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1 Summary in Hungarian Language

A labboltozat merevségének szabalyozasaval a labboltozat rugalmassaga javithatja a jaras hatékonysagat a
mechanikai energia tarolasa és visszanyerése révén. A boltivben 1€év6 szovetek merevségének kdszonhetden a
csoOrlé mechanizmus a metatarsophalangealis dorsiflexid kdzben a talpi izompdlyat a labkdzépcsont feje korl
feltekeri, ezaltal leroviditi és megemeli a boltivet, és megforditja a subtalaris izuletet. Figyelembe véve a
megvaltozott metatarsophalangealis kinematika hat&sat a talpi izompdlya torzsre, a boltiv-rugé mechanizmus

tovabb emeli a szalagos strukturak jelentés hozzajarulasat a rugalmas energiaclnyeléshez és -disszipaciohoz.

A morfologiai evolucid és a funkcionalis adaptacio révén a labboltozat szerkezeti valtozasai elkertlhetetlendl

az alsé végtagok biomechanikajanak valtozasaihoz vezetnek.

A jelen munka a 1ab-boka komplex biomechanikai funkcionalis analizisét és végeselem-elemzését kombinalta,
hogy feltarja a labfejre jellemzé a mozgas kozbeni boltivmerevséggel kapcsolatos funkcionalis
mechanizmusokat. A morfoldgiai boltiv biomechanikai funkcidjanak megértése tovabbi hasznosithato
ismereteket nyujthat a labsériilések eldrejelzése és az alsd végtag iziileteinek mozgas koézbeni atfogod

kompenzacios beallitasa réveén.

A disszertéacié labmorfoldgiai mérésekkel indult, hogy a felkért alanyok labboltozat-merevségét osztalyozzak
a haromdimenziés ivparaméterek szamitasa alapjan kiilonbozo terhelési feltételek mellett. Ezutan minden
alanynak jarasteszteket kellett elvégeznie egy szabvanyos biomechanikai laboratériumban, beleértve a jarast,
a futast, a tervezett és nem tervezett jaras megszakitasokat. A jarastesztek kinematikai és kinetikai paramétereit
Osszegyljtottik a késObbi mozgasszervi modellezéshez. Statisztikai, nem paraméteres leképezési

megkdzelitést alkalmaztuk az iv merevségenek a lab-boka kinematikajara gyakorolt hatasanak felméresére.

Az eredmények azt mutatjak, hogy a labktzépcsont és a bokaizilet szdge a boltivmerevségnek és a jaras
mintaknak kdszonhetden megvaltozott. Ezek az eredmények tovabbi betekintést adnak a morfologiai iv
biomechanikai funkcidjaba és az als6 végtag izlileteinek atfogd kompenzacids beallitasdba a nem tervezett

stimulacio okozta jarasmegallitas soran.



Ezen kivil az izlletek kozotti koordinaciot es variabilitast a térd-csip6, boka-térd és metatarsophalangealis-
boka csatolasok szdg-sz6g diagramjaibdl szamitottuk egy optimalizalt vektorkddolasi technika alapjan. Ezek
a megfigyelések azt mutattak, hogy a rugalmas boltivii egyének hajlamosak egy konzervativ koordinacios
stratégiat elfogadni, amely jobban miikddik boltiv stabilizatorként és ahjtoerdként az iv-rugd mechanizmuson

keresztlli nyujtasi-roviditési ciklus soran.

A szamitdgépes szimulaciot illetden reverse engineering technologiat alkalmaztam a vizsgalt személy jobb
labanak geometriai adatainak beszerzésére €s a lab-boka komplex végeselemes modelljének felallitasara. A
Iab végeselemes modelljét a szimulaciok és a kisérleti mérések alapjan nyert talpi nyomas ésszehasonlitasaval
tovabb validaltuk. A labkozépcesont terhelése csokkenthetd a talpi izompolya merevségének bedllitasaval, a
labkozepcsontok faradasi karosodasa felgyorsulhat, mivel a medialis labkdzépcsontok dorsalis részei
altalaban nyomas alatt vannak, és ezekre a csontokra hato hajlitasi terhelések megnovekednek az izompodlya

terhelésének csokkenése réveén.

