
Óbuda University e‐Bulletin  Vol. 2, No. 1, 2011 

 – 247 – 

Image Processing on Tensor-Product Basis 

András Rövid1, László Szeidl2, Imre J. Rudas1, Péter Várlaki2 
1Óbuda University, John von Neumann Faculty of Informatics,  
Bécsi út 96/b, 1034 Budapest Hungary,  
rovid.andras@nik.uni-obuda.hu, rudas@uni-obuda.hu 
2Széchenyi István University System Theory Laboratory,  
Egyetem tér 1, 9026 Győr Hungary, szeidl@sze.hu, varlaki@sze.hu  

Abstract: The paper introduces a tensor-product based representation of digital 
images and shows how their processing can be performed. The image function in this 
case is expressed by one-variable smooth functions forming an orthonormal basis, 
which are specific to the expressed function and therefore less number of components 
is needed to achieve the same approximation accuracy than in case of trigonometric 
functions or orthonormal polynomials. It will also be shown how these one-variable 
functions can be determined using the higher order singular value decomposition 
(HOSVD). The proposed techniques work well even in cases, when beside the color 
further attributes are assigned to the pixels, e.g. temperature, various type of labels, 
etc. Finally the results are compared to the techniques working in the frequency 
domain. It can be observed that in many cases the usage of the proposed domain is 
more advantageous. 
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1 Introduction 

There are numerous digital image processing tasks, e.g. image smoothing, edge 
detection, etc. which efficiency strongly depends on the domain they are working 
on, e.g. image resolution enhancement, filtering [1], image compression [2], etc. 
The two-dimensional array of pixels is the most natural way to represent discrete 
images, applicable for example for histogram modification, pixel and neighbor 
operations, etc. [10]. On the other hand, in some applications, the data are actually 
collected in the frequency domain, specifically in the form of Fourier coefficients, 
e.g. MR or CT imaging and spectral methods for PDEs [11]. Another type of 
representation is based on Wavelet transforms which are multi-resolution 
representations of signals and images decomposing them into multi-scale details 
[12]. Neural network based representation techniques stand for a further group of 
image representations, e.g non-linear image representations based on pyramidal 
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decomposition with neural network [3], etc. The main aim of this paper is to 
propose a tensor-product based representation domain, in which the image can be 
expressed by less number of components than for example the frequency based 
representation requires by supporting the efficient multidimensional filtering, 
compression and rescaling. There are numerous image processing tasks which can 
be performed more efficiently when switching to another domain, e.g. in the well 
known frequency domain the image filtering or compression. On the other hand, 
to represent the image in frequency domain without meaningful quality decline, 
relatively large number of components is needed in contrast to the proposed 
tensor-product based representation, where the number of components to achieve 
the same approximation accuracy than in case of trigonometric ones is much more 
less. As shown in the upcoming sections, any n-variable smooth function can be 
expressed with the help of a system of orthonormal one-variable smooth functions 
on higher order singular value decomposition (HOSVD) basis. The main aim of 
the paper is to numerically reconstruct these specially determined one-variable 
functions using the HOSVD and to show how this approach can give support for 
certain image processing tasks and problems. The paper is organized as follows: 
Section 2 deals with the reconstruction of the one-variable functions in detail, 
Section 3 shows how this representation can be applied in image processing for 
resolution enhancement and filtering, while in Section 4 the properties of the 
proposed method are compared to the well known Fourier transformation. Finally 
in Section 5 experimental results and conclusions are reported. 

