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Abstract  

A new method was proposed to characterize the strength properties of rocks. A crushing test 

was performed on sand-pairs with different parent rocks, using identical initial gradings. The 

data were analysed using the grading entropy theory, the grading curve variation was 

represented in the grading entropy diagram (with a coordinate uniquely related to the mean log 

diameter). The results with various rocks with the same conditions indicated the same entropy 

path, only the speed was different, indicating the possibility of a new testing method. As a by-

product of the result, it is shown that the breakage path and the internal stability of soils seem 

to be linked giving the explanation why fractal distribution with fractal dimension n<3 is so 

frequent in nature. 
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1. Introduction 

The aim of the research is to study the breakage and degradation process in rocks. Based on this 

study, a new method to characterize the rock material properties in terms of degradation and/or 

fragmentation is proposed. In order to achieve this, a crushing test is combined with the grading 

entropy theory to describe the path and the rate of breakage in terms of grading curve (i.e. particle 

size distribution).  

Similar paths and fractal dimensions occur in the nature [1] as in the laboratory tests. The 

breakage path is independent of the rock material and its rate is dependent on the material only. The 

linear part of path being completed by a theoretically computed starting point is proved to be a 

possible way for breakage rate characterization. 

The paper starts by introducing the concepts of grading entropy [2 to 4], entropy coordinates 

and optimal (or fractal) grading curves. Subsequently, the (discontinuity of the) breakage path and 

a criterion for internal stability based on grading entropy concepts are presented.  

These concepts enable presenting and analyzing some experimental breakage tests using an 

entropy diagram. It is found that the path may contain an initial discontinuity in the normalized 

diagram, a linear part and, a curved part where all distributions are fractal [1] with increasing fractal 

dimensions reaching a value of 3. The latter is the direct consequence of the entropy principle [3]. 

The samples are “young mixtures” where most grains are larger than the comminution limit ([5]). 
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2. Grading entropy 

The grading curve is the distribution of the log diameter of the grains d by dry weight. In the 

grading curve measurement the sieve sizes, and as a result, the fraction limits are doubled. An 

abstract fraction system is defined as follows. The diameter range for fraction j (j =1, 2...j see Table 

1, Lőrincz (1986)) are defined by using the integer powers of the number 2 (Imre et al., 2009).  

 (1)  

 

where d0 is the smallest diameter which may be equal to the height of the SiO4 tetrahedron (2-

22 mm). The log2 of the diameter limits are integers, called abstract diameters. The relative 

frequencies of the fractions xi (i = 1, 2, 3...N) for each grading curve fulfil the following equation: 

 (2)  

where the integer variable N –  the number of the fractions between the finest and coarsest non-

zero fractions – is used.  The relative frequencies xi can be identified with the barycentre coordinates 

of the points of an N -1 dimensional, closed simplex (which is the N -1 dimensional analogy of the 

triangle or tetrahedron, the 2 and 3 dimensional instances) and, the space of the grading curves with 

N fractions can be identified with the N -1 dimensional, closed simplex. The vertices of the simplex 

represent the fractions, and the 2 dimensional edges are related to the two-mixtures etc. The sub-

simplexes of a simplex are partly continuous, and partly gap-graded. The continuous sub-simplexes 

have a lattice structure, as illustrated in Fig 1. 

The grading entropy S is a statistical entropy, modified for the unequal cells (fractions are 

doubled, Lőrincz (1986)). It can be separated into the sum of two parts. The grading entropy S: 

 (3)  

where S0 is called the base entropy and S the entropy increment. The coordinates: 

, ,   (4)  

where S0i is the grading entropy of the i-th fraction, being identical to the fraction serial number 

(Table 1). The normalized or relative base entropy is A, where S0max and S0min are the entropies of the 

largest and the smallest fractions, resp. The entropy increment is S normalized form: B. 
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Any grading curve can be represented as a single coordinate pair in terms of the entropy 

coordinates. Four maps can be defined between the N-1 dimensional, open simplex (fixed N) and 

the two dimensional real Euclidean space of the entropy coordinates, the non-normalized [S0,S], 

normalized →[A,B], and partly normalized → [A,S] or [S0, B].  

The images – the entropy diagrams – are compact, like the simplex (Figs 1, 2).  The inverse 

image of the regular values is similar to an N-3 dimensional sphere, “centered” to the optimal point 
([4]).  The inverse image of the maximum normalized entropy increment lines B is the optimal line.  

The value of dmin is indifferent for the normalizd diagram, eg., all fractions map into A =1.  

The optimal grading curve or simplex point with maximal B for a specified A is as follows. The 

entropy increment B is strictly concave function, with a unique conditional maximum point for each 

constant value of A. This single optimal point or unique optimal grading curve is defined as follows: 

The optimal - grading curve or point of the simplex maps at fixed A on the maximum B: 

 (5)  

where parameter a is the root of the following equation :  

 (6)  

The single positive root a varies continuously between 0 and ∞ as A varies between 0 and 1, a=1 

at the symmetry point (A=0.5) and a>1 on the A>0.5 side of the diagram (Imre-Talata (2017)).  The 

relation with fractal dimension: 

,  (7)  

where d is particle diameter, n is fractal dimension (Fig. 3 [4]). 

