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Abstract: The paper introduces a tensor-product-based alternative to approximate 
neural network models based on locally identified ones. The proposed approach may 
be a useful tool for solving many kind of black-box like identification problems. The 
main idea is based upon the approximation of a parameter varying system by locally 
identified neural network (NN) models in the parameter space on tensor-product form 
basis. The weights in the corresponding layers of the input local models are jointly 
expressed in tensor-product form such a way ensuring the efficient approximation. 
First the theoretical background of the higher order singular value decomposition and 
the tensor-product representation are introduced followed by the description of how 
this form can be applied for NN model approximation. 
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1 Introduction 

Numerous methods have been proposed to deal with multi input, multi output 
systems, by the literature. As it is well known most real-life systems are to some 
extent nonlinear. There exist several types of nonlinear models, i.e. black box 
models, block structured models, neural networks, fuzzy models, etc. [12]. 
Approaches connecting the analytic and heuristic concepts may further improve 
their effectiveness and further extend their applicability. Linear parameter varying 
(LPV) structure is one by which non-linear systems can be controlled on the basis 
of linear control theories. As another frequently used approach to approximate 
dynamic systems the Takagi-Sugeno fuzzy modelling can be mentioned. This 
interest relies on the fact that dynamic T-S models are easily obtained by 
linearization of the nonlinear plant around different operating points [8]. Beyond 
these non-linear modelling techniques, the neural network-based approaches are 
highly welcome, as well, having the ability to learn sophisticated non-linear 
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relationships [9][13]. Tensor product (TP) transformation is a numerical approach, 
which makes a connection between linear parameter varying models and higher 
order tensors ([5],[4]). The approach is strongly related to the generalized SVD 
the so called higher order singular value decomposition (HOSVD) [10], [11]. One 
of the most prominent property of the tensor product form is its complexity 
reduction and filtering support [6][7]. The proposed approach introduces a concept 
of how the joint representation of neural networks in tensor-product form can be 
performed and how this concept supports the efficient approximation of parameter 
varying systems on HOSVD basis via local neural nets in the parameter space. 
The paper is organized as follows: Section 2 gives a closer view on how to express 
a multidimensional function using polylinear functions on HOSVD basis, and how 
to reconstruct these polylinear functions, Section 3 shows how Neural Networks 
as local models can be expressed via HOSVD and finally future work and 
conclusions are reported. 

2 Theoretical Background 

Let us consider an n-variable smooth function  

[ ]1( ), = ( ,..., ) , , , 1 ,T
N n n nf x x x a b n N∈ ≤ ≤x x

 
then we can approximate the function ( )f x with a series  
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where the system of orthonormal functions , ( )n k nn
p x  can be chosen in classical 

way by orthonormal polynomials or trigonometric functions in separate variables 
and the numbers of functions nI  playing role in (1) are large enough. With the 
help of Higher Order Singular Value Decomposition (HOSVD) the approximation 
can be performed by a specially determined system of orthonormal functions 
depending on function ( )f x . Assume that the function ( )f x  can be given with 
some functions [ ], ( ), ,n i n n n nw x x a b∈  in the form  
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Denote by ...1I IN× ×∈A R  the N-dimensional tensor determined by the elements 
,...,1

, 1 , 1i i n nN
i I n Nα ≤ ≤ ≤ ≤  and let us use the following notations (see [1]).   
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• n UA
 : the n-mode tensor-matrix product,  

• =1
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Figure 1 

The three possible ways of expansions of a 3-dimensional array into matrices 
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Figure 2 

Illustration of the higher order singular value decomposition for a 3-dimensional array. Here S  is the 
core tensor, the lU -s are the l -mode singular matrices 

The n-mode tensor-matrix product is defined by the following way. Let U be an 
n nK M× -matrix, then n UA
  is a 1 1 1... ...n n n NM M K M M− +× × × × × × -tensor for 

which the relation  
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holds. 
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Based on the HOSVD under mild conditions ( )f x can be represented in the form  

=1( ) = ( ),N
n n nf xx wD
  (3) 

where   

• ...1r rN× ×∈D R  is a special (so called core) tensor with the properties:   

(a)  = ( )n nr rank A  is the n-mode rank of the tensor A , i.e. rank of the 
linear space spanned by the n -mode vectors of A :  

,..., ,1, ,..., ,..., , , ,...,1 1 1 1 1 1
{( ,..., ) :1 , 1 },T

i i i i i i I i i j nn n N n n n N
a a i I j N

− + − +
≤ ≤ ≤ ≤  

  

(b) all-orthogonality of tensor D : two subtensors =in αD  and =in βD  (the 

nth indices =ni α  and =ni β  of the elements of the tensor D  keeping 

fix) orthogonal for all possible values of ,n α  and = =: , = 0i in nα ββ D D  

when α β≠ . Here the scalar product = =,i in nα βD D  denotes the sum of 

products of the appropriate elements of subtensors =in αD  and = ,in βD   

(c) ordering: =1 =2 = > 0i i i rn n n n
≥ ≥ ≥D D D  for all possible values of 

n ( = = == ,i i in n nα α αD D D  denotes the Kronecker-norm of the tensor 

=in αD ).  