2 The HOSVD-based Representation of Functions 

The approximation methods of mathematics are widely used in theory and practice 
for several problems. If we consider an n-variable smooth function  

[ ]1( ), = ( ,..., ) , , , 1 ,T
N n n nf x x x a b n N∈ ≤ ≤x x

 
then we can approximate the function ( )f x with a series 

1

,..., 1, 1 ,1 1
=1 =11

( ) = ... ( ) ... ( ).
II N

k k k N k Nn N
k kN

f p x p xα ⋅ ⋅∑ ∑x  (1) 

where the system of orthonormal functions , ( )n k nn
p x  can be chosen in classical 

way by orthonormal polynomials or trigonometric functions in separate variables 
and the numbers of functions nI  playing role in (1) are large enough. With the 
help of Higher Order Singular Value Decomposition (HOSVD) a new 
approximation method was developed in [7], [5] in which a specially determined 
system of orthonormal functions can be used depending on function ( )f x , instead 
of some other systems of orthonormal polynomials or trigonometric functions. 
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Assume that the function ( )f x  can be given with some functions 

[ ], ( ), ,n i n n n nw x x a b∈�  in the form  

1

,..., 1, 1 ,1 1
=1 =11

( ) = ... ( ) ... ( ).
II N

k k k N k Nn N
k kN

f w x w xα ⋅ ⋅∑ ∑x � �  (2) 

Denote by ...1I IN× ×∈A R  the N-dimensional tensor determined by the elements 
,...,1

, 1 , 1i i n nN
i I n Nα ≤ ≤ ≤ ≤  and let us use the following notations (see : [4]). 

• n UA
 : the n-mode tensor-matrix product,  

• =1
N

n nUA
 : the multiple product as 1 1 2 2... N NU U UA
 
 
 .  

The n-mode tensor-matrix product is defined by the following way. Let U be an 
n nK M× -matrix, then n UA
  is a 1 1 1... ...n n n NM M K M M− +× × × × × × -tensor for 

which the relation  

,..., , , ,..., ,..., ,..., ,1 1 1 1
1

( =
def

n m m k m m m m m k mn n n N n N n n
m Mn n

a U
− +

≤ ≤
∑U)A
  

holds. Detailed discussion of tensor notations and operations is given in [4]. We 
also note that we use the sign n
  instead the sign n×  given in [4]. Using this 
definition the function (2) can be rewritten as a tensor product form  

=1( ) = ( ),N
n n nf w xx �A
  (3) 

where ,1 ,( ) = ( ( ),..., ( )) , 1T
n n n n n I nn

w x w x w x n N≤ ≤� � � . Based on HOSVD it was 

proved in [6] that under mild conditions the (3) can be represented in the form  

=1( ) = ( ),N
n n nf w xx D
  (4) 

where   

• ...1r rN× ×∈D R  is a special (so called core) tensor with the properties:   

(a)  = ( )n nr rank A  is the n-mode rank of the tensor A , i.e. rank of the 
linear space spanned by the n -mode vectors of A :  

,..., ,1, ,..., ,..., , , ,...,1 1 1 1 1 1
{( ,..., ) :1 , 1 },T

i i i i i i I i i j nn n N n n n N
a a i I j N

− + − +
≤ ≤ ≤ ≤  

(b) all-orthogonality of tensor D : two subtensors =in αD  and =in βD  (the 

nth indices =ni α  and =ni β  of the elements of the tensor D  keeping 

fix) orthogonal for all possible values of ,n α  and = =: , = 0i in nα ββ D D  
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when α β≠ . Here the scalar product = =,i in nα βD D  denotes the sum of 

products of the appropriate elements of subtensors =in αD  and = ,in βD   

(c) ordering: =1 =2 = > 0i i i rn n n n
≥ ≥ ≥"D D D  for all possible values of 

n ( = = == ,i i in n nα α αD D D  denotes the Kronecker-norm of the tensor 

=in αD ).  

• Components , ( )n i nw x  of the vector valued functions  

,1 ,( ) = ( ( ),..., ( )) , 1 ,T
n n n n n r nn

w x w x w x n N≤ ≤  

are orthonormal in 2L -sense on the interval [ , ]n na b , i.e. 

