 = 𝑎0Φ(𝑏𝑈). (4.2.8) 

𝑒𝑈 = 𝑎0[Φ(𝑏𝑈) − Φ(𝑏𝑈0)], (4.2.9) 

Φ ≈ (
1

𝑥
− 1)

2

. (4.2.10) 

∆= 𝑒𝑈 − 𝑒, (4.2.11) 

∆= 𝑎0

2𝜎

𝜎𝑃
{√(1 − 𝐵2)(√1 +

𝑈2

𝜎2(1 − 𝐵2)
− 1)

− √(1 − 𝐵2𝑒−2𝑝𝑡) (√1 +
𝑈2

𝜎2(1 − 𝐵2𝑒−2𝑝𝑡)
− 1)}. 

(4.2.12) 
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Consider the following regime of sonication 

where 𝜏 is the sonication duration, and 𝑇 is the ultrasound-free period. 

Now, formula (4.2.9) takes the form as follows: 

where 𝑏𝑈𝑖 is calculated via (4.2.7) at 𝑡 = 𝑡𝑖 + 𝜏, and 𝑏𝑈0 corresponds to the beginning of sonication, i.e., 

is taken from (3.3.10). 

Now, inspect the formula above for conformity with experimental data. As it follows from (4.2.2) and 

(4.2.3), the increment in creep deformation decreases with each subsequent sonication, since (1 − 𝑒−𝑤𝑡)  

tends to 1 with time. Further, after the ultrasound is off, the creep deformation ceases to increase, 

preserving its value obtained at the end of the previous sonication. Finally, formula (4.2.4), where the 

ultrasound effect is related to the material's deformation state, ensures that the creep deformation gains a 

greater increment at the periodic sonication than during the continuous action of ultrasound. If we ignored 

Eq. (4.2.4), both creep diagrams would tend to a common value, which contradicts the experiment results. 

 

4.2.3 Results. Discussion 

This point deals with plotting creep diagrams for copper and aluminum in the ultrasonic field obtained 

in the framework of the synthetic theory. 

Copper 

First, consider the following cases of copper creep coupled with ultrasound: 

(i) ordinary creep at stress 𝜎 = 30 MPa, 

(ii) ultrasound-assisted creep: the ultrasound of oscillating stress amplitude 𝜎𝑚 =

2.6 MPa acts continuously from the very beginning of the creep, 

(iii) ultrasound-assisted creep: the ultrasound of oscillating stress amplitude 𝜎𝑚 =

2.6 MPa acts periodically – 𝑡1 = 20 min, 𝑡2 = 60 min, 𝑡3 = 100 min, 𝜏 = 𝑇 =

20 min (see Eq. (4.2.20)). 

𝑈𝐶 = {
𝑈𝐶𝑖 for   𝑡 ∈ [𝑡𝑖 , 𝑡𝑖 + 𝜏]

0 for   𝑡 ∈ [𝑡𝑖 + 𝜏, 𝑡𝑖 + 𝜏 + 𝑇]
 (4.2.13) 

𝑒𝑈𝑖 = 𝑎0[Φ(𝑏𝑈𝑖) − Φ(𝑏𝑈(𝑖−1))],   𝑖 = 1,2,3 (4.2.14) 
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A) To plot the ordinary creep diagram, we use formulae (3.3.20) and (3.3.10). As a result, Curve 1 in 

Fig. 4.11 constructed with 𝜎𝑃 = 5 MPa , 𝐵 = 1.9 × 10−1 , 𝑝 = 2.1 × 10−3 s−1 , and 𝑟 = 1.45 ×

105 MPa2 shows good agreement with the experimental one. 

B) The next step is the creep diagram with the simultaneous action of unidirectional and oscillating 

stresses. It must be stressed that the model constants used above also remain unchangeable here. 

Formulae (4.2.9), (4.2.7), and (4.2.4) with model constants 𝐴1
′′ = 5.375 (1 MPa⁄ )𝐴2 ,4 𝐴2 = 1.0, and 

𝑤 = 9.5 × 10−4 s−1 lead to a good fit between the theoretical and experimental results (Curve 2 in 

Fig. 4.11). 

C) In the last case, periodic sonication, the first portion of the sonication starts in the 20th minute of creep 

when deformation is 𝜀 = 1.24 × 10−4 . Curve 3 from Fig. 4.11 demonstrate the results obtained via 

Eqs. (4.2.14), (4.2.7), and (4.2.4) at 𝐴1
′ = 2.75 × 103(1 MPa⁄ )𝐴2. 

The analysis of Fig. 4.11 shows that the creep deformation at the beginning of sonication (shadowed 

areas) increases more intensively than that obtained analytically. At the same time, with the further 

increase in 𝑡, the model results show outstanding accordance with the experimental data for continuous 

and periodic sonication. Thus, for the periodic action of ultrasound, the maximum height of error bars in 

Fig. 4.11 is only -15.85% for 𝑡 ≥ 40 min. 

Aluminum 

Another case to be tested is the ultrasound-assisted creep of aluminum (continuous longitudinal 

sonication is considered). Together with an ordinary creep in uniaxial tension at 𝜎 = 10 MPa, the creep 

deformation in the acoustic field was modeled at the following values of vibrating stress amplitudes: 

𝜎𝑚1 = 1.3 MPa and 𝜎𝑚2 = 2.0 MPa (Fig. 4.12; Kulemin,1978). 

 

 
4 Since the ultrasound acts from the very start of the experiment (𝑒 = 0), the model constant 𝐴′1 is not needed. 
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Fig. 4.11 Strain vs. Time diagrams of copper: 1 – ordinary creep, 2 – ultrasound-assisted creep with continuous 

sonication, 3 – ultrasound-assisted creep with periodic sonication; symbols – experiment; (Kulemin, 1978), lines 

– model. Error bars are constructed for the case of periodic sonication (𝑡 ≥ 40 min). 

 

 

Fig. 4.12 Strain vs. Time diagrams of aluminum in uniaxial tension (𝜎 = 10 MPa, 𝑡 = 40℃): 1 – ordinary creep, 

2 and 3 – ultrasound-assisted creep with continuous sonication, • – experiment; (Kulemin, 1978), lines – model. 
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The technique of constructing strain-time diagrams is identical to that applied early for copper A) and 

B). The model curves in Fig. 4.12 are obtained via Eqs. (4.2.9), (4.2.7), and (4.2.4) with the following 

parameters: 

𝜎𝑃 = 4.8 MPa , 𝐵 = 3.1 × 10−1 , 𝑝 = 2.5 × 10−4 s−1 , 𝑟 = 1.1 × 103 MPa2 , 𝐴1
′′ = 1.8 (1 MPa⁄ )𝐴2 , 

𝐴2 = 2, and  𝑤 = 6.0 × 10−4 s−1. 

Since the ultrasound acts from the very beginning of the experiment, i.e., |�⃗� | = 0 in Eq. (4.2.4), constant 

𝐴1
′  is not used here. Again, one can see that ultrasound increases creep deformation, which is in full 

accordance with the experiment. 