Osszefoglalva, ennek a tanulmanynak az eredményei atfogd biomechanikai részleteket és alternativ
megkdzelitéseket kinalhatnak a klinikusok és a kutatok szdmara az ortopediai fejlesztés értékeléséhez és

optimalizalasdhoz, valamint a merevséggel kapcsolatos labboltiv sériilések kockazatanak csokkentéséhez.

2 Antecedents of the Research

A well-functioning foot-ankle structure is significant in daily locomotor tasks [1]. As the primary part for
adjusting foot stiffness, the foot arch is springlike, as it compresses during the early stance phase and recoils
during the late stance phase, which could improve gait efficiency by storing and returning mechanical work
[1-3]. Given the stiffness of arch-spanning tissues, the windlass mechanism indicates that metatarsophalangeal
(MTP) dorsiflexion produces the winding of the plantar fascia (PF) about the head of the metatarsus, thereby
shortening and raising the arch, and inverting the subtalar joint [4]. On the other hand, considering the impact
of altering MTP kinematics on the PF strain, the arch-spring mechanism further emphasizes the significant
contribution of ligamentous structures, represented by the PF, to elastic energy absorption and dissipation [1].
Welte et al. [2] investigated the interaction between the above two mechanisms and found that the engagement

of the windlass through MTP dorsiflexion reduced arch stiffness (AS), and increased energy storage and return.
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MTP dorsiflexion may consequently influence foot movement by adjusting the mechanical energy pattern.
Kirsty et al. [5] also found that the PF demonstrated a characteristic elastic stretch-shortening cycle, with most
of the strain produced through compressing the arch. The energy transfer mechanism of the PF between the
MTP (energy absorption) and the foot arch (energy produced during recoil) reduces the strain required for the
PF to produce positive mechanical work at the arch.

From the perspective of morphological evolution and functional adaptation, structural changes in the foot arch
will inevitably lead to variations in the lower-limb biomechanics, increasing the potential risk of foot damage
and musculoskeletal problems [6-8]. Although arch height is overwhelmingly cited as a predictive factor for
podiatry, there is emerging evidence that AS (or arch flexibility) might also be a critical contributor [9]. It is
also considered to be a standard for evaluating injury susceptibility considering the association among ground
reaction force (GRF), foot pronation/supination, and foot injury [9, 10]. Despite some studies demonstrating
links between arch morphological characteristics and discrete biomechanical data, little work has examined
the correlation between AS and temporal kinematics. Statistical parametric mapping (SPM) has proven to be
helpful in biomechanical data with time-varying characteristics in previous studies [11, 12]. Statistical
nonparametric mapping (SnPM), as an SPM nonparametric equivalent, permits hypothetical testing on the
whole waveform rather than concentrating on specific data points, thus compensating for regional focus bias
[13, 14]. The amplitude of the loading on the arch would further increase in comparison to steady-state gait
during gait termination (GT) [15]. Furthermore, the GT task was performed as a valuable tool for gait analysis,
and it is widely used to assess motor function in patients with balance disorders [16, 17]. As the closest
anatomically to the arch, the biomechanical properties between the MTP and ankle joint are also worth
exploring during GT induced by unplanned stimuli.

Another area that has yet to be explored is the implications of AS on lower extremity coupling coordination
in gait. Traditional biomechanical gait assessments have typically used discrete measures, such as range of
motion (ROM) and peak plantar pressure. Nevertheless, isolated joint kinematics can neither effectively reflect
the segmental coordination information producing resultant angular positions nor provide a comprehensive
insight into the altered movement patterns caused by functional differences in the foot [18]. A continuous

approach, in contrast, enables the quantification of movement coordination patterns throughout the gait cycle

3



and can provide spatial-temporal details of the locomotion [19]. Coupling coordination analysis allows for
assessing the timing and magnitude of relative motion between body segments, while coordination
variabilities (CVs) further quantify the degree of fluctuation in coordination patterns [18, 19]. While numerous
studies have shown relationships between kinematic coupling behavior and arch biomechanical function, and
between foot morphology and injury susceptibility, few have investigated the association between lower

extremity inter-joint coordination and AS [20, 21].

