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Abstract: The paper introduces a new data representation domain and approximation 
approach based on Higher Order Singular Value Decomposition (HOSVD). The 
results have been compared to the Fourier representation domain. Based on 
measurements a special set of one variable orthonormal functions is numerically 
reconstructed, which represents the key point of the proposed method. The 
reconstruction is performed by the mentioned HOSVD. The such determined one 
variable functions can more efficiently be applied for data approximation than 
trigonometric functions or orthogonal polynomials. Additionally the number of one-
variable functions necessary to approximate the input n dimensional data will be 
relatively lower than in case of other techniques. This property of the approach 
enables to perform much more efficient data compression by maintaining the accuracy 
of the approximation at a higher level. 

Keywords: Multidimensional data approximation; HOSVD; Fourier domain; 
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1 Introduction 

In the field of image processing the representation forms of digital images play an 
important topic. Usually digital images are represented by a rectangular grid of 
pixels, where to each pixel an intensity value (grayscale image) or in case of color 
images – depending on the applied color model – several components may be 
assigned. 
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In many cases some tasks can be performed more efficiently in other domains, e.g. 
frequency domain, than in the spatial one. 

An important consideration when developing an algorithm to process image data 
is the used representation form appropriate for the concrete task [1], [2]. Many 
representation forms are related to expressing the image intensity function as a 
linear combination of simpler functions or components having useful predefined 
properties. 

A very frequently used representation form of this type is the well known 
frequency domain related to Fourier series. In this representation domain the 
components are trigonometric functions. In such a domain many signal processing 
related tasks (e.g. filtering, data compression, etc.) can more effectively be 
performed than in the spatial one. On the other hand to represent the image in the 
frequency domain without meaningful quality decline, relatively large number of 
trigonometric components is needed. 

Another concepts of representing digital images are coming from the field of soft 
computing. These are using neural networks and other soft computing techniques 
like fuzzy to represent image data [2]. 

In this paper a novel approach is proposed for representing digital images and 
having similar properties – from the application point of view – than the Fourier 
based approach. The proposed representation is based on polylinear functions on 
Higher Order Singular Value Decomposition (HOSVD) basis [3], [4]. 

The main goal concerning the proposed method is to numerically reconstruct the 
above mentioned polylinear functions based on pixels of the original input image 
and to point out the effectiveness of this concept in comparison with the well 
known Fourier based representation. In case of HOSVD-based representation it 
can be observed, that the number of polylinear functions (components) expressing 
the image without disturbing its quality will be much more less then the number of 
trigonometric components needed to achieve the same image quality in case of 
Fourier based representation. The proposed approach can effectively be applied in 
many applications, e.g. point cloud processing, resolution enhancement, vision 
based 3D reconstruction [6], etc. 

The paper is organized as follows: Section 2 describes in detail, how multivariable 
nonlinear functions can be approximated using a specially determined system of 
orthonormal functions, based on which, Section 3 deals with the HOSVD based 
representation of RGB images together with its possible applications and 
comparison to the Fourier-based domain. Section 4 shows the experimental results 
and finally conclusions are reported. 
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2 Multivariable Nonlinear Functions on HOSVD 
Basis 

Let consider an n-variable smooth function 

[ ]1( ), = ( ,..., ) , , , 1 ,∈ ≤ ≤T
N n n nf x x x x x a b n N  

then it can be approximated with the series 

1

,..., 1, 1 ,1 1
=1 =11

( ) = ... ( ) ... ( ).⋅ ⋅∑ ∑
II N

k k k N k Nn N
k kN

f x p x p xα  (1) 

where the system of orthonormal functions , ( )n k nn
p x  can be chosen in classical 

way by orthonormal polynomials or trigonometric functions in separate variable 
and the numbers of functions In playing role in (1) large enough. The 
approximation error also strongly depends on the from of the one variable 
functions in (1). Later on we will see, that much more number of trigonometric 
functions is needed in order to achieve the same approximation accuracy then in 
case when these functions are specifically determined. 

With the help of Higher Order Singular Value Decomposition (HOSVD) a new 
approximation method was developed in [7], [4] in which a specially determined 
system of orthonormal functions can be used depending on function f(x), instead 
of some system of orthonormal polynomials or trigonometric functions. 

Assume that the function f(x) can be given with some functions 
i [ ], ( ), ,∈n i n n n nw x x a b  in the form 

i i1

1, ,,..., 111
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 Denote by ...1× ×∈ I INA R  the N-dimensional tensor determined by the elements 
,...,1

, 1 , 1≤ ≤ ≤ ≤i i n nN
i I n Nα  and let us use the following notations (see : [5]). 

