
Software Refactoring – an Approach Based on

Patterns

Violeta Bozhikova*, Mariana Stoeva*, Bozhidar Georgiev*, Dimitrichka Nikolaeva* and Márta Seebauer**
*Department of Software and Internet Technologies, Technical University – Varna, Varna, Bulgaria

**Alba Regia Technical Faculty, Obuda University, Hungary

Abstract—The paper presents an approach for software

development based on patterns. On one side, these are

patterns in the role of best practices for software

development on the other – patterns as bad solutions that

must be avoided. Refactoring is a general way to transform

a bad solution in a better one. This is a process of source

code restructuring with the goal to improve its quality

characteristics without changing its external behaviour. In

refactoring we replace one software solution with another

one that provides greater benefits: code maintainability and

extensibility are improved, code complexity is reduced. The

developed approach is implemented in software system that

can be successfully used both in the real software

engineering practice and in software engineering training

process.

Key words—Software Refactoring, Software Design Pattern

Generation, AntiPattern Identification

I. INTRODUCTION

The paper proposes an approach for software
development based on both: Аnti-Patterns detection and
Design Patterns identification and generation. The
presence of Аnti-Patterns and Design Patterns is
recognized as one of the effective ways to measure the
quality of modern software systems. Patterns and
AntiPatterns are related [1]. The history of software
production shows that Patterns can become AntiPatterns.
It depends on the context in which а Pattern is used: when
the context become inappropriate or become out of date
than the Pattern becomes AntiPattern. For example,
procedural programming, which was Pattern at the
beginning of software production activity, with advances
in software technology gradually turned into AntiPattern.
When a software solution becomes AntiPattern, methods
are necessary for its evolution into a better one.
Refactoring is a general way for software evolution to a
better version. This is a process of source code
restructuring with the goal to improve its quality
characteristics without changing its external behaviour. In
refactoring we replace one software solution with another
one that provides greater benefits: code maintainability
and extensibility are improved, code complexity is
reduced ([2]÷[10]).

Based on the approach proposed a web system was
developed. The system can be used as instrumental tool in
the real practice of software production as well in the
teaching process - to support several software engineering
disciplines in “Software and Internet technologies”
Department of the Technical University in Varna. The
final effect of its application is to improve the software

quality. It relies on techniques that generate the structure
of Software Design Patterns, find AntiPatterns in the code
and perform Code Refactoring.

Next section of this paper comments the structure and
the basic components of the proposed approach. After, the
software implementation of the approach is discussed; the
system’s architecture and the basic structural elements are
presented.

II. APPROACH FOR SOFTWARE

DEVELOPMENT BASED ON PATTERNS AND

REFACTORING

The general structure of our approach is presented in
figure 1. It takes as input the software source code that has
to be refactored. The output is refactored code. The
approach relies on accumulation of knowledge about the
best practices in programming so “Accumulation of
Knowledge” is one of the processes that are performed in
parallel with other processes. The refactored code is result
of "AntiPatterns Identification and fixing" and "Design
Patterns Generation". Before generate Design Patterns it is
necessary to analyze the code with the goal to find Design
Patterns candidates. The proposed approach comprises the
following main component:

A. Accumulation of Knowledge

Aims to provide information on design patterns and
AntiPatterns. It contains information about creational,
behavioral and structural design patterns and software
AntiPatterns in software development and software
architecture. Describe the problems that each design
pattern solves, the advantages that it provides and the
situations in which it is used. For the AntiPatterns - the
nature of the problems and possible options for their
avoidance are described.

B. Design Pattern Generation

Provides functionality to generate sample
implementations of the design patterns structures; basic
elements and relationships between them are generated,
it’s not implementation of the solution of specific
problem. To generate a template user must select
appropriate names for key elements. Appropriate names
for the key elements must be given by the user, in order to
generate a pattern.

C. Refactoring Component:

Provides methods for automatic code refactoring. The
code is supplied as input of any method, as for inputs are
accepted only properly constructed classes. Each method

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 26 -

performs the appropriate changes and returns the modified
code as a result.

D. AntiPatterns Identification and fixing

Provides methods for code analysis. The code is
supplied as input of a particular method and as result of
code analysis the poorly constructed sections of code are
colored. The colored code should be rewritten in order to
increase its readability and maintenance.

E. Design Pattern Identification:

Provides methods to examine source code and to
identify candidates for design patterns [6]. This
component is still under development. Our detection
strategy is based on the code inspection. Extensive
research has to be conducted to develop techniques to
automatically detect candidates of DP in the code.

[Source Code]

Accumulation of Knowledge

Design Patterns Identification

Design Pattern Generation

AntiPatterns Identification and fixing

Refactoring [Refactored Code]

Figure 1. General structure of the approach for software development

based on Patterns and Refactoring

III. SOFTWARE IMPLEMENTATION OF THE

APPROACH

Based on the approach proposed a web system was
developed. The basic structural elements of the web
system are presented in figure 2.

A. Main Page:

 It aims to present the different sections of the system
with a short description and redirect the user to any of
them.

B. Encyclopedia:

It aims to provide information on design patterns and
AntiPatterns. It consists of two parts: menu type accordion
and informative part. The user can select from the menu a
concrete DP or AntiPattern. When you choose a concrete
pattern then the information about it is displayed in the
informative part. The section describes the problems that
each design pattern solves, the advantages it provides and
the situations in which it is used. For AntiPatterns – their
nature and options to be avoided are described. This
section is realized as one page with dynamic content that
is changed through asynchronous AJAX requests to the
server.

C. Design Pattern Generation:

This section offers functionality to generate sample
implementations of the structure of the design patterns.