 

4.2.4 Creep coupled with ultrasound – general case 

To complete the modeling of the ultrasound-assisted creep, Formulae (4.2.1)-(4.2.4) must be 

supplemented by that governing the effect of ultrasound on the steady-state creep deformation. Since, in 

terms of the synthetic theory, function 𝐾 regulates the primary creep rate, we propose to introduce a 

linear term of oscillating stress amplitude: 

𝐾𝑈 = 𝐾 + 𝐶1𝑆𝑚
𝐶2 , (4.2.15) 

where 𝐾  is defined by (3.2.3). The logic of adding 𝐶1𝑆𝑚
𝐶2  is to model the experimentally recorded 

increase in the ultrasound-assisted secondary creep. This term expresses the power section of acoustic 

energy alone because its temporary part tends to zero as the long-termed processes such as secondary 

creep are considered. 

Considering the results from the previous section and formula (4.2.15), the relationship (3.3.19) 

accounting for the action of ultrasound takes the following form 

𝑒𝐶𝑟𝑒𝑒𝑝𝑈 = √
2

3
𝑎0

[
 
 
 

Φ(𝑏𝑈) − Φ(𝑏𝑈𝑀) + (𝐾 + 𝐶1𝑆𝑚
𝐶2)Φ

(

 
𝑆𝑃

√𝑆1
2 + (𝐴1𝑆𝑚

𝐴2)
2

)

 𝑡

]
 
 
 

, (4.2.16) 

where (in the case of uniaxial tension and longitudinal sonication) 𝑏𝑈 is defined by (4.2.7) and 𝑏𝑈𝑀 is 

from (4.2.7) as 𝑡 = 0. 
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The value of 𝑏𝑈 for the steady steady-state creep is obtained from (4.2.7) as the exponential functions 

tend to zero: 

𝑏𝑈 =
𝜎𝑝

√𝜎2 + (𝐴1𝜎𝑚
𝐴2)2

. (4.2.17 ) 

Comparing (4.2.7) and (4.2.17) to (3.3.10), it is easy to conclude that 𝑏𝑈 < 𝑏 for both primary (𝐼 > 0) 

and secondary (𝐼 → 0) portions. This inequality immediately means that 𝑒𝐶𝑟𝑒𝑒𝑝𝑈 > 𝑒𝐶𝑟𝑒𝑒𝑝 , which is 

caused by the extension of formulae (3.2.3) and (3.1.14) by the terms the action of ultrasound, formulae 

(4.2.1) and (4.2.15). 

 

Fig. 4.13 Loading surface for creep in uniaxial tension 

Figure 4.13 shows the loading surfaces in uniaxial tension for ordinary (the left column) and ultrasound-

assisted creep (the right column). Three positions are considered: 

a) the start of creep deforming (for simplicity, we assume that the amount of plastic deformations 

cumulated prior to the creep is identical), 
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b) primary creep, 

c) secondary creep. 

As is seen from this figure, 𝛽1 > 𝛽1𝑈 for both portions of the creep, meaning that, due to the action of 

ultrasound, the amount of slip systems involved in time-dependent plastic flow is greater than that for 

ordinary loading. 

 

4.2.5 Results. Discussion 

This point aims to plot ultrasound-assisted strain~time curves for aluminum and compare the model 

results to experimental observations. The experiments were conducted in two regimes (Kulemin, 1978): 

(i) Ordinary creep under the action of tensile stress 𝜎 = 10 MPa. 

(ii) Simultaneous action of tensile stress 𝜎 = 10 MPa, and longitudinal oscillating stress 

of various amplitudes: 𝜎𝑚1 = 0.6 MPa, 𝜎𝑚2 = 1.3 MPa, and 𝜎𝑚3 = 2.0 MPa. 

A) To plot the ordinary creep diagram, we utilize formulae (3.3.17) and (3.3.10). To achieve the best fit 

between the analytic and experimental results, we propose the following values of the parameters 

standing in these formulae: 

𝜎𝑃 = 5 MPa, 𝐵 = 2.31 × 10−1, 𝑝 = 2.5 × 10−4 s−1, 𝐾 = 1.0 × 10−5 s−1, and 𝑟 = 1.0 × 103 MPa2. 

As a result, Line 1 in Fig. 4.14 shows good agreement with the experimental one. 

B) By formulae (4.2.16), (4.2.15), and (4.2.7) with model constants 

𝐴1 = 1.28 (1 MPa⁄ )𝐴2 , 𝐴2 = 2.0 , 𝐶1 = 1.5 × 10−5 (1 MPa⁄ )𝐶2 ∙ s−1 , 𝐶2 = 1.0 , and 𝑤 = 2.1 ×

10−3 s−1 

Analytical creep diagrams plotted in the presence of ultrasound (Lines 2-4 in Fig. 4.14) demonstrate good 

agreement between the theoretical and experimental results. It must be stressed that the model constants 

used for Line 1 in Fig. 4.14 remain actual here. As can be seen from this figure, exposure to ultrasound 

during the creep process leads to an increase in the strain rate at the ordinary and steady-state creep. 

However, as for copper, the greatest influence of ultrasound affects the ordinary state.   
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Fig. 4.14 Creep diagrams of aluminum in uniaxial tension (𝜎 = 10 MPa, 𝑇 = 40℃), 1 – ordinary creep, 2-4 

ultrasound-assisted creep with oscillating stress amplitudes of 0.6 MPa (2), 1.3 MPa (3), and 2.0 MPa (4); ● – 

experiment; (Kulemin, 1978), lines – model. 

Fig. 4.15 demonstrates the temporary behavior of the angles for boundary tangent planes – calculated via 

Eqs. (3.3.10) and (4.2.7) – located at the endpoint of the stress vector for the experiment in Figure 4.14. 

This figure correlates with Fig. 4.13, indicating the expansion of active slip systems, i.e., the increase in 

both portions of creep deformation due to the ultrasound. 

 

Fig. 4.15 Boundary angles 𝛽1 (4) and 𝛽1𝑈 (3-1) for active slip systems 

A question may arise as to whether the term 𝐶1𝑆𝑚
𝐶2 in Eq. (4.2.35) is needed to model the ultrasound-

assisted secondary creep because the term 𝐶1𝑆𝑚
𝐶2  leads to the increase of Φ as well. To answer this 

question, plot strain~time diagrams via formulae (4.2.16), (4.2.15), and (4.2.7) at 𝐶1 = 0. 
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Fig. 4.16 Creep diagrams plotted via model relationships at 𝐴3 = 0 (nomenclature is the same as in Fig. 4.14) 

As shown in Fig. (4.16), the result is unsatisfactory. The increase in the slope of the linear portion is 

much less than that from the experiment. Therefore, the addition of 𝐶1𝑆𝑚
𝐶2 to 𝐾, which is responsible for 

the growth of secondary creep in the ultrasonic field, is vital. In confirmation of that, Fig. 4.17 shows the 

deformations' linear portions at various values of oscillating stress amplitudes. It is clear that ignoring 

the extension proposed in (4.2.15) results in a slight increase in the slope angle, while its presence shows 

much greater angle increments. 

 

Fig. 4.17 Linear portions from Eq. (4.2.16) at amplitudes 𝜎𝑚1 = 0.6 MPa, 𝜎𝑚2 = 1.3 MPa, and 𝜎𝑚3 = 2.0 MPa; 

○ – ordinary creep. 
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4.2.6 The extension of the synthetic theory for the case of ultrasonic recovery of the work-hardened 

material 

 

Consider the following sequence of operations: 

(i) plastic deforming of a specimen by unidirectional load, 

(ii) unloading, 

(iii) sonication of the work-hardened specimen. 