The etiology of biomechanical metatarsalgia has been recognized as alterations in weight distribution to the
MTP joints due to functional or structural changes [22]. Nevertheless, these laboratory-based experimental
results may be limited since they cannot allow direct assessment of detailed mechanical changes in the foot
structure, particularly for the internal stress and strain distribution in the metatarsal region [23, 24]. To
overcome the above-mentioned intrinsic difficulties, computational modeling techniques, represented by the
finite element (FE) analysis, provided the feasibility for methodological purposes. Therefore, the present work
aimed to combine biomechanical functional analysis and FE analysis of the foot-ankle complex to reveal foot-
specific functional coupling mechanisms related to AS during motion. An understanding of the morphological
arch biomechanical function may provide additional insights into foot injury prediction and the comprehensive

compensatory adjustment of lower-limb joints.

3 Objectives

The first objective: To investigate the foot-ankle temporal kinematic characteristics of stiff- and flexible-
arched individuals during planned and unplanned gait terminations (PGT and UGT) using an SnPM method.

The second objective: To examine the influences of AS on the lower extremity segment CVs and anterior-

posterior ground reaction impulses (AP-GRIS).

The third objective: To reconstruct a subject-specific FE model of the foot-ankle complex utilizing the exact
three-dimensional geometry of foot bone and soft tissue, and examine the influences of PF stiffness on

metatarsal stress distribution and joint force transmission.



4 Research Methods and Challenges

Methods: The present work combined biomechanical functional analysis and FE analysis of the foot-ankle

complex to reveal foot-specific functional coupling mechanisms related to AS during motion.

The dissertation began with foot morphological measurements to classify the foot AS of recruited subjects
based on the calculation of three-dimensional arch parameters under different loading conditions. All subjects
were then required to complete gait tests in a standard biomechanical laboratory, including walking, running,
PGT and UGT. Kinematic and kinetic parameters from the gait tests were collected to perform the subsequent
musculoskeletal modelling. The SnPM approach was employed to assess the impacts of AS on foot-ankle
kinematics during PGT and UGT. Inter-joint coordination and variability were calculated from the angle-angle

plots of knee-hip, ankle-knee, and MTP-ankle couplings based on an optimized vector coding technique.

Regarding the computational simulation, reverse engineering technology was used to acquire geometrical data
of the right foot of the subject and establish a subject-specific FE model of the foot-ankle complex. A
sensitivity investigation was conducted to evaluate the effects of varying PF stiffness on the metatarsal stress
distribution and joint force transmission. The foot FE model was further validated by comparing plantar

pressure acquired from computational simulations and experimental collections.

Challenges: There are some challenges of the present study that need to be acknowledged. Firstly, as an easily-
acquired indirect metric, the AS predicts arch deformation during dynamic loading by comparing the
adaptation of the arch height between two different static load-bearing conditions. Concerns have been raised
that static (complex foot anatomical factors) variables and dynamic (foot neuromuscular control during
locomotion) variables may confound the results of the study. Secondly, while the SnPM was effective in
ANOVA for biomechanical data with time-varying characteristics, post hoc tests with Bonferroni correction
might be relatively approximate and conservative. Lastly, in the current foot FE model, several considerations
related to the balance between exact details and proper simplifications (i.e., computational cost) need to be
attended to for the predicted results and further practical applications. Additionally, the analysis focused on
balanced standing, and future studies should encompass more complex load-bearing phases, requiring further

dynamic FE analyses.
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New Scientific Results

1st Thesis point: | compared foot-ankle temporal kinematics characteristics during PGT and UGT in subjects
with different ASs based on the SnPM method (Figure 1).

