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Abstract: As phase transformations are finding ever-widening applications, the 
problem of their modeling upon the application of thermal and/or mechanical 
loadings arises. This has resulted in a number of analytical models to describe the 
phenomena resulted from the phase transformation. This paper is aimed at presenting 
the model of PT-induced deformation in terms of the synthetic theory. After the basic, 
general equations are developed, the case of pseudo-elasticity will be considered in 
more detail. 
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1 Introduction 

Let us start with the definition of phase transition (PT). There exists a 
temperature-diapason within which materials undergo so-called phase 
transformations. PTs do not occur by the long-range diffusion of atoms but rather 
by some form of cooperative, homogeneous movement of many atoms that results 
in a change in crystal structure. These movements are small, usually less than 
interatomic distances, and the atoms maintain their relative arrangemets. The PT 
temperature interval is different for different metals and alloys. For example, iron 
has body-centered cubic structure (BCC) at temperature below 910°С, face 
centered cubic structure (FCC) for the temperature range from 910°С to 1391°С; 
iron structure above 1392°С returns to BCC structure. The phase transformation in 
tin starts at the temperature of 18°С; titanium, whose melt point is of 1660°С, has 
hexagonal close packed (HPC) structure below 882°С and BCC structure at higher 
temperature. Following [1], a low-temperature phase is called martensite or 
martensitic phase and a high-temperature phase − austenite or austenitic phase. 
Austenite→martensite transformation is referred to as direct transformation and 
martensite→austenite transformation is called the reverse transformation. 

Phase transformations of most metals are not accompanied by noticeable 
deformation. However, there exist such alloys whose phase transformations are 
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accompanied by significant non-elastic deformation. So-called Shape Memory 
Alloys (SMAs) belong to them. The shape memory alloy (also known as a smart 
alloy, memory metal, or muscle wire) is an alloy that "remembers" its shape, and 
can be returned to that shape after being deformed, by applying heat to the alloy. 
A typical representative of SMA is nickel-titanium (Ni-Ti) alloy (metallide with 
approximately equal Ni- and Ti-concentrations). In temperature interval from -150 
to +200°С, this alloy undergoes phase transformations, the character and sequence 
of which depends on the component-concentration and experimental details. In 
nickel-titanium alloy Ni-Ti (~45% Ni) only martensite→austenite transition upon 
heating and austenite→martensite transition upon cooling occur, whereas Ni-Ti 55 
at.% Ni alloys undergoes so-called two-step phase transformations, upon heating, 
the martensitic phase first transforms into an intermediate structure and then the 
austenitic phase starts to grow. There is a situation such that a heat-induced 
intermediate phase does not nucleate, whereas it arises upon cooling. 

Another important feature of martensite/austenite transformations is their 
reversibility. This means that the kinetics of atoms and their rearrangements in 
direct and reverse transitions are identical. Further, during both cooling and 
heating, PT can be terminated at any stage and redirected in the opposite direction. 
In constant temperature, the structure of load-free material remains unchangeable 
and there is a balance between the martensite/austenite phase and parent matrix. 

2 Pseudo-Elasticity and Shape Memory Alloys 

Consider the deformation of specimen loaded in tension at the temperature close 
to the martensite start temperature; its stress-strain diagram is shown 
schematically in Fig. 1. The initial portion of the diagram, segment 1OM , obeys 
Hooke’s law. Beyond point 1M , the specimen experiences intensive flow (portion 

21MM ) caused by the formation of martensite. After the transformation is 
completed, beginning from point 2M , the material deforms elastically again until 
the yield limit σS is achieved (point 3M ); the further increase in stress induces an 
usual plastic deformation. The unloading from the point lying on the portion 

21MM  leads to the complete or partial, so-called pseudo-elastic, recover of 
deformation accompanied, as a rule, with a significant hysteresis. Since an 
unloading is equivalent to the (effective)temperature increase, the martensitic 
phase, which has arisen at tensile, transforms into austenitic phase. It is this fact 
that explains the reduction of phase-induced strain in unloading. The phase-
induced strain in loading is referred to as pseudo-elasticity, which is represented 
by the portion 21MM  in Fig. 1. 
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Figure 1.  Stress-strain diagram showing pseudo-elastic deformation (section M1M2); pseudo-elastic 
deformation starts arising at stress σΦ 

