
 

Figure 1.  TIOBE lista, 2017 augusztus 

Use Python in the Information Technology 

Practice Exam 
 

László Gugolya 
* OE AMK, Székesfehérvár, Hungary 

gugolya.laszlo@amk.uni-obuda.hu 

 

 
Abstract— Since 2005 new graduation system in Hungary. 

In this context, the advanced level practical exam should 

also be subject to programming. Here you can choose 

between the candidates of the programming languages. The 

optional languages later (2012) was added to the Python 

language. This language is widely used for educational 

purposes in the US universities. The language is spreading 

in Hungary, that look good to the baccalaureate exams 

students at elementary and secondary level elevated nearly 

10% of this. More and more people are chosen from among 

the teachers in the classroom and students ' exams. 

This trend has been placed under investigation, following 

which the other options for the language in the language 

compared to the baccalaureate curriculum. What are the 

advantages and disadvantages are to be expected in the 

course of teaching and learning. 

I. INTRODUCTION 

In the current maturity system, the candidate can choose 
from several programming languages. Thus, the question 
arises as to which language to choose the candidate and 
the teacher preparing the exam. There are several aspects 
to consider here. In the case of individual preparation, the 
candidate intends to continue to study as an important 
aspect. If you are going to learn Visual Basic in the higher 
education institution (eg economic informatics), then it is 
best to choose this option. This is not possible in a school 
or group environment. In this case, other considerations 
arise, such as the prior knowledge of the teacher and the 
usable time frame. Over the last few years, the number of 
hours spent on computing and within programming has 
decreased. Consequently, teachers are seeking ways to 
search for opportunities. 

At present (2017), maturity exams can be selected from 
Pascal, C ++, C #, Visual Basic, Java, Python languages 
[1]. According to the programming language topology 
(TIOBE index) [2], this is a list of trends, from which 
Pascal hangs a bit from the line. This programming 
language has historically played a significant role in the 
Hungarian computer science education and is currently 
being implemented. So it can be justified to include it on 
the list. 

I have been preparing for graduation for many years, 
but so far Python has not been educated. Several 
colleagues have a positive experience of using and 
teaching the language. So I came to see the time to look 
more closely at the potential. If I get caught, I tried to read 
on the Internet or read it in the literature [4]. 

A. Dating 

After the first chat, reading the Internet, you can place 
the language you want to know. Python is a general 
purpose, high level programming language. When 
designing the language, the readability and facilitation of 
programming work were emphasized. 

Python supports functional, object-oriented, imperative, 
and procedural programming paradigms. It uses dynamic 
types and automatic memory management. The Python 
interpreter language, ie the source and object code is not 
separated.[3] 

We can use it in a variety of areas: for web applications, 
desktop applications, game development, but many 
systems use it as a snap language (SPSS, PostreSQL). 

There are several tools for programming. You can 
choose between IDLE and WinPython in maturity exams. 
For the learning process, we can use any of our favorite 
text editor, as it is widely supported because of the 
prevalence of language. Larger systems also support this 
language, so they can be used in Visual Studio, Eclipse, 
Netbeans, as well. There are some systems that prefer this 
language. Such are the many popular PyCharms and 
NINJA IDEs. For the first steps, I used Komodo Edit, then 
I asked for a 1-year educational license for PyCharm and 
started learning about language. 

II. FIRST STEPS 

A. Language elements 

When I get acquainted with the language elements, I 
use the 2017 code of the general exam level exam. You 
can download the text of the task and its source file from 
http: //oktatas.hu. The official solution was released this 
year in C #. During the initial steps, I tried to use simple 
solutions. An important aspect was the ability to teach in 
learning. 

Using the Python Console is a useful tool at the 
beginning of getting started. Here, you can see the result 

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 131 -



of our instructions, and any outputs. This is very useful 
during the first step of the educational process. 

The first significant difference is the significance of 
formatting compared to the other languages used in the 
exam. Missing the instruction block with the characters. 
This can be done by formatting. This in the first place is 
an advantage, as educational experiences show that it is 
natural for students. In the case of other languages, the use 
of code templates has less problems in this field. 