    • n UA
 : the n -mode tensor-matrix product, 

    • =1
N

n nUA
 : multiple product as 1 1 2 2 ... N NU U UA
 
 
 .  

The n -mode tensor-matrix product is defined by the following way. Let U be an 
×n nK M -matrix, then n UA
  is an 1 1 1... ...− +× × × × × ×n n n NM M K M M -tensor 

for which the relation 
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holds. Detailed discussion of tensor notations and operations is given in [5]. We 
also note that we use the sign n
  instead the sign ×n  given in [5] Using this 
definition the function (2) can be rewritten as a tensor product form 

i
=1( ) = ( ),N

nn nf x w xA
  (3) 

where i i i,1 ,( ) = ( ( ),..., ( )) , 1≤ ≤T
n n n In n nnw x w x w x n N . Based on HOSVD it was 

proved in [7] that under milde conditions the (3) can be represented in the form 

=1( ) = ( ),N
n n nf x w xD
  (4) 

where  

• ...1× ×∈ r rND R  is a special (so called core) tensor with the properties: 

(a) = ( )n nr rank A  is the n-mode rank of the tensor A , i.e. rank of the 
 linear space spanned by the n-mode vectors of A : 

,..., ,1, ,..., ,..., , , ,...,1 1 1 1 1 1
{( ,..., ) :

− + − +

T
i i i i i i I i in n N n n n N

a a 1 , 1 },≤ ≤ ≤ ≤j ni I j N  

(b) all-orthogonality of tensor D : two subtensors =in αD  and =in βD  (the n-th 

indices =ni α  and =ni β  of the elements of the tensor D  keeping fix) 

orthogonal for all possible values of ,n α  and = =: , = 0i in nα ββ D D  when 

≠α β . Here the scalar product = =,i in nα βD D  denotes the sum of products 

of the appropriate elements of subtensors =in αD  and = ,in βD  

(c)  ordering: =1 =2 = > 0≥ ≥ ≥"i i i rn n n n
D D D  for all possible values of n 

( = = == ,i i in n nα α αD D D  denotes the Kronecker-norm of the tensor =in αD ). 

• Components , ( )n i nw x  of the vector valued functions 

,1 ,( ) = ( ( ),..., ( )) , 1 ,≤ ≤T
n n n n n r nn

w x w x w x n N  are orthonormal in 2L -sense on the 

interval [ , ]n na b . 

The form (4) was called in [7] HOSVD canonical form of the function (2). 

Let us decompose the intervals [ , ]n na b , = 1..n N  into nM  number of disjunct 
subintervals ,Δn mn

, 1≤ ≤n nm M  as follows: 

,0 ,1 ,= < < < = ,…n n n n M nn
a bξ ξ ξ  , , , 1= [ , ).−Δn m n m n mn n n

ξ ξ  
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Assume that the functions [ ], ( ), , , 1∈ ≤ ≤n k n n n nn
w x x a b n N  in the equation (2) are 

piece-wise continuously differentiable and assume also that we can observe the 
values of the function ( )f x  in the points 

,..., 1, ,1 1
= ( ,..., ), 1 .≤ ≤i i i N i n nN N

y x x i M  (5) 

where 

, , , 1 , 1∈Δ ≤ ≤ ≤ ≤n m n m n nn n
x m M n N  

Based on the HOSVD a new method was developed in [7] for numerical 
reconstruction of the canonical form of the function ( )f x  using the values 

,...,1
( ), 1 , 1 .≤ ≤ ≤ ≤i i n n nN

f y i M i N  We discretize function ( )f x  for all grid points 

as: 

,.., ,..,1 1
= ( ).m m m mN N

b f y  

Then we construct N dimensional tensor , ,1
= ( )…m mN

bB  from the values ,..,1m mN
b . 

Obviously the size of this tensor is 1 ...× × NM M . Further, discretize vector valued 
functions ( )n nxw  over the discretization points ,n mn

x  and construct matrices nW  

from the discretized values as:  
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 Then tensor B  can simply be given by (4) and (6) as 

=1= .N
n nWB D
  (7) 

The HOSVD decomposition of the discretization tensor can be written as 
( )

=1= d N n
n UB D 
  (8) 

where dD  is the so-called core tensor, and ( )( ) ( ) ( ) ( )
1 2= …n n n n

Mn
U U UU  is an 

×n nM M -size orthogonal matrix (1≤ ≤n N ). Further details regarding this 
approximation approach can be found in [7]. 
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3 HOSVD-based RGB Image Representation 