The Synthetic theory uses the differential equation (3.2.7) to model the defect relaxation for the post-

deformed material. The solution of Eq. (3.2.7) is 

where 𝜓𝑁0 the number of defects cumulated in the material during plastic deforming, Eq. (3.2.6). 

Formula (4.2.18), together with (3.1.14)5, means that the tangent planes move towards the origin of 

coordinates: 

To adopt Eq. (4.2.19) for modeling the phenomenon that acoustic energy leads to the recovery of work-

hardened materials' mechanical properties, I propose the following. 

Since the ultrasonic recovery experiments were held at the stress-free state, the function K  defined via 

Eq. (3.2.3) is inapplicable because 𝐾 = 0 at 𝜏0 = 0 and we obtain no change in 𝐻𝑁. Further, since the 

thermally activated processes at room temperature exert a feeble effect, we need to insert into the function 

𝐾 a term that expresses the recovery processes induced by ultrasound. 

We replace the function 𝐾 from (3.2.3) by 

where 𝑆𝑚 is the oscillating stress vector amplitude, 𝐻max is the maximum plane distance for the whole 

loading history, 𝑅1 and 𝑅2 are the model constants to be chosen for the best fit between the analytic and 

 
5 We use here (3.1.4) with the yield strength 𝑆𝑆 and 𝐼𝑁 = 0. 

𝜓𝑁 = 𝜓𝑁0exp(–𝐾𝑡), (4.2.18) 

𝐻𝑁 = √𝑆𝑆
2 + 𝜓𝑁0exp(–𝐾𝑡). (4.2.19) 

𝐾𝑈 = 𝐾 + 𝑅1(𝑆𝑚𝐻max)
𝑅2 , (4.2.20) 
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experimental results. It is clear that 𝐾𝑈 = 𝐾 in the absence of ultrasonic energy (𝑆𝑚 = 0), i.e., we return 

to the formula (3.2.3). 

Therefore now the degree of hardening – the plane distances in terms of the synthetic theory – obeys the 

following relationships: 

where 𝑡 is the sonication duration. 

 

Fig. 4.18 Yield and loading surface in terms of the synthetic theory in 𝑆1-𝑆2 coordinate plane for uniaxial tension 

(𝜆 = 0) 

Let us analyze the modification proposed in Eqs. (4.2.20)-(4.2.21) and check them against the 

experimental observations. The appearance of a term depending on the intensity of sonication (𝑆𝑚) in the 

function that governs the decrease of the plane distances reflects the experimental fact that the acoustic 

energy can induce alone the recovery processes in plastically deformed materials. Further, we define 𝐾𝑈 

𝐻𝑁𝑈 = √𝑆𝑆
2 + 𝜓𝑁0exp(–𝑅1(𝑆𝑚𝐻max)𝑅2𝑡), (4.2.21) 
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via the product 𝑆𝑚𝐻max  to reflect another experimental fact, the greater strain hardening (plastic 

deformation) values lead to more intensive recovery during the sonication at a given ultrasound intensity 

and duration. 

Consider the case when longitudinal vibrations (𝑆𝑚 = √2 3⁄ 𝜎𝑚) are applied to the material plastically 

deformed in uniaxial tension. Under these conditions, 𝐻max is the distance to the plane perpendicular to 

the static stress vector �⃗⃗�  (Fig. 4.18b) determined via formula (3.1.11) at 𝛽 = 𝜋 2⁄  and 𝜆 = 0: 

So 𝐻max, via 𝜎, bears in itself the information on the degree of plastic deformation. 

Therefore the plane distances during ultrasonic vibration are 

where the non-zero values of 𝜓𝑁0 are from (3.3.4) (see the boundary angle 𝛽1 in Fig. 4.18). The formula 

above analytically describes the decrease in the plane distances (Fig. 4.18c), i.e., the recovery of strain-

hardened material in the ultrasonic field. 

The change in the yield stress due to the ultrasound (𝜎𝑆𝑈) is calculated via (4.2.23) as 

 

4.2.7 Results. Discussion 

To inspect the modifications proposed above, let us compare model results with experimental data 

(Kulemim, 1978) on the temporary decrease of Vickers hardness number (HV) of aluminum specimen 

plastically deformed in uniaxial tension on two values: 𝜀1 = 3.6 % and 𝜀2 = 6.8 % (Fig. 4.19). The 

sonication of the strain-hardened specimen is conducted by the longitudinal oscillation of amplitude 

𝜎𝑚 = 10 MPa. Both the plastic deforming and the sonication take place at room temperature. To relate 

the value of HV to the yield strength in uniaxial tension 𝜎𝑆, we address the results on the correlation 

between Vickers hardness number and yield strength for aluminum, which states that 𝐻𝑉 = 17.4 

corresponds to 𝜎𝑆 = 23.4 MPa (Arbtin and Murphym, 1953). We preserve the relation 𝑅 ≡ 𝐻𝑉/𝜎𝑆 =

0.744 not only for the start of plastic deforming but for formula (4.2.24) as well: 

𝐻max = 𝑆1𝑁1 = √2 3⁄ 𝜎. (4.2.22) 

𝐻𝑁𝑈 =
2

3
√𝜎𝑆

2 + [(𝜎 sin 𝛽 cos 𝜆)2 − 𝜎𝑆
2]exp [−𝑅1 (

2

3
𝜎𝑚𝜎)

𝑅2

𝑡], (4.2.23) 

𝜎𝑆𝑈 = 𝐻𝑁𝑈 (𝛽 =
𝜋

2
, 𝜆 = 0). (4.2.24) 
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To apply the formulae proposed above, first, we must choose the constant 𝑟 to ensure that it gives the 

correct 𝐻𝑉 for the plastically deformed specimens. For this purpose, 

(i) we utilize formulae (3.3.5)-(3.3.7), which give 𝜀~𝜎 relation; 

(ii) from the 𝜀~𝜎 relationships, we take those values of the stresses (𝜎1 = 31.0MPa 

and 𝜎2 = 33.6 MPa) that correspond to 𝜀1 = 3.6 % and 𝜀2 = 6.8 %; 

(iii) utilizing (3.2.6), we calculate 𝜓𝑁0 for 𝜎1 and 𝜎2; 

(iv) formulae (4.2.23)-(4.2.25) at 𝑡 = 0  give the values of 𝐻𝑉  for the plastic 

deformation caused by 𝜎1 and 𝜎2. 

As a result, we obtain two points on the HV ~ t diagram at 𝑡 = 0. 

 

Fig. 4.19 HV vs. sonication time plots for the plastically deformed aluminum specimen: 𝜀1 = 3.6 % and 𝜀2 =

6.8 %. • – experiment; (Kulemim, 1978), lines – model 

 

The next step is to model the decrease in 𝐻𝑉 as a function of sonication time by formulae (4.2.23)-

(4.2.25) for 𝑡 > 0 . Fig. 4.19 demonstrates the model 𝐻𝑉  ~ t curves constructed at the following 

constants' values: 𝑅1 = 7.136 × 1014(MPa2𝑅2 ⋅ s)
−1

, 𝑅2 = 4.0. Similarly to the experiment, the model 

curve at 𝜀2 = 6.8 % shows a quicker decrease in 𝐻𝑉 than that at 𝜀1 = 3.6 %. It is in full accordance with 

the experimental fact that the initial strain hardening increase boosts the acoustic field's recovery 

processes. 