The results show that joint angles (MTP and ankle joints) were altered owing to AS and GT factors. These
results add additional insights into the morphological arch biomechanical function and the comprehensive

compensatory adjustment of lower-limb joints during gait stopping caused by unplanned stimulation.

As shown in Figure 1, flexible arches exhibit a significantly increased ankle plantarflexion in the sagittal
plane during the braking and transitional phases of GT, while external rotation was greater than that of

SA during the transitional and stabilization phases.

Significantly smaller MTP inversion and external rotation angles are exhibited during UGT during
braking and transitional phases, which might be an integrated response concerning the MTP-ankle

coordination pattern to compensate for increased ankle inversion.

Morphological and
biomechanical collection Musenloskeletal mogdelling

Ankhe Sapitial & Ankle Transverse P MTP Transverse

Ankle Sagiteml MIP Frontal 5 MTP Tramsverse

Figure 1 The effect of arch stiffness on the foot-ankle temporal kinematics during gait termination
[8.1 Scientific Publications related to the Thesis Points, P1 & P2]
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2nd Thesis point: I investigated how the foot structural characteristics, as represented by the AS, affect lower
limb joint coupling coordination and AP-GRIs during walking and running. Inter-joint coordination and
variability were calculated from the angle-angle plots of knee-hip, ankle-knee, and MTP-ankle couplings

based on an optimized vector coding technique (Figure 2).

® The results indicate that coupling coordination of interest and its variability, as well as AP-GRIs, could

potentially be influenced due to differences in arch height flexibility.

® Furthermore, combining the SPM analysis results, the flexible arches experienced a greater proportion of

GRIs in the AP direction.

® These observations demonstrated that individuals with a flexible arch tend to adopt a conservative
coordination strategy that better functions as an arch stabilizer and propeller during the stretch-shortening

cycle via the arch-spring mechanism.

Active Peak
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Figure 2 The proposed experimental protocol regarding arch stiffness, lower limb joint coupling
coordination, and ground reaction impulse
[8.1 Scientific Publications related to the Thesis Points, P3]
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3rd Thesis point: | reconstructed a subject-specific FE model of the foot-ankle complex using the actual three-
dimensional geometry of foot bones and soft tissues (Figure 3). A sensitivity study was conducted to evaluate
the effects of varying elastic modulus (0-700 MPa) of the PF on the metatarsal stress distribution and force

transmission.

® My FE simulations yielded predictions that the peak metatarsal stress gradually reduced with decreasing
stiffness until the PF was released, resulting in a reduction of 22.39% compared to the reference value of
350 MPa (Figure 3).

® As PF stiffness gradually decreased to the released situation, there was a corresponding gradual reduction
of up to 36% and 72% in contact forces through the TMT and MTP joints.

® Although focal forces related to metatarsalgia could be relieved by adjusting PF stiffness, fatigue damage
to the metatarsals may be accelerated since the dorsal aspects of the medial metatarsals are normally

loaded in compression, and the bending loads on these bones would be elevated after fascial release.

1 Metatarsals stress
distribution

Flow chart of foot model
development of FE simulation

AV‘.‘\

SRR 7 | ‘i
== B YY} |
1

Pealt van Mises Stress (Mpa)
= w & 2 =

Joint contact force transmission Tarsometatarsal 1 Joint

Figure 3 Flow chart of foot model development of FE simulation
[8.1 Scientific Publications related to the Thesis Points, P4 & P5]
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6 Possibility to utilize the Results

In this dissertation, a comprehensive method combining biomechanical functional analysis and FE analysis of
the foot-ankle complex was applied to reveal foot-specific functional coupling mechanisms related to AS
during motion. An understanding of the morphological arch biomechanical function may provide additional
insights into foot injury prediction and the comprehensive compensatory adjustment of lower-limb joints
during motion. The findings of this study can provide comprehensive biomechanical details and alternative
approaches for clinicians and researchers to evaluate and optimize arch orthotics development and reduce
stiffness-related arch injury risk.
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