1. for m in tesztek:   
2.     if beKod == m["kod"]:   
3.         print(m["megoldas"])   
4.         keresett = m   

The counting cycle shown in the previous example 
forms a statement block. The statement block of the 
conditional statement consists of the "print" and the 
assignment instructions. 

The assignment was the usual marking. It is possible to 
multiply it. This can be seen in the first line. Multiple 
Assignments can be used in another form. this is 
equivalent to a = 0; b = 1. This instruction allows you to 
exchange values for variables. This is shown in the third 
row. 

1. a=b=c=2   
2. a, b = 0, 1   
3. a, b = b, a   

Conditional statements do not include a multiple 
conditional statement. This if ... elif ... must be solved. 
When using the terms, it is possible to use the relationship 
of mathematics classes. Example of solving problem 6. 

1. if k <= 5:   
2.     pontszam += 3   
3. elif 6 <= k <= 10:   
4.     pontszam += 4   
5. elif 11 <= k <= 13:   
6.     pontszam += 5   
7. elif k == 14:   
8.     pontszam += 6  

The language knows the conditional term. Its shape 
differs from the usual C-like language. 

1. kisebb = a if a<b else b   

For cycles, the back tester is not among the language 
elements. This can be replaced by the first time with the 
(while) test. 

1. while True:   
2.     utasítások   
3.     if <kilépési feltétel>:   
4.         break   
5.     (további utasítások)  

Here is another language for the break and continue 
statements. They only apply to one cycle. 

The "for" cycle can be used extensively. Its operation is 
fundamentally different from the usual. It does not go 
through a series of numbers, but it does enter something. 
That is, it is not a "counting" cycle, but a "crawling" cycle. 
Here is no cycle variable in other languages. This is more 
like a foreach in C #. We can go through all the elements 
of a multitude (eg a list). For example, for task 5. 

1. dbJo = 0   
2. for m in tesztek:   
3.     if helyes[s] == m["megoldas"][s]:   
4.         dbJo += 1   

You can also use cycles in numeric order using a 
function. The range () function generates an interval as a 
return value, and the resulting list goes through the for 
cycle. This way we can produce a cycle close to a 
traditional one. This could be used to map the solutions 
stored in the string by character in task 6. Here, since 14 
questions were included in the test, the range () function 
produces a 0-13 interval. 

1. for k in range(0,len(helyes)):   
2.     if helyes[k] == m["megoldas"][k]:   
3.         if k <= 5:   
4.             pontszam += 3   
5.         elif 6 <= k <= 10:   
6.             pontszam += 4   
7.         elif 11 <= k <= 13:   
8.             pontszam += 5   
9.         elif k == 14:   
10.             pontszam += 6   

Repetitive structures may have another branch. This is 
different from the other programming language that can 
be used for the exam. This branch will be executed if the 
cycle has run through the list (for case) or if the condition 
is fake (while). It will not be executed if the cycle is 
interrupted by the break command. 

1. while <feltétel>:   
2.     utasítások   
3. else:   

4.     utasítások   

Many people like to solve each task individually. This 
will make the solution more understandable. To do this 
you need to know how to use the functions. The function 
is specified as follows. 

1. def feladat2():   
2.     print("2. feladat: ")   
3.     print(" A vetélkedőn {0} versenyző 

indult.".format(len(tesztek)))   

You can specify parameters as usual, return the value to 
the return. Here's an interesting opportunity to see, this is 
multiple value reproduction. In the example below, 6 and 
9 are printed. 

1. def fuggveny(x):   
2.     return x*2, x*3   
3. a,b = fuggveny(3)   

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 132 -



4. print (a," ",b)  

It is also possible to enter local functions similarly to 
the Pascal language. 

1. def fgv():   
2.     def alfgv():   
3.         print("alfgv vagyok")   
4.     print("fgv vagyok")   
5.     alfgv()  

The data structure like arrays is multi way in Python: 
list, tuple, dictionary. 

The most versatile composite data type of Python is a 
list (list) that can be entered as comma separated values in 
square brackets. The elements in the list do not have to be 
of the same type. 