, , ,
: ( ) ( ) = , 1 , ,

bn
n i n n j n i j n n nn n n nan

n w x w x dx i j rδ∀ ≤ ≤∫  

where ,i jδ  is a Kronecker-function ( , = 1i jδ , if =i j  and , = 0i jδ , if 
i j≠ ) The form (4) was called in [6] HOSVD canonical form of the 
function (2).   

Let us decompose the intervals [ , ]n na b , = 1..n N  into nM  number of disjunct 
subintervals ,n mn

Δ , 1 n nm M≤ ≤  as follows:  

,0 ,1 , , , , 1= < < < = , = [ , ).n n n n M n n m n m n mn n n n
a bξ ξ ξ ξ ξ −Δ…  

Assume that the functions [ ], ( ), , , 1n k n n n nn
w x x a b n N∈ ≤ ≤  in the equation (2) 

are piece-wise continuously differentiable and assume also that we can observe 
the values of the function ( )f x  in the points  

,..., 1, ,1 1
= ( ,..., ), 1i i i N i n nN N

x x i M≤ ≤y  (5) 

where  

, , , 1 , 1n m n m n nn n
x m M n N∈Δ ≤ ≤ ≤ ≤  

Based on the HOSVD a new method was developed in [6] for numerical 
reconstruction of the canonical form of the function ( )f x  using the values 

,...,1
( ), 1 , 1 .i i n n nN

f i M i N≤ ≤ ≤ ≤y  We discretize function ( )f x  for all grid points 

as:  

,.., ,..,1 1
= ( ).m m m mN N

b f y  
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Then we construct N dimensional tensor , ,1
= ( )m mN

b …B  from the values ,..,1m mN
b . 

Obviously, the size of this tensor is 1 ... NM M× × . Further, we discretize vector 
valued functions ( )n nxw  over the discretization points ,n mn

x  and construct 

matrices nW  from the discretized values as:   

,1 ,1 ,2 ,1 , ,1

,1 ,2 ,2 ,2 , ,2

,1 , ,2 , , ,

( ) ( ) ( )

( ) ( ) ( )
=

( ) ( ) ( )

n n n n n r nn
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n
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w x w x w x
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w x w x w x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

W

"

"

# % #
"

 (6) 

 Then tensor B  can simply be given by (4) and (6) as  

=1= .N
n nWB D
  (7) 

Matrices nW  and tensor D  can be obtained by HOSVD of B . For further details 
see [5].  

3 Image Scaling in the HOSVD-Based Domain 

Let 1 2 3( ), = ( , , )Tf x x xx x represent the image function, where 1x  and 2x  
correspond to the vertical and horizontal coordinates of the pixel, respectively. 3x  
is related to the color components of the pixel, i.e. the red, green and blue color 
components in case of RGB image. Function ( )f x  can be approximated (based on 
notes discussed in the previous section) in the following way:   

31 2

, , 1, 1 2, 2 3, 31 2 3 1 2 3
=1 =1 =11 2 3

( ) = ( ) ( ) ( ).
II I

k k k k k k
k k k

f w x w x w xα ⋅ ⋅∑∑∑x

 

 (8) 

The red, green and blue color components of pixels can be stored in a 3m n× ×  
tensor, where n and m correspond to the width and height of the image, 
respectively. Let B  denote this tensor. The first step is to reconstruct the 
functions , ,1 3,1n k n nn

w n k I≤ ≤ ≤ ≤  based on the HOSVD of tensor B  as follows:  

3 ( )
=1= n

n WB D
  (9) 

where D  is the so called core tensor. Vectors corresponding to the columns of 
matrices ( ) ,1 3n n≤ ≤W  as described in the previous section are representing the 
discretized form of functions , ( )n k nn

w x  corresponding to the appropriate 

dimension n, 1 3n≤ ≤ . 
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Figure 1 

Illustration of the higher order singular value decomposition for a 3-dimensional array. Here D is the 
core tensor, the nW -s are the n-mode singular matrices. 