Shape memory effect. Let a specimen be heated/cooled to such a temperature so 
that two phases are present. Further, the specimen is subjected to (a) loading in 
tension, (b) unloading, and (c) heating in the unloaded state. The stress-strain and 
strain-temperature diagram of the specimen is shown in Fig. 2. Segment 1OM  
gives a pure elastic strain of the specimen. Along the portion 21MM , PT-induced 
strain is occurred, pseudo-elasticity; by the PT the martensitic transformation is 
meant. The portion of the diagram 421 MMOM  in Fig. 2 is identical to the 
diagram in Fig. 1. After the complete unloading (point 4M ) and heating (along 
portion M4M5 the strain remains unaltered), the intensive decrease in strain 
(portion 65MM ) occurs that is caused by austenitic transformation due to the 
temperature increase. 

 

 

 

 

 

 

 

 

 
Figure 2.  Strain-strain diagram in tension showing pseudo-elastic deformation (M1M2) and effect of 

the shape memory (M5M6) 
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3 The Modeling of PT-induced Strains in Terms of 
the Synthetic Theory 

The V.A. Lichachev and V.G. Malinin monograph [1] should be emphasized due 
to some principal statements are taken from it to develop the model of phase 
transformation induced deformation in terms of the synthetic theory. 

Let a direct (martensitic, dashed arrows) or reverse (austenitic, solid arrows) 
transformation occurs in a local volume of body (grain); The plot of the phase 
character function Φ is shown in Fig. 3. The martensite formation rate is 
determined as  

( )'* fs MMT −−=Φ ,    (1) 

where T* is effective temperature [1]: 

( )qDTT ijijσ−= 1* .    (2) 

 

 

 

 

 

 

Figure 3.  Phase character function (Φ) vs effective temperature 

ijD  are the crystal deformation components related to crystallographic axes for a 

complete phase transformation when the function Φ changes from zero to unit; 
ijσ  are stress components in the local volume related to the crystallographic axes; 

q is the phase transformation thermal effect. The components ijD  and q are the 

known physical characteristics of phase transformation for a given alloy. The 
martensite is formed at the reduction of T* for the temperature range 

sf MTM ≤≤ *' . Therefore, Eq. (1) holds at 0* <T  as sf MTM << *' . The 

decrease in the martensite fraction, occurring at the effective-temperature- range 
fs ATA << *' , is 
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( )'*Φ sf AAT −−= ,    (3) 

i.e. Eq. (3) is applicable at 0* >T  for fs ATA ≤≤ *' . As '' sffs AAMM −=− , 

Eqs. (1) and (3) are identical. 

The effective temperature (2) depends on stress components acting in the local 
volume. As well as in the concept of slip, we assume that the state of stress in a 
local volume is identical to the macro-state of stress. Therefore, the components 

ijσ  in Eq. (2) are known values for a given macro-stress and, consequently, the 

effective temperature T* is known as well. In addition, the martensite fraction can 
be calculated by Eq. (1) due to the temperatures sM  and 'fM  are known 

physical constants of material. 

Now we proceed to the determination of PT-induced strain components generated 
in the local volume, Φε ij . In most cases, it is possible to expresses the Φε ij  

components through the PT-induced lattice distortion ijD  and martensitic 

transformation rate Φ  as [1]: 

Φε Φ
Φ

ijij DA= ,    (4) 

where ΦA  is the factor that takes into account that the PT-induced deformation 
may not be the same as the deformation of crystal lattice. However, 1Φ =A  is 
often the case. If the deformation of crystal grain is characterized by the tensor 

ijD  at the complete transformation, the average deformation of the grain at partial 

transformation is determined by ΦijD . It is this statement that forms the basis of 

Eq. (4) giving Φε ij  components both at direct ( 0Φ > ) and reverse ( 0Φ < ) 

transformation. 

We take Eq. (4) as the basic relationship for the determination of PT-induced 
strain rate components (further throughout, we will also use the phase deformation 
notion). To calculate by Eq. (1) the value of Φ , we need to differentiate Eq. (2) 
with respect to time. As a result, Eq. (4) yields the form 
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In contrast to plastic deformation, the phase deformation is realized not by shears. 
At the same time, in most cases it is not accompanied by volume change. On the 
other hand, as well known, a deformation of any kind can be obtained as shears 
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(slips) along several (maximum 5) slip systems. This reasoning allows us to use 
the synthetic theory for the modeling of phase deformations. 