1. gyumi=["alma",260, True, 12.5]   

2. gyumi2=[["alma","körte","meggy"],260]   

The second line shows that the list item can be a list. 
You can refer to the element of that list by block from 0. It 
is also possible to refer to several elements of the list 
(slices, parts), for example: 

1. gyumi[1:3]->[260, True] 

It is also possible to access the list from the back, so 
negative indices are used. For example, the last element 
can be referred to as a gyumi[-1]. 

To manage lists, you can use append, extend, insert, 
remove, pop, index, count, sort, reverse. These can be 
used as stack or row data structures. This is useful for 
problem solving. 

"Two-dimensional array" is used in maturity exams. 
We can do this with a list in the list. This is like a one-
dimensional array implemented in one-dimensional array 
in other languages. 

1. lista=[[2,3],[5,6],[8,9]]   
2. s = ""   
3. for x in lista:   
4.     for y in x:   
5.         s += " " + str(y)   
6.     s += "\n"   
7. print(s)   

Listing is facilitated by so-called "list mapping". You 
can then perform a particular action on all the items on the 
list, and then create a new list. You can view it quickly on 
the console. 

1. >>> lista=[1,2,3,4]   
2. >>> lista = [elem*2 for elem in lista]  
3. >>> lista   
4. [2, 4, 6, 8]  

Like a list, a structured data structure for storing 
different objects is tuble. Contrary to the list, the elements 
can not be modified here. This may be useful if you have 

to work with fixed elements, such as the names of days 
and months. 

1. napok = ('hétfő','kedd','szerda','csütö
rtök','péntek','szombat','vasárnap') 

Use dictionary to perform record-like data storage. You 
can store key-value pairs here. As an example, the 2013 
"Választás" taskbar, where you can enter pairs of party 
abbreviations and names. Using the dictionaries with a 
list, we can implement traditional, structured, record-
keeping data storage. 

1. partok={"GYEP":"Gyümölcsevők Pártja", 
2.         "HEP":"Húsevők Pártja",   
3.         "TISZ":"Tejivók Szövetsége", 

4.         "ZEP":"Zöldségevők Pártja", 

5.         "-":"Független jelöltek"} 

The String object can not be modified. Its use is the 
same as in the lists, that is, a list of roundabouts. We have 
methods for implementing string actions. Of these, the use 
of the strip should be highlighted. After scanning 
(console, file), we need to remove whitespace characters. 
You can do this with the strip (). 

Handling sets as a standalone data type can be 
implemented. Creating it with set (). This had to be 
repeatedly used in the maturity quiz of recent years. For 
example, in the May 2013 taskbar, to define themes. 

1. temak=set()   
2. for tema in adatok:   
3.     temak.add(tema)   
4. print("A temakörök:", ",".join(temak))  

You can create a set from an existing list. 

1. >>> kosar = ['alma', 'meggy', 'alma', '
cseresznye', 'meggy', 'alma'] 

2. >>> gyumi = set(kosar)   
3. >>> gyumi   
4. {'meggy', 'alma', 'cseresznye'}   

The usual actions can be done on the sets: containment, 
embedding, deleting, engraving, union, difference, 
symmetric difference (in, add, pop, remove, discard, &, |, 
^). 

In tasks, it is often necessary to sort the stored data. We 
now have the option to use traditional sorting algorithms, 
but the language provides a way to sort the lists. 

1. lista = [5, 3, 4, 1, 2]   
2. for i in range(len(lista) - 1):   
3.     for j in range(i + 1, len(lista)):  
4.         if lista[i] > lista[j]:   
5.             lista[i], lista[j] = lista[

j], lista[i]   
6. print(lista)   
7. lista = [5, 3, 4, 1, 2]   
8. lista = sorted(lista) 
9. print(lista) 
10. lista = [5, 3, 4, 1, 2]   

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 133 -



11. lista.sort(reverse=True)   
12. print(lista)  

In the example, the bubble algorithm is first seen. then 
the shorted () function, which creates a new list that is 
generated as a parameter. In the third solution, sorting is 
done locally. Sorting is done in descending order by 
specifying the parameter. For a more complex list, sorting 
() is sorted by the first "column". If you want something 
else, you can set this with the key parameter. 