Let 1 2 3( ), = ( , , )Tf x x x x x  stand for the image function, where 1x  and 2x  
correspond to the vertical and horizontal coordinates of the pixel respectively. 
Variable 3x  is related to the color components of the pixel, i.e. in case of RGB 
image there are three possible elements for this dimension, i.e. the red, green and 
blue color components. Function ( )f x  can be approximated (based on notes 
discussed in the previous section) in the following way: 

i i i31 2

1, 2, 3,, , 1 2 31 2 31 2 3
=1 =1 =11 2 3

( ) = ( ) ( ) ( ).⋅ ⋅∑∑∑
II I

k k kk k k
k k k

f x w x w x w xα  (9) 

The color components of each pixel can be stored in a 3× ×m n  tensor, where n  
and m  correspond to the width and height of the image respectively. Let B  
denote this tensor. The first step is to reconstruct the functions 
i , ,1 3,1≤ ≤ ≤ ≤n k n nnw n k I  by decomposing the tensor B  using the HOSVD 

as follows:  
3 ( )
=1= d n

n UB D 
  (10) 

where dD  is the so called core tensor. Vectors corresponding to the columns of 
matrices ( ) ,1 3≤ ≤n nU  as described in the previous section are representing the 
discretized form of functions i , ( )n k nnw x  corresponding to the appropriate 
dimension n, 1 3≤ ≤n . It means, we will have as many functions for a dimension 
as many columns there are in the orthonormal matrix corresponding to that 
dimension. The number of these functions can be further decreased by dismissing 
some columns from the orthonormal matrices obtained by HOSVD (see. Fig.). Let 

nC , 0 ≤ ≤n nC I , = 1..n N  stand for the number of dismissed columns in nth 
dimension. The approximation in this case can be performed as follows: 

i i i3 31 1 2 2

1, 2, 3,, , 1 2 31 2 31 2 3
=1 =1 =11 2 3

( ) = ( ) ( ) ( ).
−− −

⋅ ⋅∑ ∑ ∑
I CI C I C

k k kk k k
k k k

f x w x w x w xα  (11) 

3.1 HOSVD vs. Fourier-based Approach - Discussion 

It is notorious that the Fourier Transform is related to trigonometric functions 
forming an orthonormal basis. 

In case of HOSVD-based approach instead of trigonometric functions polylinear 
eigenfunctions are used, forming an orthonormal basis, as well. As introduced in 
the previous sections these functions are specific ones, they have specific 
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properties as described in the second section. These properties of the approach 
ensure that the number of functions used for the approximation can be kept at 
lower level in order to achieve the same output then in case of classical 
approaches, e.g. Fourier-based one. Let mention some common widely used 
applications of both approaches. 

In case of Fourier-based smoothing, some of higher frequencies from the 
frequency domain are dismissed, due to which the singularities are eliminated, i.e. 
as result a smoothed image can be obtained. 

In case of HOSVD considering only polylinear eigenfunctions corresponding to 
the larger singular values for certain dimensions will have similar effect than the 
above mentioned low pass frequency filtering. The same concept can be used also 
for data compression. 

In the opposite case, i.e. when maintaining only the functions corresponding to 
smaller singular values, an edge detector is yielded. In case of Fourier approach 
detecting edges in an image is equivalent to dismissing the smaller frequency 
components, i.e performing the so called high pass filtering. 

The examples show that in case of HOSVD much smaller number of one-variable 
basis functions is enough to represent the image without significant information 
loss. In case of Fourier-based approach much larger number of trigonometric 
functions is needed in order to maintain the same quality. Additionally there is a 
frequency threshold depending on the concrete image, (when dismissing high 
frequency components) below which any further dismiss of frequencies results 
well observable waves in the image as noise. 

4 Examples 

In the section the results of the approximation are compared, obtained by the 
proposed approach and by the Fourier-based one. As the number of components 
decreases, the differences in quality become more significant. Fig. 1 illustrates the 
original image, which has been approximated using the proposed method and 
compared to the results achieved by the Fourier-based approach. It can be seen, 
that in case of smaller number of components, the Fourier approach produces well 
observable waves in the image. Due to the special system of orthnormal functions 
in case of the proposed method this behavior is eliminated. 
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Figure 1 

Original image (24bit RGB) 

  
Figure 2 

HOSVD-based approximation using 7500 components (left); 
Fourier-based approximation using 7500 components (right) 

 

  
Figure 3 

HOSVD-based approximation using 2700 components (left); 
Fourier-based approximation using 2700 components (right) 
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Conclusions 

The paper introduces a new concept based on HOSVD for approximation of multi 
variable functions. The main advantage of the proposed method is that due to 
specifically determined orthonormal system of functions more accurate 
approximation can be achieved, than in case of trigonometric functions or 
orthogonal polynomials. The necessary number of components to achieve similar 
accuracy than in case of Fourier-based approach is significantly lower. 
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