In terms of the synthetic theory [2,3], each slip system is represented by tangent 
plane with normal vector N  in the Ilyushin five-dimension space and stresses klσ  

is replaced by scalar product NS ⋅ , where S  is the stress vector. We designate 
through Φ

0e  the irreversible (phase) strain vector giving the PT-strain developed 

within one slip system, Φ
0e  is co-directed with the plane normal vector N . We 

propose to determine Φ
0e , which is assumed to be co-directed with N  as well. 

Therefore, in terms of synthetic theory, Eq. (5) can be written as 

Ne Nφ
Φ
0 =      ( ) NSNS ⋅+⋅−−= TDDTr N 111φ ,   (6) 

( ) ( )DAMMr fs Φ'−= ,   qDD =1 ,   (7) 

where Nφ  is termed as strain intensity rate and D is called reduced shear for a 
complete transformation as the function Φ changes from 0 to 1. The reduced shear 
is considered as the known physical characteristic of alloy which accounts for the 
response of crystal grid to the phase transformation. Although the magnitude of 
the deformation Φ

0e  is a finite quantity relative to the grain size, its contribution 
into macro-deformation is infinitesimal due to the number of tangent planes (slip 
systems) is suggested to be infinite large. 

The micro phase-deformation rate increment components Φ
ied  ( 3,2,1=i ) are 

[2,3] 

( ) dVmdVeed iNii λcosφΦ
0

Φ == , λβαβcos ddddV = .   (8) 

At a point of body, the macrodeformation rate components generated in phase 
transformation are [2,3] 

λβαβcosλcosφ
α β λ

Φ dddme iNi ∫ ∫ ∫= ,   (9) 

where Nφ  is given by Eq. (6). 

Since Eqs.  (6) and (9), are obtained via Eqs. (1-3), they capable of modeling 
phenomena when (i) martensitic transformation induces deformation co-directed 
with acting stresses (ii), austenitic transformation gives the recovery of 
deformation. 
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Upon the application of both thermal and mechanical loadings, local volumes 
(grains) of the specimen undergo deformations induced by phase-transformations 
of different intensity; within some of them the phase reactions does not occur at 
all. In terms of the synthetic model, the local volume of body is represented by 
tangent plane with normal vector N . Therefore, first of all, it is necessary to 
formulate the general rule that determines the orientations of N  in which phase 
micro-deformations proceed at a given instant. The reduction of effective 
temperature T* in the range sf MTM << *'  (Fig. 3) leads to the martensite phase 

arises inducing strain co-directed with the action of load; the temperature increase 
in the range fs ATA << *'  causes the recovery of the strain. Therefore, PT-

induced strain develops at a given instant and in a given direction N  if 

0φ >N for ( )sf MTMT <<< *' 0* ,  (10) 

0φ <N  for ( )fs ATAT <<> *' 0* ,  (11) 

where Nφ  is determined by Eq. (6) whose right-hand side can have different signs 

different directions N . If the sign of function Nφ  from Eq. (6) does not satisfy 
the condition (10) or (11) for some directions, the phase deformation does not 
acquire an increment in these directions at the given instant. 

There are also other differences between the determination of irreversible strain 
due to load [2] and phase transitions: 

1. A dislocation shape change is neglected due to a PT-induced deformation 
occurs under stresses below the yield limit. 

2. In terms of the synthetic model applied to the description of PTs, there is no 
concept of yield/creep surface. Therefore, planes, which capable of producing 
shape changes, fill completely the Ilyushin three-dimensional subspace. Any plane 
is set by its normal vector m  (by angles α and β) and the distance between the 
plane and the origin of coordinates is characterized by angle λ; 0λ =  and 

2πλ =  give the plane with zero and infinitely large distance, respectively. 

3. Planes do not move, i.e. the requirement that a tangent plane produces 
irreversible strain if only it moves on the endpoint of stress vector is not valid. 

