
Óbuda University e‐Bulletin  Vol. 1, No. 1, 2010 

 – 219 – 

A Decision Making and Problem Analysis 
Supporting System 

Norbert Sram 
Óbuda University, Budapest, Hungary 
norbert.schramm@gmail.com; sramm.norbert@phd.uni-obuda.hu 

Abstract: Decision making can be regarded as an outcome of a cognitive process 
leading to the selection of a course of action among several alternatives. With the 
latest advances in decision making systems it is important to study which methods 
provide better results and in which fields, contexts. By creating a hybrid approach to 
decision making we can outline the performance and deviations between different 
methods, but more importantly we establish the foundation for building a hybrid 
decision making system. With the analysis of the decision making methods, we are able 
to build a hybrid decision making system, which is a composition and cooperation of 
different methods and uses the optimal methods for specific contexts. In this paper the 
author presents an approach to creating and evaluating hybrid decision making 
systems. 

1 Introduction 

There are a lot of decision making algorithms and systems, all of these methods 
have their advantages and disadvantages. Not one of them is suitable for every 
type of problem or input. Instead of trying to choose the “correct” method for a 
specific problem, a better approach could be to combine multiple methods into one 
decision tree with the “right tool for the job” approach. The presented system is 
also usable to fine-tune one specific method, by experimenting with different kind 
of configurations and inputs. 

2 Decision Making 

Logical decision making is an important part of all science-based professions, 
where specialists apply their knowledge in a given area to making informed 
decisions. For example, medical decision making often involves making a 
diagnosis and selecting an appropriate treatment. Decision making can be based on 



N. Sram  A Decision Making and Problem Analysis Supporting System 

 – 220 – 

different methods like expert systems, fuzzy logic [1, 2, 3, 4, 10] based systems, 
neural networks [5], probabilistic reasoning [6] and so on. All these methods have 
their unique approach to come to a conclusion. It’s hard to predict, which method 
is the most suitable for a specific task, which would provide the best overall result. 
The Pareto principle (80/20 rule) is not suitable for optimizing decision making. 
This means that it’s not enough to finetune or direct attention to the “vital” parts. 
In case of decision making, the complete solution falls into the “vital” part 
category. An issue in one part can lead to the exclusion of other parts, thus 
producing an inaccurate result. The overall best result would be the best possible 
result from all subsystems, regardless of the method used. To achieve this state, 
we face the problem of interfacing different approaches. In this paper, the author 
provides a possible solution to this problem. 

3 Hybrid Approach 

The presented system is an environment, which is specialized for decision making. 
Evaluating different methods and generating optimal decision steps. The system is 
built up form three different abstraction units: 

• Control vertices – highlighted points of the decision system 

• Transformation algorithms – algorithm to convert from/to domain specific values 

• Evaluation algorithms – algorithms to evaluate the effectivness of a step based on 
the control vertices. 

Decision making can be represented as a tree of steps we execute to get a final 
result. In order to compare different type of decision methods and to merge them 
into a hybrid decision making system, we need to use a representation which is 
suitable for comparing and analyzing hierarchical structures. The most adequate 
representation would be a directed weighted graph of the decision systems. Were 
each decision system would be a branch of the graph. We need to specify control 
vertices in the decision graph. These vertices can be viewed as partial results or 
steps which lead to the final decision. Control vertices are the key points of the 
decision system and also the comparison point for multiple approaches. Multiple 
approaches are represented as graph edges which are made up of control vertices. 
All edges of the graph which belong to control vertices have values. These values 
represent the effectiveness or the result of the specific method. By executing the 
decision graph with a specific input we can assign a value to every edge of the 
graph. From this we can deduce which methods provide a better result for the 
specified input. This done in multiple steps. First step is to iterate through the edge 
of the graph with a transformation algorithm, which converts the graph edge values 
to domain specific or effectiveness values. After the edge value transformation step 
we can use graph algorithms on our decision graph. Based on the transformation 



Óbuda University e‐Bulletin  Vol. 1, No. 1, 2010 

 – 221 – 

algorithm we can find the optimal decision tree in the graph for example by running 
a maximum spanning tree or a minimum spanning tree algorithm on the decision 
graph [7, 8, 9]. In case of hierarchical systems the order in which the control 
vertexes are executed is crucial. In those cases we have to use the shortest path 
algorithm [11]. 