𝐻𝑉 = 𝑅 ⋅ 𝜎𝑆𝑈 . (4.2.25) 
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The results regarding section 4.2 are published in 

Rusinko, A. & Alhilfi, A. (2021) 

Rusinko, A. Alhilfi, A., Rusinko, M. (2022) 

Ruszinko, E. & Alhilfi, A. (2021) 
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Thesis II 

In terms of the Synthetic theory, a model for the analytical description of the ultrasound-assisted time-

dependent deformation processes has been developed. The extension of the Synthetic theory is conducted 

by inserting into its governing relationships a term accounting for the effect of ultrasonic energy on the 

mechanical properties of materials. The obtained results show good conformity between the model and 

experimental data for the following phenomena: 

(i) The increase in primary creep under the periodic and continuous action of ultrasound 

(ii) The increase in secondary creep in an acoustic field 

(iii) Ultrasound-induced relaxation (recovery) of the work-hardened materials. 
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4.3 Extension of the Synthetic theory to the ultrasound-assisted phase 

transformations 

 

4.3.1 Effect of ultrasound impulses on the austenite transformation 

This section deals with the transformation plasticity (austenite transformation), during which ultrasonic 

impulses are applied to the material (Fig. 4.20). There are two goals to be achieved here: 

(i) to derive formulae for describing the course of 𝜀~𝑇 curve in the presence of ultrasound 

impulses (see Fig. 2.36) and 

(ii) to give a relationship for the distribution of the magnitude of the strain-drops caused by 

ultrasound impulses (Fig. 2.37) 

 

 

Fig. 4.20 Schematic plot of austenite transformation in the presence of ultrasound (arrows indicate the moments 

of ultrasonic impulses 

 

Since effective temperature is the most crucial factor in the progress of phase transformation – 𝑇𝑒 directly 

influences the values of Φ  and 𝜑𝑁 via Eqs. (3.4.1) and (3-4-4) –, I propose to extend Eq. (3.4.5) by a 

term reflecting the presence of ultrasound. Following the observations on the effect of ultrasound on 

austenitic transformation, I propose to shift (increase) the value of effective temperature by a term (𝑈) 

representing the ultrasound action: 

𝑇𝑒 = 𝑇(1 − 𝐷�⃗⃗� ⋅ �⃗⃗� ) + 𝑈. (4.3.1) 
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We decompose the 𝑈 on two components, functions 𝑓 and 𝑔, to reflect the mechanical and thermal 

impact of acoustic energy on the kinetics of the austenitic transformation. 

𝑈 = (𝐵 + 𝑒−𝑤(𝑇−𝑇𝑖))∫ (𝑓 ∙ 𝑔)𝑑𝑡
𝑇

𝐴𝑠

, (4.3.2) 

where 𝑇𝑖 are the temperatures as ultrasound is on; 𝑤 and 𝐵 are model constants. 

The function 𝑓 points out the assisting action of ultrasound due to the generation of alternating stresses 

that induce and intensify the movement of interface and martensitic domain boundaries. I define 𝑓 as 

𝑓(𝑆𝑚) = 𝑈1(�⃗⃗� 𝑚 ⋅ �⃗⃗� ), (4.3.3) 

where 𝑈1 is the model constant and 𝑆𝑚 is a stress vector whose components are formed via Eq. (3.1.1) 

by the values of alternating stress amplitudes. Considering short-termed ultrasound impulses, 𝑓  is 

assumed to increase jump-wise as the ultrasound is on. Then it decreases, stabilizing at some value after 

the ultrasound is off. The overall effect of the ultrasonic impulses is an increase in 𝑓. Although 𝑆𝑚 = 0 

between the ultrasound impulses, 𝑈 > 0 throughout the transformation due to the integration in (4.3.2) 

that cumulates positive values during the sonication. 

I propose the term 𝑈1(�⃗⃗� 𝑚 ⋅ �⃗⃗� ) in (4.3.3) to comply with experimental data stating that the magnitude of 

the strain jumps is proportional to stress amplitudes (𝑆𝑚), and the effectiveness of ultrasound varies 

depending on the orientation of the microregion considered. It is the scalar product �⃗⃗� 𝑚 ⋅ �⃗⃗�  that reflects 

the effectiveness of the ultrasound action for a given orientation. 

The presence of (𝐵 + 𝑒−𝑤(𝑇−𝑇𝑖)) in (4.3.2) reflects the experimental fact that after ultrasound is Off, the 

so-called aftereffect is recorded, consisting of some deformation increase. As 𝑒−𝑤(𝑇−𝑇𝑖) → 0, the further 

realization of SME takes place according to the austenite transformation kinetics, although shifted by 𝐵. 

To summarize, the effect of ultrasound manifests itself in the recoverable and irrecoverable portions of 

phase deformation. 

In order to catch the experimental observation recording that the strain-jump magnitude strongly depends 

on the temperature when ultrasound is applied, I propose the function 𝑔(𝑇) from (4.3.2) in the form of 

the Agnesi curve: 

𝑔(𝑇) =
𝑎3

𝑎2 + (𝑇 − 𝐶)2
 . (4.3.4) 

While the function 𝑓 leads to uniform strain increments at a given ultrasonic intensity, the function 𝑔 

gives different strain-jump magnitudes depending on the transformation stage when the acoustic energy 
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acts. The model constants 𝑎 and 𝐶 from (4.3.4) reflect the material's compliance to react to the ultrasonic 

impact at different moments of the transformation. 

Fig. 4.21 demonstrates the 𝑈(𝑇) plot, which shows its step-wise increments at the temperatures as the 

ultrasound is On. The magnitudes of these increments vary with the temperature. 

 

Fig. 4.21. Dependence of 𝑈 on temperature; ultrasonic impulses are applied at 𝑇 = 𝑇1 and 𝑇 = 𝑇2. 

 

Consider heating a material subjected to constant uniaxial stress (𝜎) from its full martensite state (Φ =

1). Let an impulse of longitudinal ultrasound at a given temperature be applied. In this case, the vector 

𝑆𝑚 , according to (3.1.1), has components (√2 3⁄ 𝜎𝑚 , 0,0), where 𝜎𝑚  is the amplitude of oscillating 

tension-compression stress. 

Now, the strain intensity, on the base of Eqs. (3.4.11) and (4.3.1)-(4.3.4), is 

 

where 𝑆 = √2 3⁄ 𝜎. 

It is clearly seen due to the term 𝑈 in (4.3.5) that 𝜑𝑁𝑈 takes less value compared to that from (3.4.11), 

which correctly catches the experimental result saying that ultrasound energy causes a negative increment 

in the deformation. 

The shape memory deformation (𝑒𝑢), according to Eq. (3.1.8), takes the following form (the integral over 

𝛼 gives 2𝜋) 

𝑒𝑢 =
𝜋

𝑟
∫ ∫ [−(𝑇 − 𝐴𝑓) + (𝑇𝐷𝑆 − 𝑈)sin𝛽cos𝜆]sin2𝛽cos𝜆𝑑𝜆𝑑𝛽

𝜋 2⁄

𝛽1𝑈

𝜆1𝑈

0

.  (4.3.6) 

𝑟𝜑𝑁𝑈 = −(𝑇 − 𝐴𝑓) + (𝑇𝐷𝑆 − 𝑈)sin𝛽cos𝜆, (4.3.5) 
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The boundary angles in (4.3.6) are 

cos𝜆1𝑈 =
1

(𝐷𝑆 − 𝑈)sin𝛽
(1 −

𝐴𝑓

𝑇
) , sin𝛽1𝑈 =

1

(𝐷𝑆 − 𝑈)
(1 −

𝐴𝑓

𝑇
)  . (4.3.7) 

Like in Eq. (3.4.12), we assume that 𝑇 > 𝐴𝑓. Otherwise, we let 𝛽1𝑈 = 0 and 𝜆1𝑈 = 𝜋/2. 