Hence, the optimal grading curves have finite fractal distribution, the fractal dimension n varies 

between 3 and -  on the A>0.5 side as a varies between 1 and , n varies between 3 and -  

on the A<0.5 (left) side of the maximum normalized entropy increment line, as a varies between 1 

and 0. The optimal grading curve is concave if A<0.5, linear if A = 0.5, convex if A > 0.5  (Fig 4). 

Some domains and points of the entropy diagrams were successfully related to internal or grain 

structure stability on the basis of vertical water flow tests by Lőrincz (2).  On the basis of the 

suffusion test results, three basic types of soil structures were related to three domains of the 

normalized entropy diagram (Fig 4).  

In Zone I (A < 2/3) no structure of the large grains is present, the coarse particles “float” in the 
matrix of the fines and become destabilized when the fines are removed by piping.  In Zone II, the 

coarse particles start to form a stable skeleton and total erosion cannot occur. In Zone III, the 

structure of larger particles is inherently stable (i.e. most large particles are likely to be members of 

’strong’ force chains commonly observed on numerical DEM simulations).  
Although the fractal dimension n may vary from minus to plus infinity as the relative base 
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entropy A (normalized mean log scale diameter) varies between 0 and 1, in the function of N, only 

a few of them are stable. The fractal distribution is stable if n< 2 (independently of N and A).  

Let us assume that the grading curve “continuously” varies due to breakage. If N varies, the non-

normalized entropy path of the grading curve in terms of [S0,S] is continuous. However, the 

normalized entropy path of the grading curve in terms of [A,B] is not continuous. Some formulae 

can be derived for the discontinuity. If some i zero fractions are added from  smaller side: 

 ,  
(8)  

 

  

Figure 1.  Lattice of continuous sub-simplexes 

(integers: fractions).  

Figure 2.  Simplex with N=7  optimal lines of 

continuous sub-simplexes in the non-

normalised entropy diagram.    

 

 
 

Figure 3. The optimal grading curves N 

varies, A=2/3. 

Figure 4. Internal stability criterion of 

Lőrincz (1986) in the partly normalized 
diagram. 
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Figure 5. Reinforced crushing pot 

designed by Lőrincz [3] 

Figure 6. Normalised entropy path of a one-fraction 

soil. n: serial number of the crushing. 1: maximum 

B point. 2: maximum S point. 3: minimum B line 

[3] 

  

Figure 7. Non-normalized entropy path for initially N =2, Silica and carbonate soils, change in 

S0  ~ 0,6 and ~ 1,5;  change in S  ~ 0,7 and  ~1,8, resp.   

  

Figure 8. Normalized entropy path for initially N =2, Silica and carbonate soils. Measured data 

and computed discontinuity(Eq 8)  in the normalised diagram (see Figs 4, 6).  

3. Experiments 

A specially reinforced crushing pot made at BME’s Geotechnical Department was used). Each 

treatment involved the application of a compressive load of 25,000 N to the sample contained in the 

crushing pot, using a loading machine at the Department of Construction Materials and Engineering 

Geology, BME. After the compression of the sample, it was removed from the crushing pot for 

grading curve measurement and then was returned back into the pot for further successive crushing. 

The results with initially 1-fraction soil shown in Fig 6, 2-fraction of silica and carbonate sands from 

the same initial grading and testing conditions are shown in Figs 7, 8.  
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4. Discussion 

 The base entropy S0 is a weighted mean of the fraction serial number (which depends 
linearly on the mean log2 diameter d). It is monotonically decreasing during breakage since particles 

become smaller.  

 The entropy increment ΔS is an entropy mean, a measure how much the soil behavior is 

really influenced by all of its N fractions. It is monotonically increasing during to breakage due to 

the entropy principle. The tests followed the same entropy paths, the rate of crushing was different.  

 The relative base entropy parameter A has a potential to be a grain structure measure of 

stability, possibly based on the simple physical fact that it expresses the ratio of the larger grains. If 

enough large grains are present in a mixture then these will form a skeleton (i.e. be part of a strong 

force chain). In case of an initially two-fraction soil, a discontinuity appears at the start of the 

normalized path at the appearance of finer fractions, which drifts the entropy path into the stable 

part of the diagram with great A values (Fig. 8). This explains how internally stable mixtures may 

form. After the jump, an opposite entropy path occurred (A decreased, B increased) until the 

maximum entropy increment line was reached, where every distribution is fractal. 

5. Conclusion  

The results of breakage tests with silica and carbonate sands, from the same initial grading and 

testing conditions followed the same entropy paths, only the rate of breakage was different. Starting 

from the same initial grading, the rate of the breakage paths seem to be unique for a given test. The 
base entropy So reflects the decrease in the mean diameter. The S entropy increment increases likely 

due to the entropy principle. Both can be related to the rock type and quality.  

A new laboratory rock qualification test is proposed on the basis of the result of this study. A 

few recommendations are however necessary. For example, the precise grading curve data are 

essential in computing the entropy path. Further research is suggested on the breakage rate 

definition, trying out different testing modes and some additional rock materials, on the comparison 

with standard rock tests. 
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