• Components , ( )n i nw x  of the vector valued functions  

,1 ,( ) = ( ( ),..., ( )) , 1 ,T
n n n n n r nn

x w x w x n N≤ ≤w  

are orthonormal in 2L -sense on the interval [ , ]n na b , i.e. 

, , ,
: ( ) ( ) = , 1 , ,

bn
n i n n j n i j n n nn n n nan

n w x w x dx i j rδ∀ ≤ ≤∫  

where ,i jδ  is a Kronecker-function ( , = 1i jδ , if =i j  and , = 0i jδ , if 
i j≠ ).  

For further details see [2][3][5] 
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2 HOSVD-based Representation of NNs 

Let us consider a parameter varying system modelled by local neural networks 
representing local "linear time invariant (LTI) like" models in parameter space. 
Suppose that these local models are identical in structure, i.e. identical in the 
number of neurons for the certain layers and in shape of the transfer functions. 
The tuning of each local model is based on measurements corresponding to 
different parameter vector. In Fig. 4 a two parameter case can be followed. The 
architecture of local models is illustrated by Fig. 3. The output of such a local 
model can be written in matrix form as follows: 
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Figure 3 

The architecture of the local neural network models. ( 0=R S ) 

( )( )( )(3) (2) (1)
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where = 1.. Lj N  and LN stands for the number of layers which in our example is 
3LN = (see Fig 3). 

( )1 2 1 T
Rh h h=h  

stand for the input vector, while vector  



A. Rövid et al.  Representation of Neural Networks on Tensor‐Product Basis 

 – 264 – 

( )3 31 31 3 3
=

T

Sa a aa  

represents the output of the NN in Fig. 3.  

p1

NN31 NN32
NN33

NN21 NN22
NN23

NN11 NN12
NN13

p11 p12 p13

p23

p21

p22

p2

 
Figure 4 

Example of a two dimensional parameter space, with identified neural networks as local models at 
equidistant parameter values 

Let us assume that the behaviour of the system depends on parameter vector 
( )1 2= T

Np p pp . Let ( )

1

j
i iN

W  represent the matrix containing the weights 

for the jth layer of the local neural network model corresponding to parameter 
vector , ,...,1 2i i iN

p . Using the weights of the jth layer in all local models and the 

parameters ip , where = 1..i N , an N+2 dimensional tensor 
(1 )1 2 1I I I S SN j j× × × × × + −∈ℜB  can be constructed, as follows:  

( ){ }( )
, , 11 1

= ,1 ,1 1j
i i i i j jN N

S Sα β α β −≤ ≤ ≤ ≤ +W B  

(1 )( ) 1

1

S Sj j j
i iN

× + −∈ℜW  

By applying the HOSVD on the first N dimensions of tensor B, the core tensor D  
and for each dimension an n-mode singular matrix is obtained, which columns 
represent the discretized form of one-variable functions discussed in (1). Starting 
from the result of this decomposition the parameter varying model can be 
approximated with the help of the above mentioned local models, as follows. 
Tensor product (TP) transformation is a numerical approach, which can make 
connection between parameter varying models and higher order tensors. The 
weights corresponding to the jth layer of the parameter varying neural network 
model can be expressed in tensor product form, as follows:  

( ) ( )( )
=1= ,j N

n n npW p vD
  

where D  stands for the N+2 dimensional core tensor obtained after HOSVD and 
the elements of vector valued functions  
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( ) ( ) ( ) ( )( )1 2=n n n n n n nI nn
p v p v p v pv  

are the function values at parameter np  of one-variable functions corresponding 
to the nth dimension of the core tensor D . Finally, the output of the parameter 
varying model can be expressed via local neural network models illustrated in Fig. 
3 in tensor product form as follows:   

( ) ( )( )( )(3) (2) (1)
3 3 2 1= ( ) ( ) ( ) ,ϕ ϕ ϕa p W p W p W p h  

 where  

( ) ( )(1) (1)
1 =1= ,N

n n npW p vD 
  

( ) ( )(2) (2)
2 =1= ,N

n n npW p vD 
  

( ) ( )(3) (3)
3 =1= .N

n n npW p vD 
  

By discarding the columns of the n-mode singular matrices corresponding to the 
smallest singular values model reduction can effectively be performed [7].  