Fig. 4.22 gives a comparison between 𝜑𝑁𝑈~𝑇 and 𝜑𝑁~𝑇 plots, which demonstrate entire agreement 

with experimental observations: 

a) strain intensity (therefore, deformation) gains a negative-signed increment at the moment of 

ultrasound impulse, 

b) after some interim period, it follows the kinetics of austenite transformation but with irrecoverable 

reduction. 

 

 

Fig. 4.22. Strain intensity vs. temperature for an ordinary (𝜑𝑁) case and with ultrasound (𝜑𝑁𝑈). 

 

Summary. 

To mirror the fact that ultrasound induces the deformation recovery on heating, i.e., intensifies the shape 

memory deformation, we have introduced the term 𝑈 in Eq. (4.3.5), which reflects the promoting action 

of ultrasound within microelements. In an instant as ultrasound on, the deformation yields a negative 

increment and, after a short disturbance, follows the kinetics of austenitic transformation. Another effect 

from 𝑈 is that the amount of material involved in the transformation increases due to ultrasonic impulse, 

i.e., by comparing (3.4.12) and (4.3.7), we have 𝜆1𝑈 < 𝜆1  and 𝛽1𝑈 > 𝛽1 . Besides, formula (4.3.4) 

governs the magnitude of the strain jump depending on the temperature of ultrasonic insonation. 
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Summing the strain intensities in all the micro volumes taking part in the austenitic transformation, 

Eq. (4.3.6), we obtain the deformation on the macroscopic scale.  

Since acoustic energy boosts the phase transformation, it ends at less temperature than the ordinary shape 

memory effect – in Fig. 4.22, the 𝜑𝑁𝑈 line reaches sooner than 𝜑𝑁 the zero value. 

Figure 4.23 demonstrates the change in the boundary angle 𝛽1 that determines the region where the strain 

intensity is non-zero from the martensite (Φ = 1, 𝛽1 = 0) up to the austenite state (Φ = 0, 𝛽1 = 𝜋 2⁄ ). t 

Ultrasound impulse results in the step-wise increase of his angle: from 𝛽1 (3.4.12) to 𝛽1𝑈 (4.3.7). 

 

Fig. 4.23 The change in the integration domain during austenite transformation with one ultrasound impulse. 

If to set the task of modeling the ultrasound-induced strain drops alone, i.e., we are not interested in the 

development of the transformation between the ultrasound impulses, we ignore the bracket in the formula 

(4.3.2): 

𝑈 = ∫ (𝑓 ∙ 𝑔)𝑑𝑡
𝑇

𝐴𝑠

. (4.3.8) 

In this case, 𝑈 , being the product of 𝑓 Fig. 4.24a and 𝑔 Fig. 4.24b, takes the step-shaped form Fig. 4.24c 

with different magnitudes of the steps. Together with Eq. (4.3.5), it correctly reflects the experimental 
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requirements – a) ultrasonics impulses cause the negative increments in the strain intensity. b) the 

magnitude of these increments varies with the temperature, having the greatest value in the middle of a 

transformation. 

 

Fig. 4.24 Schematic plots of functions from Eqs. (4.3.2)-(4.3.4) at 𝛽 = 𝜋 2⁄  and 𝜆 = 0. 

The increment in the strain intensity due to the ultrasound impulses, according to Eq. (4.3.5), is 

𝑟𝛥𝜑𝑁𝑈 = −𝛥𝑈 (4.3.9) 

Taking into account (4.3.2) and (4.3.8), the above formula, i.e., the negative strain intensity jumps caused 

by ultrasonic longitudinal impulses of equal intensity (amplitude) and duration at temperatures iT  are 

written as follows 

𝑟𝛥𝜑𝑁𝑈𝑖 = −𝑈1

2

3
𝜎𝑚sin𝛽cos𝜆𝑔(𝑇𝑖)𝛥𝑇 (4.3.10) 

where 𝛥𝑇 is the temperature range when ultrasound is on. 

To calculate the increment in deformation, we utilize Eq. (3.1.8): 

𝛥𝑒𝑈𝑖 = 𝜋 ∫ ∫ 𝛥𝜑𝑁𝑈𝑖𝑠𝑖𝑛2𝛽𝑐𝑜𝑠𝜆𝑑𝜆𝑑𝛽

𝜋 2⁄

0

𝜋 2⁄

0

 (4.3.11) 

The formula above matches experimental recordings: a) acoustic energy enhances shape memory 

deformation by generating a negative increase in deformation, b) the magnitude of the deformation 
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increments is proportional to the sonication intensity, and c) the effect of ultrasound impulses depends 

on the stage of austenitic transformation when the ultrasound is switched on. 

Therefore, the extension of the synthetic theory expressed in this section leads to a qualitative 

correspondence with experiments. The next step is to inspect its quantitative correctness. 

 

4.3.2 Results. Discussion 

𝜺~𝑻 diagram in the ultrasound field 

Here, my goal is to plot 𝜀~𝑇 diagram of NiTi alloy at fixed static stress subjected to ultrasonic insonation 

and compare it with the experiment. Characteristic temperatures of the alloy measured by differential 

scanning calorimetry were: 𝐴𝑠 = 323 K, 𝐴𝑓 = 349 K (Rubanik et al., 2008). The procedure of tests was 

the following. The wire sample in the high-temperature austenite was subjected to load (uniaxial tension 

𝜎 = 30 MPa that results in deformation of 1.9%) with subsequent cooling. After cooling, the sample was 

brought into austenitic condition by heating. The heating was performed at a rate of 1 K/min. Two 

ultrasonic impulses (each of 9 sec) with vibrational amplitude 𝐴 = 5 μm and frequency 𝑓 = 22.2 kHz 

were produced in the temperature range 𝐴𝑠-𝐴𝑓. The first ultrasonic impulse was produced at 𝑇1 = 340 K, 

and the second at 𝑇2 = 373 K. 

To calculate the alternating stress amplitudes 𝜎𝑚, we utilize Eq. (4.1.20). Taking into account that these 

are temperature functions, further throughout, we utilize their average values for 𝐴𝑠-𝐴𝑓 diapason: 𝐸 =

62 GPa, 𝑐 = 5200  m/s (Bradley, 1965). As a result, from (4.1.20), we have 𝜎𝑚 = 8.3 MPa. 

First, we plot the 𝜀~𝑇 diagram for the shape memory effect with the above data without ultrasonic action. 

To do this, we use Eqs. (3.4.11)-(3.4.13) for plotting line 1 in Fig. 4.22 with the following model 

constants: 𝐷 = 4.2 × 10−3 MPa−1  and 𝑟 = 4.9 × 102 K . At least for the temperature diapason 290-

340 K, i.e., before the first ultrasonic impulse, we can conclude that the model curve shows good 

agreement with the experiment. 