The user chooses a type of pattern, inputs its parameters
and click button "Generate". The generated code is
displayed below the form. An example of design pattern
(Template Method) generation is presented in figure 3.

Figure 2. Basic structural elements of the web system

D. Refactoring:

This section provides 8 methods for automatic code
refactoring: “Extract Method”, “Inline method”, “Replace
Temp with Query”, “Encapsulate Field”, “Replace Magic
Number with Symbolic Constant”, “Replace Constructor
with Factory Method” and “Self Encapsulate Field”. Each
method performs the appropriate changes of the code and
the modified code is returned as a result. 8 refactoring
methods are provided by the tool. In the left section of the
refactoring window (figure 4), the user puts the code,
which must undergo refactoring. After entering the
necessary parameters the user has to press button
"Refactor". The refactoring code is displayed in the right
pane.

E. AntiPattern Identification:

This section offers methods for code analysis with the
goal to detect AntiPatterns (“Duplicated code”, “Too
many parameters in a method”, “Complicated If’s”). The
code is supplied as input to each method, which analyzes

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 27 -

and paints the poorly constructed code sections. Then
poorly constructed pieces of code must be rewritten to
improve code readability and maintenance. Selecting a
method (for example “Duplicate code”) a page for
entering the code for analysis is visualized. After entering
the necessary input data the user must press the button
"Identify". The program will process the code and will
paint the problematic code parts in red (the result is shown
in the right section – figure 5).

Figure 3. Template Method generation

Figure 4. Refactoring window - method “Encapsulate Field”

Figure 5. AntiPattern Identification window – “Duplicate code”

identification

IV. CONCLUSIONS AND FUTURE WORK

The practical application of the developed software
model in the practical exercises on the course “Computer
Organization” has led to the following conclusions:

An approach for software development based on
АntiPatterns detection and Design Patterns identification
and generation is proposed in this paper. It relies on
techniques that generate the structure of Software Design
Patterns, find AntiPatterns in the code and perform Code
Refactoring. Refactoring increases the software quality, it
is a general way for software evolution to a better version.

The developed approach is implemented in a software
system that that already has been applied in software
engineering teaching process but could be also used in the
real software engineering practice. It relies on the
realization of 4 main sections: educational section that
gives information on design patterns and AntiPatterns;
Design Pattern generation section that offers functionality
to generate the structure of 26 design patterns (Creational
DP, Structural DP and Behaviour DP) in C#; AntiPattern
identification section that at this time provides realization
only of 3 methods for AntiPatterns detection; Refactoring
section that provides 8 methods for automatic code
refactoring. Each method performs the appropriate
changes of the code and the modified code is returned as a
result.

Our work associated with the approach presented and
the system developed is still in its initial phase. We plan to
add new patterns and AntiPatterns in encyclopaedic part.
Support for languages other than C# can be provided by
the Design Pattern generation Component. Future work is
needed to implements more refactoring, AntiPattern and
design pattern generation methods. In this time “Design
Pattern Identification” section is only sketched and has not
been studied and fully developed. So, we plan quite
extensive research for the future implementation of this
section.

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 28 -

REFERENCES

[1] William J. Brown, Raphael C. Malveau, Hays W. McCormick III,
Thomas J. Mowbray, AntiPatterns. Refactoring Software,
Architectures, and Projects in Crisis, John Wiley & Sons, Inc.,
1998, Canada

[2] https://en.wikipedia.org/wiki/Systems_development_life_cycle

[3] https://en.wikipedia.org/wiki/Code_refactoring

[4] Ali Ouni, Marouane Kessentini, Houari Sahraoui, Mel Ó
Cinnéide, Kalyanmoy Deb, Katsuro Inoue, A Multi-Objective
Refactoring Approach to Introduce Design Patterns and Fix Anti-
Patterns, http://sel.ist.osaka-u.ac.jp/lab-
db/betuzuri/archive/990/990.pdf

[5] Martin Drozdz, Derrick G Kourie, Bruce W Watson, Andrew
Boake, Refactoring Tools and Complementary Techniques,
https://pdfs.semanticscholar.org/ae2a/5ccaf697880cb386046e8882
a6c268e83312.pdf

[6] Jagdish Bansiya, Automating Design-Pattern Identification, Dr.
Dobb's Journal, 1998, http://www.drdobbs.com/architecture-and-
design/automating-design-pattern-identification/184410578

[7] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and D. Dig, A
comparative study of manual and automated refactorings, in 27th
European Conference on Object-Oriented Programming
(ECOOP), 2013, pp. 552–576

[8] M. Kim, T. Zimmermann, and N. Nagappan, A field study of
refactoring challenges and benefits, in 20th International
Symposium on the Foundations of Software Engineering (FSE),
2012, pp. 50:1–50:11

[9] Xi Ge and Emerson Murphy-Hill. Manual Refactoring Changes
with Automated Refactoring Validation. In Proceedings of the Int.
Conf. on Soft. Eng. (ICSE), 2014

[10] Ioana Verebi, A Model-Based Approach to Software Refactoring,
https://www.researchgate.net/publication/281686403_A_Model-
Based_Approach_to_Software_Refactoring

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 29 -

https://en.wikipedia.org/wiki/Systems_development_life_cycle
https://en.wikipedia.org/wiki/Code_refactoring
http://sel.ist.osaka-u.ac.jp/lab-db/betuzuri/archive/990/990.pdf
http://sel.ist.osaka-u.ac.jp/lab-db/betuzuri/archive/990/990.pdf
http://www.drdobbs.com/architecture-and-design/automating-design-pattern-identification/184410578
http://www.drdobbs.com/architecture-and-design/automating-design-pattern-identification/184410578
https://www.researchgate.net/profile/Ioana_Verebi2