1. import collections   
2. Diak = collections.namedtuple("Diak","N

ev,Szulido,Magassag,Tomeg")   
3. peldaLista=[]   
4. peldaLista.append(Diak("Nagy Anna","200

0-10-10",170,70))   
5. peldaLista.append(Diak("Szép Éva","2012

-10-10",120,30))   
6. peldaLista.append(Diak("Nagy Attila","2

011-1-21",180,68))   
7. print(*sorted(peldaLista,key=lambda  

adat:adat.Tomeg),sep='\n')   
8.    
9. peldaLista2=[]   
10. peldaLista2.append(["Nagy Anna","2000-

10-10",170,70])   
11. peldaLista2.append(["Szép Éva","2012-

10-10",120,30])   
12. peldaLista2.append(["Nagy Attila","2011

-1-21",180,68])   
13. print(*sorted(peldaLista2,key=lambda  

adat:adat[3]),sep='\n')   

In the first example, we see a solution when naming the 
column data stored in the list and naming it for the sort 
key. In the second example there is a list with a list to 
complete the sorting. You will then need to enter the 
"column" number at the key. 

Reading like array: 

1. fajl=open("valaszok.txt")   
2. adat =[]   
3. for e in fajl.readlines():   
4.     adat.append(e.strip().split())   
5. print(adat)   

Reading like record in the dictionary: 

1. adat2=[]   
2. fajl=open("valaszok.txt")   
3. i=1   
4. for e in fajl.readlines()[1:-1]:   
5.     (kod,megoldas) = e.strip().split()  
6.     valasz = {   
7.         "sorsz": i,   
8.         "kod": kod,   
9.         "megoldas": megoldas   
10.     }   
11.     adat2.append(valasz)   
12.     i+=1   
13. print(adat2)   

In case of random number generation, we can choose 
from several solutions. 

1. import random   
2. print(random.randint(1, 6))   
3. print(random.random() * 100)   
4. print(random.choice(['alma', 'meggy', '

cseresznye']))   
5. print(random.randrange(0, 101, 5))   

The autumn maturity of 2015 had to produce random 
coins at random, so we can easily do that on the basis of 
the above. 

1. import random   
2. print("A pénzfeldobás eredménye:",rando

m.choice("IF") ) 

In the 2016 "Zár" task sequence, a series of codes had 
to be produced. This is also easy to solve. With the sample 
method, you can create a given number of samples from a 
given pattern and then merge it. You can see it on a 
bracket. 

1. sorozat = random.sample("0123456789",5) 
2. sorozat 
3. ['0', '3', '5', '7', '8']   
4. print("".join(sorozat))   
5. 03578   

 

B. Experience in solving task series 

After the basic elements of the language I tested a 
complete set of tasks. I solved the last "Test Competition" 
task in 2017. This can be considered as a mixed task, as it 
is possible to use record-based thinking, and handling text 
data (strings) is also needed. The exact description of the 
task and the source file can be found at 
https://dari.oktatas.hu/kir/erettsegi/okev_doc/erettsegi_201
7/e_inf_17maj_fl.pdf. 

The task series evaluates a contestant's response to test 
tasks by using a text file. The tasks have been solved by 
means of subprograms for ease of comprehension. 

The first task is to read the data. The text file has been 
included in a global list of data. 

1. def feladat1():   
2.     print("1. feladat:")   
3.     adatok=[]   
4.     fajl=open("valaszok.txt")   
5.     global helyes   
6.     helyes = fajl.readline().strip()   
7.     #tovabbi adatok beolvasasa   
8.     i = 1   
9.     for sor in fajl:   
10.         sor = sor.strip()   
11.         reszek = sor.split()   
12.         valasz = {   
13.             "sorsz": i,   
14.             "kod": reszek[0],   
15.             "megoldas": reszek[1]   
16.         }   

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 134 -



17.         adatok.append(valasz)   
18.         i = i+1   
19.     #print(adatok)   
20.     fajl.close()   
21.     return adatok  

The second task is for the starting competitor. This can 
be done by using the length of the list. 