The next step is the 𝜀~𝑇  diagram in the presence of ultrasonic impulses (line 2 in Fig. 4.25). Formulae 

(4.3.1)-(4.3.7) give the strain drop values shown in Table 4.1. The model results have been obtained with 

the following values of constants: 𝑤 = 1.32 × 10−1K−1 , 𝑈1 = 13.83 (K ⋅ MPa)−1 , 𝑎 = 4.0 K , 𝐶 =

360 K, 𝐵 = 4.79 × 10−1. It must be stressed that the values of constants 𝐷 and 𝑟 stay the same as in the 

previous paragraph. The magnitude of the strain jump at the first impulse is much greater than that at the 
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second. The reason is that the first impulse is done near the middle of the transformation while the second 

is closer to its end. The same result is obtained analytically because of the function 𝑔(𝑇) (4.3.4), where 

the constant 𝐶  regulates the temperature of the greatest increment in the deformation caused by 

ultrasound. Therefore, the magnitude of strain jumps is governed by constants 𝑈1  in 𝑓(𝑆𝑈) and 𝑎 in 

𝑔(𝑇), and the constant 𝐶 in 𝑔(𝑇) regulates the temperature of the maximum ultrasound effect. 

The kinetics of 𝜀~𝑇 after switching off of ultrasound is also in full accordance with experimental results. 

Namely, after the strain jump, the model result shows some increase in the deformation, after which the 

deformation on heating develops according to the reverse transformation kinetics. This result is due to 

the term (𝐵 + 𝑒−𝑤(𝑇−𝑇𝑖)) in (4.3.2) Here, constant 𝑤 governs the duration of the deformation's increase 

following the ultrasonic action, and 𝐵  expresses an irrecoverable portion of deformation caused by 

ultrasound. Thus, the model accounts for another experimental fact stating that the ultrasound-assisted 

transformation ends at lower temperatures. In our case, the second ultrasonic impulse results in such a 

drop in deformation that the material achieves a fully austenitic state when the further temperature 

increase results in no deformation variation. So, we read from Fig. 4.25 that the finish temperature after 

two acoustic impulses is 373 K, while the ordinary 𝜀~𝑇 diagram stops its variation at about 400 K. 

 

Fig. 4.25 State diagram of NiTi alloy in deformation-temperature coordinate. The sample is subjected to uniaxial 

tension 𝜎 = 30 MPa. The arrows show the moments of switching-on (↑) and switching-off (↓)of ultrasonic 

vibrations; ■ –experiment; (Rubanik et al., 2008), lines – model. 
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Table 4.1 Strain drops due to ultrasound impulses 

 Experiment Model Relative error, % 

1st impulse 1.675 1.973 +15.1 

2nd impulse 0.493 0.445 –9.7 

 

In summary, we may conclude that the extension of the synthetic theory leads to qualitatively and 

quantitatively correct results. 

 

Ultrasound-induced strain drops 

Here, my goal is to calculate the ultrasound-induced drops of deformation during the austenitic 

transformation in Ni-Ti alloy at fixed stress and compare them with the experimental results, Fig. 4.26. 

Characteristic temperatures of the alloy measured by differential scanning calorimetry were 𝐴𝑠 = 356 K 

and 𝐴𝑠 = 390 K (Steckmann et al., 1999). The stress state of the experiment was uniaxial tension (𝜎 =

100 MPa = 𝑐𝑜𝑛𝑠𝑡). The initial state was martensite, Φ = 1 . Then, during the heating, longitudinal 

ultrasound impulses were superimposed at the following temperatures 𝑇𝑖 = 370,373,377,380,383 K. 

The amplitude of ultrasonic deformation at every sonication was 𝜀𝑚 = 5 × 10−5 . The amplitude of 

oscillating stress is calculated as 𝜎𝑚 = 𝐸𝜀𝑚. The Young modulus (E) of MSA strongly depends on the 

stage of transformation. Thus, for Ni-Ti alloy 𝐸𝑠 = 28 GPa as Φ = 1 and 𝐸𝑓 = 84 GPa as Φ = 0. By 

applying linear interpolation between two pairs of the values of 𝐸𝑠, 𝐴𝑠 and 𝐸𝑓 , 𝐴𝑓, we obtain the following 

values of the Young moduli for the temperatures 𝑇𝑖: 𝐸𝑖 = 49, 57, 63, 67, 72 GPa. As a result, we obtain 

the following values for 𝜎𝑚𝑖: 2.5, 2.8, 3.2, 3.4, 3.6 MPa. 

The drops of the deformation are calculated via Eqs. (4.3.10) and (4.3.11). To make calculations by this 

formula, we need to choose the model constants 𝑈1, 𝑎, and 𝐶 standing in Eqs. (4.3.8) and (4.3.4) so that 

the model result fits the experimental one as much as possible. While the model constant 𝑈1 governs the 

magnitude of the strain jump as a function of oscillating stress amplitude; the constants 𝑎 and 𝐶 regulate 

the position of the most significant effect from the acoustic impulses. 

Fig. 4.26 demonstrates the deformation drops caused by acoustic impulses. The model results are 

obtained via Eqs. (4.3.10) and (4.3.11) at the following values of the model constants: 𝑈1 = 8.5 × 10−2 
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(K ⋅ MPa)−1 ,  𝑎 = 8.5 K , 𝐶 = 377 K . Constants 𝑟  and 𝐷 , responsible for conventional austenite 

transformation, are taken as  𝑟 = 375 K, 𝐷 = 3 × 10−5 MPa−1. 

It is easy to see from Fig. 4.26  that the model results correctly fit experimental data, allowing us to utilize 

the synthetic theory as a reliable instrument to predict the ultrasound-induced deformation drops in 

austenite transformation. 

 

Fig. 4.26 Ultrasound-induced deformation drops in the course of austenitic reverse thermoelastic phase 

transformation; ⚫ – experiment; (Steckmann et al. 1999), ◼ – model results via Eq. (4.3.11) 
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4.3.3 Extension of the Synthetic theory to the ultrasound-assisted pseudoelasticity (martensite 

transformation) 

Consider the case when an SMA specimen in an austenite state is subjected to load at a constant 

temperature (𝑇0). The effect of pseudoelasticity results from martensite transformation occurring in the 

material, which leads to inelastic deforming for stresses beneath the material's yield strength. 

This section aims to model the martensite transformation in the acoustic field, i.e., when the 

unidirectional and vibrating stresses act simultaneously from the beginning of loading. 

Formula (3.4.15) says that the strain intensity in martensite transformation is related to the effective 

temperature as  

𝑟𝜑𝑁 = 𝑀𝑠 − 𝑇𝑒 (4.3.12) 

Again, one can see that the effective temperature is the central element governing the development of 

deformation. In order to model the promoting effect of acoustic energy on the martensite transformation, 

i.e., to obtain the increase in the strain energy, we propose to shift (decrease) the effective temperature 

by a term that expresses the action of ultrasound: 

𝑇𝑒 = 𝑇0(1 − 𝐷�⃗⃗� ⋅ �⃗⃗� ) − 𝑈. (4.3.13) 

where 𝑈 is proportional to the ultrasound energy (vibrating stress amplitude) and is proposed to be 

defined as 

𝑈 = 𝑈1(�⃗⃗� 𝑚 ⋅ �⃗⃗� ), (4.3.14) 

where the nomenclature is the same as in the previous section. The scalar product (�⃗⃗� 𝑚 ⋅ �⃗⃗� ) in formula 

(4.3.13) expresses the well-known fact that the effectiveness of ultrasound varies depending on the 

orientation of the microregion considered. 