Transformation algorithm is a function which takes the value of the control vertex 
edge, which is equal to a result produced by one of the decision methods and maps 
it to a different domain. So the transformation function has a type of a -> b, where 
it is possible for a and b to be equal. In most cases the identity transformation is 
ideal, which means that the edge values of the graph remain the results. The main 
purpose of the transformation algorithm is to create graphs, which represent the 
effectiveness of a specific method in a certain context or for a certain unit of 
measurement. By fusing together all these graphs, it is possible to create a multi 
criteria based evaluation of the decision methods. The fusion of the graphs is based 
on the control vertices defined. Every transformation algorithm produces a graph 
with a domain specific edge values. Between two control vertices there is at least 
one edge. The fused graph contains all of the edges produced by the transformation 
algorithms. The importance of the fused graph is that it provides the ability to 
compare multiple decision methods based on multiple parameters and multiple 
contexts. This means that we have the ability to evaluate the same method in 
different contexts, evaluate the effectiveness of a certain method with different 
parameters. Using the fused graph we create the hybrid decision making system by 
eliminating the “unnecessary” edges between the control vertices. The elimination 
is done by the evolution algorithm specified or implemented by the user. We can 
use the fused graph to create multiple hybrid decision systems by executing 
multiple, different evolution algorithms on it. 

The presented system is based on the basic requirements of a decision making 
system. Objectives must first be established and must be classified and placed in 
order of importance. Objectives can be modeled as control vertices. This means that 
the user needs to decouple the system to sub steps, which correspond to the control 
vertices. This can be viewed as a disadvantage, because of the additional work, but 
modularity has its own advantages as well. It's easy to pinpoint the problems in the 
system. After the specification of the control vertices, the user needs to specify the 
connection between two control vertices. The connection is the decision method we 
need to make to reach the specified vertex. The user creates a decision graph for 
each decision method, the system then fuses these graphs together. The fused graph 
can be evaluated by specifying an input. This way all steps with all used decision 
methods can be evaluated. The initial setup can be a lot of work, this can be viewed 
as a disadvantage, but the information and the test environment gained can have a 
significant impact over time. Also it's always possible to generate a different hybrid 
system from the existing fused graph, which may be more suitable for different 
input values. 



N. Sram  A Decision Making and Problem Analysis Supporting System 

 – 222 – 

The generated hybrid decision graph can be too specific or ideal for only one type 
of input context. Based on the Pareto principle the optimal branch can be tailored 
for the “20 part” of the input set. To avoid the disadvantages of input specific 
training of the system, it can be run in a hosted mode. The hosted mode always 
executes all the steps represented in the decision graph, it executes the 
transformation and evolution algorithms. It works with the principle of “just in 
time”, a decision is produced before required, instead of ahead of time training and 
fixed steps. 

4 Case Study 

In this chapter, the author will present a simple case study, to demonstrate the 
system described in the paper. The first step is always to create a control vertex 
layout of the decision system. A simplified scenario is shown on Figure 1. 

 
Figure 1 

Control vertex layout of a decision system 

This tree is a data flow tree of the steps which lead to a decision. It’s an abstraction 
of the system, which does not include any logic; it is only a schematic for different 
method implementations. Based on this schematic the user can create different 
implementations, shown on Figures 2 and 3, which represent two separate methods. 

The decision system shown on Figure 2 maps directly to the control vertex layout 
shown on Figure 1, but that’s not always the case. The used method can include 
additional steps; such case is shown on Figure 3. In order to start evaluating a 
hybrid decision system the two defined decision methods need to be fused into one 
system. 