Conclusions 

In the present paper a tensor-product based representation approach for neural 
networks has been proposed. By applying the HOSVD the parameter varying 
system can be expressed in tensor product form with the help of locally tuned 
neural network models. Our previous researches showed that the same concept 
can efficiently be applied to perform reduction in LPV systems [7]. Our next step 
is to analyse the impact of the reduction on the output of the system, how the 
approximation caused changes in weights of the NNs influence the output. We 
hope that it could be an efficient compromised modelling view using both the 
analytical and heuristical approaches.    

Acknowledgement 

The research was supported by the János Bolyai Research Scholarship of the 
Hungarian Academy of Sciences and by the Óbuda University 

References 

[1]  L. De Lathauwer, B. De Moor, and J. Vandewalle, "A multilinear singular 
value decomposition,"  SIAM Journal on Matrix Analysis and Applications, vol. 
21, no. 4, pp. 1253-1278, 2000 

[2] A. Rövid, L. Szeidl, P. Várlaki, "On Tensor-Product Model Based 
Representation of Neural Networks," In Proc. of the 15th IEEE International 
Conference on Intelligent Engineering Systems, Poprad, Slovakia, June 23–25, 
2011, pp. 69-72 



A. Rövid et al.  Representation of Neural Networks on Tensor‐Product Basis 

 – 266 – 

[3]  L. Szeidl, P. Várlaki, " HOSVD Based Canonical Form for Polytopic Models 
of Dynamic Systems, " in Journal of Advanced Computational Intelligence and 
Intelligent Informatics, ISSN : 1343-0130, Vol. 13 No. 1, pp. 52-60, 2009 

[4]  S. Nagy, Z. Petres, and P. Baranyi, " TP Tool-a MATLAB Toolbox for TP 
Model Transformation " in Proc. of 8th International Symposium of Hungarian 
Researchers on Computational Intelligence and Informatics, Budapest, Hungary, 
2007, pp. 483-495 

[5]  L. Szeidl, P. Baranyi, Z. Petres, and P. Várlaki, "Numerical Reconstruction of 
the HOSVD Based Canonical Form of Polytopic Dynamic Models," in 3rd 
International Symposium on Computational Intelligence and Intelligent 
Informatics, Agadir, Morocco, 2007, pp. 111-116 

[6]  M. Nickolaus, L. Yue, N. Do Minh, " Image interpolation using multiscale 
geometric representations, " in Proceedings of the SPIE, Volume 6498, pp. 1-11, 
2007 

[7]  I. Harmati, A. Rövid, P. Várlaki, " Approximation of Force and Energy in 
Vehicle Crash Using LPV Type Description " in WSEAS TRANSACTIONS on 
SYSTEMS, Volume 9, Issue 7, pp. 734-743, 2010 

[8]  F. Khaber, K. Zehar, and A. Hamzaoui, " State Feedback Controller Design 
via Takagi-Sugeno Fuzzy Model : LMI Approach " in International Journal of 
Information and Mathematical Sciences, 2:3, ISBN:960-8457-10-6, pp. 148-153, 
2006 

[9]  S. Chena, S. A. Billingsb, " Neural networks for nonlinear dynamic system 
modelling and identification " in International Journal of Control, Volume 56, 
Issue 2, pp. 319-346, 1992 

[10]  L. De Lathauwer, B. De Moor, and J. Vandewalle, " A Multilinear Singular 
Value Decomposition " in SIAM Journal on Matrix Analysis and Applications, 
21(4), 2000, pp. 1253-1278 

[11]  N. E. Mastorakis, " The singular value decomposition (SVD) in tensors 
(multidimensional arrays) as an optimization problem. Solution via genetic 
algorithms and method of Nelder–Mead " in SEAS Transactions on Systems, 
21(4), No. 1, Vol. 6, 2007, pp. 17-23 

[12]  Anne Van Mulders, Johan Schoukens, Marnix Volckaert, Moritz Diehl " 
Two Nonlinear Optimization Methods for Black Box Identification Compared " in 
Preprints of the 15th IFAC Symposium on System Identification, Saint-Malo, 
France, July 6-8, 2009, pp. 1086-1091 

[13]  Babuska R., Verbruggen H. "Neuro-fuzzy methods for nonlinear system 
identification", Elsevier, Annual Reviews in Control " Volume 27, Number 1, 
2003, pp. 73-85 