The term 𝑈  inserted into Eq. (4.3.1) represents only an assisting effect of ultrasound upon the 

pseudoelasticity. 

On the other hand, acoustic energy can decrease or increase the stress to be applied and increase the slope 

angle of the stress-strain curve (Malygin, 2001; Sapozhnikov et al., 1996). To account for this, we 

increase the value of the constant 𝑟, which is responsible for the slope angle of the stress~strain diagram, 

by 𝑈2|𝑆𝑚|. As a result, the ultrasound-assisted diagram inevitably crosses the ordinary one, which 
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symbolizes that the pseudoelastic deformation needs greater stresses starting from this point (see 

Fig. 2.38). A new constant, 𝑟𝑈, is related to 𝑟 as 

𝑟𝑈 = 𝑟 + 𝑈2|𝑆𝑚|, (4.3.15) 

where 𝑈2  is model constant. Formula (4.3.15) aligns with the increase in the hardening coefficient 

proposed by Sathish et al. (2013). 

It is easy to see that as 𝑆𝑚 = 0, i.e., in the absence of ultrasound, we arrive at the relationships to be 

applied to the modeling of ordinary pseudoelastic 𝜎 ∼ 𝜀 diagrams. 

 

Consider a material in an austenitic state (Φ = 0). Taking temperature constant (𝑇0), we load the material 

by simultaneous uniaxial tension and longitudinal vibration. In this case, according to Equation (3.1.8), 

the vector 𝑆𝑚 , has components (√2 3⁄ 𝜎𝑚, 0,0), where 𝜎𝑚  is the amplitude of oscillating tension-

compression stress. 

According to Equations (3.4.15) and (4.3.12)-(4.3.15), the strain intensity with superimposed ultrasound 

(𝜑𝑁𝑈) is 

𝑟𝑈𝜑𝑁𝑈 = 𝑀𝑠 − 𝑇0(1 − 𝐷𝑆sin𝛽cos𝜆) + 𝑈1𝑆𝑚sin𝛽cos𝜆. (4.3.16) 

Comparing 𝜑𝑁𝑈 to the strain intensity from (3.4.15), it is easy to see that the presence of 𝑈 on the right-

hand side in (4.3.16) promotes the development of inelastic deformation. In other words, a given 

deformation value can be achieved with less stress because of compensating action of ultrasound energy. 

The pseudoelastic deformation starts as 

𝑆𝛷𝑈 =
1

𝐷
[1 −

𝑀𝑠

𝑇0
−

𝑈1𝑆𝑚

𝑇0
]. (4.3.17) 

The above formula is obtained from Eq. (4.3.13) via condition 𝑇𝑒 = 𝑀𝑠, which is the same as 𝜑𝑁𝑈 = 0 

at 𝛽 = 𝜋 2⁄  and 𝜆 = 0. 

Formula (4.3.17) testifies – 𝑆𝛷𝑈 < 𝑆𝛷 (3.4.16) – that the superposition of ultrasound lowers the value of 

static stress needed to induce martensite transformation/pseudoelastic deformation. 

The pseudoelastic strain component (𝑒𝑈), according to Equations (3.1.8) and (4.3.16), takes the following 

form in the presence of ultrasound 
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𝑒𝑈 =
𝜋

𝑟𝑈
∫ ∫ [𝑀𝑠 − 𝑇0(1 − 𝐷𝑆sin𝛽cos𝜆) + 𝑈1𝑆𝑚sin𝛽cos𝜆]sin2𝛽cos𝜆𝑑𝛽𝑑𝜆

𝜋 2⁄

0

𝜋 2⁄

0

. (4.3.18) 

The boundary angles in formula (4.3.18) are 

cos𝜆1𝑈 =
1

(𝐷𝑆 +
𝑈1𝑆𝑚

𝑇0
) sin𝛽

(1 −
𝑀𝑠

𝑇0
) ,   sin𝛽1𝑈 =

1

𝐷𝑆 +
𝑈1𝑆𝑚

𝑇0

(1 −
𝑀𝑠

𝑇0
). 

(4.3.19) 

Let us calculate the stress value in the acoustic field when the 𝜎 ∼ 𝜀 diagram has a reflection point (𝑆𝑓𝑈), 

from which the slope angle tends (increases) to its initial elastic value. To do this, we equate 𝑇𝑒 from 

formula (4.3.13) at 𝛽 = 𝜋 2⁄  and 𝜆 = 0 to 𝑀𝑓. As a result: 

𝑆𝑓𝑈 =
1

𝐷
(1 −

𝑀𝑓

𝑇0
−

𝑈

𝑇0
) < 𝑆𝑓  from (3.4.21) (4.3.20) 

The inequality 𝑆𝑓𝑈 < 𝑆𝑓 correctly reflects the experimental result (Fig. 2.38) that the ultrasound-assisted 

pseudoelasticity tends to its completion at a smaller deformation value than that in the ultrasound-free 

case. 

And lastly, the constant 𝑟𝑈 that stands in formula (4.3.18) reflects another experimental fact that the sign 

of the ultra-sonic action changes from positive (assisting) to negative (suppressing) depending on the 

stage of transformation. The inequality 𝑟𝑈 > 𝑟 ensures that closer to the finish of the transformation, the 

ultrasound-assisted 𝜎 ∼ 𝜀 diagram runs above the ordinary one. 

Therefore, the extension of the synthetic theory expressed in formulae (4.3.13)-(4.3.20) leads to a 

qualitative correspondence with experiments. The next step is to inspect its quantitative correctness. 

 

4.3.4 Results. Discussion 

This section deals with plotting 𝜎 ∼ 𝜀  diagrams of NiTiRe alloy at a constant temperature 𝑇0 = 283 K 

in an acoustic field. The samples at the austenite state are subjected to uniaxial tension within the 

martensite transformation temperature range. Two loading regimes are applied: (i) static stress alone and 

(ii) static and vibrating stresses with the amplitude of ultrasonic deformation 𝜀𝑚 = 2 × 10−4 (Steckmann 

et al., 1999). The amplitude of alternating stress is calculated via Young law as 

𝜎𝑚 = 𝐸𝜀𝑚, (4.3.21) 

where 𝐸 is the Young modulus, 𝐸 = 80 GPa. As a result, we obtain 𝜎𝑚 = 16 MPa. 
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First, we plot 𝜎 ∼ 𝜀 diagram without ultrasonic action (Fig. 4.27, line 1). We use Eqs (3.4.16)-(3.4.20) 

to do this. As a result, we arrive at the correct results: a) 𝑆𝛷 = 88.3 MPa and b) the model 𝜎 ∼ 𝜀 curve 

shows good agreement with the experiment. Line 1 in Fig. 4.27 is constructed with the following values 

of constants: 𝐷 = 1.2 × 10−4 MPa−1, 𝑟 = 1300 K, 𝑀𝑠 = 280 K, 𝑀𝑓 = 260 K. 

Fig. 4.27 Pseudoelastic σ~ε diagram of NiTiRe alloy at constant temperature (𝑇0 = 283 K) in uniaxial tension: 1 

– static loading, 2 – simultaneous action of static and ultrasonic loading (𝑓 = 18 kHz). Lines – model, symbols – 

experiment (Steckmann et al., 1999). 