Our goal is to demonstrate the effectiveness of image scaling in the proposed 
domain. Let {1,2,...}s∈  denote the scaling factor of the image. First, let us 
consider the first column (1)

1W  of matrix (1)W . Based on the previous sections, it 
can be seen, that the value 1,1(1)w  corresponds to the 1st element of (1)

1W , 1,1(2)w  

to the 2nd element,..., 1,1( )nw M  to the nM th element of (1)
1W . To enlarge the 

image by a factor s, the ( ) , = 1..2i iW  matrices should be updated, based on the 
scaling factor s, as follows: The number of columns remains the same, the number 
of lines will be extended according to the factor s. For example let us consider the 
column (1)

1W  of (1)W . (1)
1 (1)W  does not change, 

(1) (1) (1) (1)
1 1 1 1( ) := (2), (2 ) := (3)W s W W s W ,..., (1) (1)

1 1(( 1) ) := ( )n nW M s W M− .  

The missing elements (1) (1) (1) (1) (1)
1 1 1 1 1(2), (3),..., ( 1), ( 1),..., (2 1),W W W s W s W s− + −  

(1) (1)
1 1(2 1),..., (( 1) 1)nW s W M s+ − −  can be determined by interpolation. In the 

paper the cubic spline interpolation was applied. The remaining columns should 
be processed similarly. After every matrix element has been determined the 
enlarged image can be obtained using the equation (9). 

4 HOSVD vs. Frequency Domain 

Comparing the proposed representation to the frequency domain, similarities can 
be observed in their behaviour. As it is well known, the Fourier Transformation is 
connected to trigonometric functions, while in case of HOSVD approach the 
functions , ( )n i nw x  are considered, which are specific to the approximated n-
variable function. In both cases the functions are forming an orthonormal basis. 
Let us mention some common, widely used applications of both approaches.  

In case of the Fourier based smoothing, some of the high frequency components 
are dismissed, resulting a smoothed image (low pass filter). In case of the HOSVD 
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similar effect can be observed when dismissing functions corresponding to smaller 
singular values. In the opposite case, i.e. dismissing small frequencies yields an 
edge detector (high pass filter) which in HOSVD case is equivalent to dismissing 
components corresponding to higher singular values [13].   

5 Examples 

5.1 Part-1 (Approximation) 

In this section some approximations can be observed, performed by the proposed 
and by the Fourier-based approach. As the number of the used components 
decreases, the observable differences in quality become more significant. In the 
examples below in both the HOSVD-based and Fourier-based cases the same 
number of components have been used in order to show how the form of 
determined functions influences the quality. 

 
Figure 2 

Original image (24bit RGB) 
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Figure 3 
HOSVD-based approximation using 2700 components composed from polylinear functions on 

HOSVD basis 

Figure 4 
Fourier-based approximation using 2700 components composed from trigonometric functions 
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5.2 Part-2 (Scaling) 

The pictures are illustrating the effectiveness of the image scaling by applying the 
proposed approach. The result is compared to the output obtained by the bilinear 
and bicubic image interpolation methods. 

 
Figure 5 

The original image 

 
Figure 6 

Enlarged segment using bilinear interpolation 
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Figure 7 
Enlarged segment using bicubic interpolation 

 
Figure 8 

Enlarged segment using the proposed HOSVD-based method. Smoother edges can be observed 
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Conclusions 

In the present paper a new image representation domain and reconstruction 
technique has been introduced. The results show that how the efficiency of the 
certain tasks depends on the applied domain. Image rescaling has been performed 
using the proposed technique and has been compared to other well known image 
interpolation methods. Using this technique the resulted image maintains the 
edges more accurately then the other well-known image interpolation methods. 
Furthermore, some properties of the proposed representation domain have been 
compared to the corresponding properties of the Fourier-based approximation. 
The results show that in the proposed domain some tasks can be performed more 
efficiently than in other domains. 
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