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Abstract: In the present work a novel modelling method is proposed for mathematical 

modelling of simultaneous convection-diffusion processes taking place in soil columns 

on the base of a simultaneous application of methods of the non-equilibrium 

thermodynamics and statistical mechanics of percolative-fractal systems. Firstly, the 

complete analytical solution of the basic convection-diffusion problem is presented at 

various types of boundary conditions and the relevant solution functions are 

stochastically refined a posteriori on the base of scaling relations relevant for 

describing of critical phenomena taking place in percolative-fractal systems at 

mesoscopic level. In this sense, some pecularities relevant for coupled transport 

processes in drying engineering problems and simulatenous convection-diffusion 

processes through porous media in general sense are discussed in detail. Besides, the 

presence and crucial role of the Riccati-type differential equation is indicated in cases 

of the simultaneous convection-diffusion processes taking place in porous media. The 

results obtained in this way are compared with experimental results emanating from 

our measurements concerning changes of the moisture level- and temperature 

distribution functions in soil columns. Then, the simplest possible case of a two-

component diffusion is discussed in detail, where the final solution form is expressed 

by use of the Lommel-type special functions (till now widely used in plasma physics 

only in sense of the mathematical modelling of transport processes, which can be 

treated within framework of the non-equilibrium thermodynamics and classical 

physical kinteics) on the base of a simple symmetry assumption about direct flow-, and 

cross-flow diffusion coefficients. Finally, some possible future research activity areas 

from the point of view the most general type convection-diffusion processes 

supplemented by simultaneous chemical reactions are also indicated. 

Keywords: convection-diffusion processes, extended irreversible thermodynamics, 

percolative-fractal systems 

1 Introduction 

It is well-known nowadays, that experimental investigation and mathematical 

modelling of various types of (generally: coupled) transport processes according 

to the non-equilibrium thermodynamics represents crucial part of many 
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engineering and fundamental complex research problems, including e.g. 

simulation of energy dispersal processes on global scale [1]. It may also be stated, 

that due to its relevance from the point of view of environment, this research area 

will be of crucial importance in future, too. From many mathematical aspects of 

this very important research domain we will emphasize here from the beginning 

the necessity of applying of variational methods of the non-equilibrium 

thermodynamics e.g. [2], (usually called extended irreversible thermodynamics in 

its most up-to-date form [3], [4]) and general theory of percolative-fractal systems 

(i.e. the most general mathematical discipline relevant for description of the bulk 

porous matter at mesoscopic level) [5]. Both these disciplines are well-elaborated 

ones, supplemented by very effective mathematical methods, but their 

simultaneous, common application in a hybridized form is still far from being 

completed, despite of the fact, that it could be very useful in the future engineering 

applications of very different type. Therefore, in the present study we will try to 

demonstrate further methods and possibilities for realizing of this programme, 

basing our present modelling work on our, own previous research results [6-9]. 

2 A Direct Generalization of the Formalism of 

Coupled Transport Processes 

In the present section we will recall concisely the essence of the generalization 

method of the coupled transport processes of different type tensorial orders on the 

base of our relatively recent study [10]. Accordingly, the thermodynamic cross-

effects are of crucial importance at eliminating of the problem of infinitely large 

heat or mass transfer velocities emanating from the usual solutions of the separate, 

linear parabolic type partial differential equations usually applied within frame of 

the formalism of the classical irreversible thermodynamics, e.g. [2]. 

2.1 The Case of the Two-Component Diffusion 

In order to present results of the calculation results emanating from the general 

method discussed above, we start here from the simplest possible case of 

simultaneous diffusion of a two-component system, whose constituents do not 

interact chemically. Accordingly, the following coupled system of parabolic-type 

partial differential equations (PDEs) must be solved: 
2 2
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11 122 2

2

2 1 2

21 222 2
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where the thermodynamic cross-effects have also been taken into account. 