4. We do not take into account creep deformation either because loading, 
unloading, and heating/cooling of body last relatively short time. 
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4 Modelling of Pseudo-Elatic Strain [4] 

Consider the following procedure. A load-free fully austenitic sample is under 
temperature 0T , 0TM s < . Further, holding the temperature 0T  constant, the 
specimen is subjected to any proportional loading. Let us consider the case when a 
thin-walled pipe is subjected to torsion ( )0τ23 >= xzS  and we wish to 
determine the PT-induced deformation of the pipe. Eq. (2) gives the effective 
temperature T* as 

( )NS ⋅−=∗
10 1 DTT .   (12) 

In torsion, we have 

ξcos3S=⋅ NS ,   λcosβsinξcos = .  (13) 

Hence, Eqs. (12) and (13) give that 

( )ξcos1 310 SDTT −=∗ ,   (14) 

meaning that the loading of body at constant temperature is equivalent to the 
decrease in effective temperature, and this reduction varies from plane to plane 
with different values of angles 0β >  and λ. T* is smallest for the plane with 

2π=β  and 0λ = : 

( )310min 1 SDTT −=∗ .   (15) 

If ∗
minT  decrease to the value of sM , the martensite phase starts to growth in the 

plane with 2πβ =  and 0=λ . Equating ∗
minT  to sM , we obtain the equation for 

the stress inducing pseudo-elastic strain – phase flow limit ΦS  (σΦ in Fig. 1)– as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

01
Φ 11

T
M

D
S s .   (16) 

As seen from the above formula, the phase flow limit grows with the temperature 
of body 0T . If sMT =0 , 0=ΦS  and the diagram in Fig. 1 becomes nonlinear at 
once from the origin of coordinates. The further increase in component 3S  leads 
to that the effective temperature becomes smaller than sM  meaning the 
martensitic phase starts to form. The formation of martensite induces strain whose 
intensity Nφ  is determined by Eqs. (6) and (13) as 
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ξcosφ 301 STDr N = .   (17) 

As seen from (17), the conditions (10), 0φ ≥N , is satisfied for 2πλ0 <<  and 

2πβ0 << . On the other hand, the inequality sMT ≤∗  requires 

1ξcos11

013
≤≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

T
M

DS
s ,   (18) 

that is obtained by equating ∗T  to sM  in Eq. (14). With account of (16), the 

above inequality can be rewritten as ( ) 1ξcos3Φ ≤≤SS . Therefore, the 
integration limits in (9) are π2α0 ≤≤ , 2πββ1 ≤≤  and 1λλ0 ≤≤ : 

( ) βsinβsinβsinλcos 13Φ1 == SS ,  3Φ1βsin SS= .  (19) 

The macro-strain rate vector components induced by the martensite transformation 
( Φ

ie ), by making use of Eq. (9) are 
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Integrating in Eq. (20) gives that 0Φ
2
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1 == ee  and Φ
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xxxxxxZ
2
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11ln21arccos −+
−−+= .  (22) 

Further we integrate over 3S  in limits from ΦS  to 3S  in (21): 

⎟⎟
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( )
x
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x

xxF
2

22 11ln12arccos −+
+−−= . 

According to Eqs.  (7) and (16), we rewrite Eq. (23) as 
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( )
( ) ⎟⎟
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This formula holds if the effective temperature (14) less than 'fM , i.e. the 
martensite transformation progresses. Otherwise, according to Fig. 2, the direct 
martensite transformation is finished ( 1=Φ ) at 'fMT =∗  and, consequently, the 
transformation-induced deformation is terminated. Equating the right-hand side of 
Eq. (15) to 'fM , we obtain the equation for the boundary value of 3S , fS , at 
which Eq. (14) or (15) is applicable: 

fSSS ≤≤Φ 3       ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

01

'
11

T

M

D
S f

f .  (25) 

Eq. (23) can be obtained in another, simpler, way. By integrating in Eq. (17) with 
respect to time, we obtain 

( )CSTDr N −ξ=ϕ 301 cos ,   (26) 

where ξcosΦSC = . Therefore, 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

β
λβ

=−ξ=ϕ ΦΦ 1
sin

cossincos
1

01301 STDSSTDr N .     (27) 

If to insert this strain intensity into Eq. (9) and integrate it, we arrive at the result 
of Eq. (23). 

Somewhat different approach to the modeling of PT-strain can be found in works 
[5-7]. 

Conclusions 

Utilising the synthetic theory, the phenomenon of pseudo-elasticity has been 
modelled. To do this the PT-induced lattice distortion ijD  and martensitic 

transformation rate Φ  is introduced into the constitutive equtions. 
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