 



Óbuda University e‐Bulletin  Vol. 1, No. 1, 2010 

 – 223 – 

 
Figure 2 

A method specific implementation which does not map directly to a control vertex system 

 
Figure 3 

Control vertex layout of a decision system 

 
Figure 4 

Fused decision making system 



N. Sram  A Decision Making and Problem Analysis Supporting System 

 – 224 – 

As seen on Figure 4 the fused graph includes all the decision steps from both of the 
methods. These steps are represented as edges (M1, M2) between vertexes. Edges 
represent operations, not just scalar values. From the fused graph, the system can 
determine that the input points of the decision system are F_C3 and F_C1, the 
output or the conclusion is F_C6. From the fused graph the presented system 
provides an environment which is useful for not only creating hybrid decision 
systems, but also for evaluating different kind of methods. 

The presented example was a simplified case, which is unlike the most problems 
the users would come across, but it captures the essential approach behind the 
presented method. Let’s take for example Figure 5. It models a complex 
hierarchical decision system, which has a single input point. The system has a 
significant number of subsystems. The presented fusing method provides the 
possibility to freeze certain points of the decision graph. This means that the user 
has the ability to provide multiple solutions to specific branches in the graph. This 
is done by contracting the vertexes, which are frozen. For example, in Figure 5 the 
vertexes from 3 to 11 could be replaced with a single contracted vertex, thus 
simplifying the control vertex schematic. This is the main strength of the method 
presented in the system. The user should start out with the decision method most 
likely to be suitable for the specific problem and step by step freeze branches of the 
control vertex schematic, providing alternate approaches to parts of the decision 
tree, which are less than satisfactory. 

 
Figure 5 

Control vertex layout of a complex hierarchical system 

Conclusions 

The presented method tries to capture the broad possibilities of decision making 
into a manageable format and also to provide possibilities for evaluating and 
mixing different methods. By providing a common format existing algorithms can 



Óbuda University e‐Bulletin  Vol. 1, No. 1, 2010 

 – 225 – 

be used to deduce information and results. Generic algorithms can be created and 
used on different decision systems to provide specific information. Based on the 
collected data and use case scenarios it’s possible to deduce input related method 
specific properties. 

Future development plans include the support of broad range of decision methods, 
with a high level domain specific language to manipulate the decision graphs. 
Decision step generation based on the common format of the presented method. 
The generated program would not require the presented system to execute. 

References 

[1] G Bellmann, R. E., Zadeh., L. A., Local and Fuzzy Logic, Modern Uses of 
Multiple-Valued Logic, edited by Dunn, J. M., Epstein, G., Reidel Publ., 
Dordrecht,1977, The Netherlands, pp. 103-165 

[2] Dubois, D. Prade, H., What are Fuzzy Rules and How to Use Them, Fuzzy 
Sets and Systems 84, 1996, pp. 169-185 

[3] Dubois, D. Prade, H., Fundamentals of Fuzzy Sets, The Handbook of Fuzzy 
Sets Series, Kluwer Academic Publishers, Boston, 1999 

[4] Fullér, R., Fuzzy Reasoning and Fuzzy Optimization, Turku Centre for 
Computer science, TUCS General Publication, N0 9, September 1998, 
ISBN 952-12-0283-1 

[5] Simon Haykin, Neural Networks: A Comprehensive Foundation, 1st 
edition, 1994 

[6] Neapolitan, R E, Probabilistic Reasoning in Expert Systems: Theory and 
Algorithms, 1989 

[7] Y. J. Chu and T. H. Liu, On the Shortest Arborescence of a Directed Graph, 
Science Sinica, Vol. 14, 1965, pp. 1396-1400 

[8] J. Edmonds, Optimum Branchings, J. Res. Nat. Bur. Standards, vol. 71B, 
1967, pp. 233-240 

[9] R. E. Tarjan, "Finding Optimum Branchings", Networks, v.7, 1977, pp.25-
35 

[10] Márta Takács, Approximate Reasoning in Fuzzy Systems Based on Pseudo 
analysis and Uninorm Residuum, Acta Polytechnica Hungarica, Volume 1, 
Issue Number 2, 2004, pp.49-62 

[11] B. V. Cherkassky, A. V. Goldberg, T. Radzik, Shortest Paths Algorithms: 
Theory and Experimental Evaluation, Mathematical Programming, Vol. 73, 
pp. 129-174, June 1996 