2.1.1 Application of the Lommel-Type Special Functions 

It is well-known, that in the simplified one-dimensional case, the concentration 

function can be written as (the series expansion coefficients kn are constants, and 

the quantities λn denote the reciprocal values of the relevant n-th harmonics): 

      nt

n n

n

c r ,t c x, y,z,t c( x,t ) k c x e .


   
r

                   (2) 

Substitution of the temperature and moisture level functions also represented in 

this series expansion form into system (1) gives the following equation: 
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n
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n n n

n

d c ( x )
k D D c ( x ) e

dx

d c ( x )
k D D c ( x ) e .

dx





 
      

 

 
      

 





                    (3) 

Since the equation system (3) is symmetric, we assumed [10], that the spatial 

harmonics of the same order of different relative concentration functions have the 

same functional form, i.e. 
2

1 1 2 2

1 22 2

11 22 21 12

n n n n

n n n

d c ( x ) dc ( x )
c ( x ) c ( x ) ( x ).

D D D Ddx dx

 
    

 
              (4) 

It is obvious, that homogeneous parts of (4) represent the usual linear harmonic 

oscillator equations. For the sake of simplicity, we identify here the functions on 

their right-hand sights as simplest polynomials of the same order as the order of 

the relevant spatial harmonic is, i.e. 
n

n( x ) x  . In general case, the functions 

on the right-hand side in the relations (4) will be presented as linear combinations 

of such elementary polynomials. Then, the ODEs (4) will have the following 

solution form [10]: 
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(5) 

 

i.e. this calculation gave us an analytical result explained by the so-called 

Lommel-type special functions. This type of special functions had played an 

important role in plasma physics, too [10]. 

3 Modelling of the Simultaneous Convection-

Diffusion Processes Taking Place in Porous 

Media 
In the present section the crucial role of the Riccati-type ordinary differential 

equations will be discussed in detail for the case of simultaneous convection-

diffusion processes together with indications concerning possible future 

applications of its matrix form. 

3.1 Relevance of the Riccati-Type ODE at Mathematical 

Modelling of Simultaneous Convection-Diffusion Processes 

As it has been emphasized above, since the mathematical modelling of the 

simultaneous convection-diffusion processes is of importance from the point of 

view of both fundamental researches and solving of engineering problems, too [6], 

[11] developing of new and more accurate models of this problem represents a 

permanent task, whose complexity is reflected in the nonlinear character of the 
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ODEs and PDEs corresponding to it, to be solved e.g. [12]. The basic PDE for the 

convection-diffusion problem is e.g. [13]: 

   0,
c dK c

D c c
t dc z

 
    

 
                                  (6) 

where  ,c c r t
r

 denotes the concentration distribution function to be 

determined,  , ,...D D c T is the usually: thermodynamic state-dependent 

diffusion coefficient and  K K c  is the concentration-dependent hydraulic 

conductivity coefficient and z-axis corresponds to the direction of the gravitational 

acceleration. The solutions of PDEs of type (6) may be sometimes even of 

solitonic type [13]. Such solitons may exist due to balance between dispersion 

effects, which try to expand the initial localized wave packet, and the effects 

formally characterized by nonlinearities trying to localize it. By a detailed analysis 

of these opposite effects, Fan [12] proposed a general method for solving the 

relevant nonlinear PDEs. Accordingly, the linear term of highest order must be 

balanced with the nonlinear terms in the initial PDE to be solved. Then, if we 

represent the solutions by use of D’Alembert-type independent variables: 

 ( .)x v t v const c c       , in the case of convection-diffusion problems, 

their general form will be: 

     

 

0

1

0

, ,

, , ., 1 ,

q
i i

i i

i

i i

c a a b

a a b const i q

     



   

  


                              (7) 

where q  and the component solution functions obey the Riccati-type ODE 

2d

d


 


   with parameter „κ” depending on the experimental conditions. 

3.1.1 Refinement and Formalization of the Earlier Known, Basic Results 

Firstly, in the present sub-section we will present a novel-type solution of the 

Riccati’s ODE discussed previously using some very elementary facts about the 

relevance and possible influence of the percolative-fractal character of the bulk 

porous matter, inside which simultaneous convection-diffusion processes are 

taking place. Then, in order to solve the Riccati – ODE (related to (7)) the 

following form of its will be applied: 