 

The next step is 𝜎 ∼ 𝜀 diagram in the presence of ultrasound (line 2 in Fig. 4.27). The model results have 

been obtained via formulae (4.3.1)-(4.3.18) with the following values of constants: 𝑈1 = 3.75 ×

10−2 MPa−1 , 𝑈2 = 22 K/MPa . It must be stressed that the values of constants 𝐷  and 𝑟  remain 

unchangeable. 

Inspect the behavior of the strain intensity for variously oriented microvolumes for ordinary and ultra-

sound-assisted deformations. Fig. 4.28 demonstrates 𝜑𝑁𝑈 ∼ 𝜎  and 𝜑𝑁 ∼ 𝜎  plots obtained via Eqs 

(4.3.16) and (3.4.15), respectively. 

The following conclusion can be derived from this figure: 

(i) According to Eq. (4.3.17), the start of ultrasound-assisted plastic (pseudoelastic) deformation takes 

place at 𝑆𝛷𝑈 = 38.3 MPa (compare to 𝑆𝛷 = 88.3 MPa without ultrasound). 

(ii) The stress range where pseudoelastic deformation develops shifts toward smaller stresses. 
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The above-listed points have been achieved by introducing the term 𝑈 into the formula for the effective 

temperature. 

Fig. 4.28 Strain intensity Vs. Stress plots for various directions 1-4: 𝛽 = 𝜋 2⁄ , 𝜋 4⁄ , 𝜋 6⁄ , 𝜋 12⁄  (𝜆 = 0) 

With 𝑟𝑈 from Eq. (4.3.15) standing in the denominator in formula (4.3.18), we have obtained the result 

correlating with Malygin's predictions (Malygin, 2001), namely 

(iii) Acoustic energy can decrease or increase the stresses needed to develop pseudoelastic deformation 

(in our case, the sign of ultrasonic action changes at the very end of the transformation, 𝜀 ≈ 6.4 %). 

All the results above are in full accordance with the experimental records. Therefore, we may conclude 

that the extension of the synthetic theory leads to qualitatively and quantitatively correct results. 

The results regarding section 4.3 are published in 

Alhilfi, A. & Rusinko, A. (2022)c. 

Alhilfi, A. & Rusinko, A. (2022)d. 

Alhilfi, A. & Ruszinkó, E. (2023) 
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Thesis III 

In terms of the Synthetic theory, a model for the analytical description of the ultrasound-assisted phase 

transformations of the shape memory alloys has been developed. The extension of the Synthetic theory 

is conducted by inserting into its governing relationships a term accounting for the effect of ultrasonic 

energy on the mechanical properties of materials. The model results correctly correlate with 

experimental recordings for the following phenomena: 

I. Ultrasound impulses induce strain drops during austenite transformation (transformation 

plasticity) 

II. Ultrasound superimposed on a static load decreases stresses needed to start martensite 

transformation during pseudoelastic deformation 
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Conclusion 

This thesis presents the results of the investigations regarding the effects of ultrasound on the inelastic 

deformation of metals. The Synthetic theory of inelastic deformation is taken for the mathematic 

apparatus to model the phenomena observed in the acoustic field. There are three main themes addressed 

in this study. 

The first theme is a string of phenomena accompanying the plastic deformation of metals in an ultrasound 

field: ultrasound temporary softening and ultrasound residual hardening/softening. The temporary 

softening (acoustoplasticity) is observed during the simultaneous action of ultrasound and unidirectional 

loading, and the residual effects manifest themselves in the post-sonication period. While the former 

phenomenon always gives the same result – the reduction of static stresses needed to develop plastic 

deformation due to the ultrasound energy inflow – the latter strongly depends on the mechanisms 

governing the temporary softening. If, as a result of acoustoplasticity, a stable defect structure forms, 

typical for materials with high stacking fault energy, the residual hardening will be observed. In other 

words, the defect structure formed during the sonication will hamper the development of plastic 

deformation in the post-sonication stage, and more significant stresses are needed to continue the material 

flow. Materials with low stacking fault energy come from the acoustoplasticity with a softer defect 

structure, which reduces the stresses needed to induce the material flow after the sonication. Both 

temporary and residual effects become more evident as the ultrasound intensity grows. 

In order to model the ultrasound-assisted plastic deformation, two new terms are inserted into the 

relationship of the Synthetic theory that governs the deformation state of the material. The first term 

symbolizes that ultrasound facilitates the development of plastic deformation by activating blocked 

dislocations, localized heating, and dynamic softening. The second one reflects the degree of the material 

hardening obtained during the acoustoplasticity. Both of these terms are increasing functions of 

ultrasound intensity. 

The second topic is modeling the effect of ultrasound on time-dependent processes, such as the creep 

deformation of metals and the relaxation of work-hardened materials. Two cases are considered: (i) the 

ultrasound is superimposed upon the creep deformation from the beginning of the experiment, and (ii) 

the ultrasound acts periodically. In both cases, the sonication results in a drastic increase in creep 

deformation. Similar to the previous case, the flow-rule relationship is extended by a term governing the 
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time-dependent behavior of the ultrasound-induced defects of the metal's crystalline grid. Since the 

number of ultrasound defects is not a monotonic function of time (they first increase and then go to the 

plateau value), the effect from periodic sonication fades with the number of ultrasound switches. 

With the ultrasound effect on the recovery (relaxation) processes, experiments record that even at low 

(room) temperatures, acoustic energy decreases the hardness of the materials preliminarily subjected to 

plastic deformation. This phenomenon becomes more evident as the magnitude of the plastic prestrain 

grows. The relationships correctly describing the ultrasound-induced recovery have been obtained by 

extending the element of the synthetic theory, which governs relaxation processes, by the term 

proportional to the product of ultrasound intensity and the magnitude of plastic prestrain. 

The last (third) sphere of interest lies in the ultrasound-assisted phase transformations of shape memory 

alloys. A series of exciting results can be found in this area. Ultrasound, the source of mechanical and 

thermal stimuli for austenite transformation, causes strain drops on the strain~temperature diagram, and 

their magnitudes strongly depend on the temperature when the sonication happens. After the ultrasound 

is off, the deformation grows a little, after which the strain-temperature diagram runs according to 

austenitic transformation kinetics, although beneath the standard curve. Another effect is that in the 

presence of ultrasound impulses, the finish temperature of the austenite transformation reduces compared 

to the ordinary case. 

With martensite transformation, ultrasound superimposed on the static load during pseudoelastic 

experiment reduces the stress needed to start martensite transformation. Further, acoustic energy shortens 

the deformation range within which the transformation occurs and varies the slope angle of the 

stress~strain diagram. 

In order to model the phenomena considered above, following the experimental results that acoustic 

energy shifts the effective temperature of the transformations, the relationship that defines the effective 

temperature is extended by a term reflecting the presence of ultrasound and its thermal and mechanical 

impact on the transformation considered. 

To conclude, I summarize the main contributions of this work as follows: 

I have extended the Synthetic theory so that it enables to model: (i) ultrasound-assisted plastic 

deformation, (ii) ultrasound-assisted creep deformation and recovery, and (iii) ultrasound-assisted phase 

transformations. All model results agree with experimental data (numerical calculations have been 

carried out using the MathCad13-Professional software package), which testifies to the qualitative and 

quantitative reliability of the model developed.  
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