 2' 0,m

m

m

a p                                                (8) 

i.e. we intend to develop a refined modelling method, since the genuine 

convection - diffusion processes through porous media (e.g. through soil columns) 

are always sensitive to the underlying percolative-fractal character of matter at 

mesoscopic level. We use here the linearized variant of the Riccati’s ODE (8) by 

specifying     m

m

m

h a p   , where the coefficients are of stochastic 
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character, i.e. in  n na a p  the independent variable „p” will be defined as the 

actual percolation probability. For the sake of simplicity we will assume firstly, 

that there is only one „dominant term” in this expression, i.e.: 

 2' 0.n

na p                                            (9) 

In this case, the solution of the Riccati-type ODE is (as well as in the case of [5], 

we used the MAPLE computer algebra system [14]): 

 
   

   

 
   

   

3 1

2 2

1 1

2 2

3 1

2 2

1 1

2 2

2 2

2 2

2 2

2 2

2 2

2 2
,

2 2

2 2

n

n n

n n

n

n n

n n

C J J
n n

CJ N
n n

C N N
n n

CJ N
n n

   
 


   



   
 

   




 

 



 

 

    
     

      
 

    
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     

      

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    
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                   (11) 

(i.e. the general form characteristic for the projective linear groups [15] can also 

be directly recognized in this solution form, too) where: 

   
1

2 ,
n

na p  


                                           (12) 

and C is an integration constant, while  kJ and  kN both denote the Bessel-

functions of k-th order, which are of the first kind, and second kind respectively. It 

is obvious, that the basic invariance property (A1-A3) of the Riccati ODE is 

reflected in the form of the solution (11), too. Then, by linearizing the ODE (10), 

we have to solve the following second order ODE: 

   
2

2
0.n

n

d
a p

d


  


                                         (13) 

The solution of this ODE can be obtained directly (again, we used the MAPLE 

system [14]), and its final form is more concise compared to (11)): 

 
   

1 1
2 2

1 1 2 1

2 2
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2 2

n n

n n

n n

a p a p
C J C N

n n

 
   

 

 

   
     

      
 

   
   

    (14) 

( 1 2, .C C const ), i.e. the final result is explained by Bessel-functions of the order 

1

2n 
(which are again of the first- and second kind, respectively), and presented 

graphically on Fig. 1.: 
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Fig. 1 

Solution expressed by (14) for n = 2 (in relative units) 

 

Despite of its different convexity character, this solution is not in contradiction to 

the basic tanh-type solution proposed in the study [12], but represents a more 

general and refined variant of its.  

3.1.2 Introduction of a Novel-Type Modelling Algorithm 

Then, having solved this basic problem, we are in position to refine the results 

explained by (14), by including further terms except the dominant one (i.e. in the 

sense of the relation (9)), i.e. we must solve the second-order ODE: 

     
2

2
,n r

n r

d
a p a p

d


   


                                          (15) 

where the right-hand side may be considered, as the “next dominant” term from 

    m

m

m

h a p   . It must be emphasized here, that this choice is also 

allowed, because the well-elaborated algorithms concerning solutions of infinite 

series of integrable Riccati-type ODEs [16-17], [18] are built up on the base of 

formulae, which contain arbitrary functions, too [18]. Therefore, having solved the 

“basic homogeneous problem” (13), we may directly apply the well-known basic 

general formula (based on the Lagrange’s method of variation of constants) for 

solution of the relevant inhomogeneous second-order ODE (15), i.e. we have: 
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where a new variable defined by 
 

 
1

2

2
:

2

n

n

a p

n




 

  
 




 

 has also been applied. 

4 Conclusions 

In the present work an attempt is given for a general symmetry treatment of the 

simultaneous convection-diffusion phenomena taking place in porous media from 

a unique point of view. It is demonstrated, that further detailed applications of the 

Riccati-type equations should play a crucial role in the future symmetry analyses 

of these very general type dissipative structures. Besides, since the investigation of 

the most diverse types of convection-diffusion processes [19-20] even recently 

represent an active research area, it may be expected, that detailed applications of 

analytical solutions (realized by extensive use of the most advanced computer 

algebra systems) of such very complex transport problems may lead to important 

new results from the point of view of completely novel-type engineering 

applications, too. Moreover, by simultaneous applications of the results treated 

separately about coupled chemical reaction-diffusion systems and convection-

diffusion processes, crucial new results can be derived from the point of view of 

studies of simultaneous convection-diffusion-chemical reaction non-equilibrium 

thermodynamic systems in a unique manner.   
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