1. def feladat2():   
2.     print("2. feladat: ")   
3.     print(" A vetélkedőn {0} versenyző 

indult.".format(len(tesztek)))   

The third task is to request a competitor's details. Here 
is a linear search query. 

1. def feladat3():   
2.     print("3. feladat:")   
3.     global keresett   
4.     beKod = input("A versenyző azonosít

ója = ")   
5.     for m in tesztek:   
6.         if beKod == m["kod"] :   
7.             print(m["megoldas"])   
8.             keresett = m   

In the fourth task, the correct solutions of the 
competitor requested in the given form have to be given. 
The "sought-after" contestant's solutions are per character 
and weigh the output into a text variable. 

1. def feladat4():   
2.     print("4. feladat")   
3.     global helyes   
4.     global keresett   
5.     print("{0:s} (a helyes megoldás)".f

ormat(helyes))   
6.     ki = ""   
7.     for k in range(0,len(keresett["mego

ldas"])):   
8.         if helyes[k]==keresett["megolda

s"][k]:   
9.             ki =  ki + "+"   
10.         else:   
11.             ki = ki + " "   
12.     print("{0:s} a versenyző helyes vál

aszai".format(ki))   

In the fifth task, the success of a given task solution has 
to be expressed in percentage. When a solution is made, a 
count is to be made. 

1. def feladat5():   
2.     print("5. feladat")   
3.     beFeladatSorszama = int(input("A fe

ladat sorszáma = "))   
4.     dbJo = 0   
5.     for m in tesztek:   
6.         if helyes[beFeladatSorszama] ==

 m["megoldas"][beFeladatSorszama]:   
7.             dbJo += 1   

8.     print("A feladatra {0} fő, a versen
yzők {1}%-
a adott helyes választ.".format(dbJo,ro
und(dbJo/len(tesztek)*100,2)))   

In the sixth task, the score of the competitors must be 
saved to an output file. Scores are given in advance for 
each task. Two embedded cycles should be used in the 
solution. One of the contestants goes the other way for 
each competitor's responses. You can also use elseif for 
the scores. The solution described illustrates the 
standardization in mathematics, which is different from 
other programming languages. The list of points7 will be 
useful when solving the seventh task. 

1. def feladat6():   
2.     print("6. feladat:")   
3.     global helyes   
4.     global pontok7   
5.     kiFajl = open("pontok.txt","w")   
6.     for m in tesztek:   
7.         pontszam = 0   
8.         for k in range(0,len(helyes)): 
9.             if helyes[k] == m["megoldas

"][k]:   
10.                 if k <= 5:   
11.                     pontszam += 3   
12.                 if 6 <= k <= 10:   
13.                     pontszam += 4   
14.                 if 11 <= k <= 13:   
15.                     pontszam += 5   
16.                 if k == 14:   
17.                     pontszam += 6   
18.         kiFajl.write("{0} {1}\n".format

(m["kod"],pontszam))   
19.         pontok7.append([pontszam,m["kod

"]])   
20.     kiFajl.close() 

In the seventh task, prizes must be awarded based on 
the scores obtained. First of all, we perform the orderly 
scoring according to the scores, and then the prizes are 
paid out to ensure that the prize winners do not lose. 

1. def feladat7():   
2.     print("7. feladat:")   
3.     global pontok7   
4.     rendezett = sorted(pontok7, reverse

 = True)   
5.     db = 1   
6.     i = 0   
7.     while i<len(rendezett) and db <= 3: 

8.         print(db, '.díj','(',rendezett[i
][0], 'pont):', rendezett[i][1])   

9.         if i + 1 < len(rendezett) and r
endezett[i+1][0] != rendezett[i][0]:   

10.             db += 1   
11.         i += 1  

The task was not particularly difficult. Python could be 
solved in 45 minutes without practice. 

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 135 -



III. SUMMARY 

Compared to the solutions of Python's own and others, 
there is no significant difference between the official 
solutions and the comparison. Regarding solutions, there 
is no difference in the number of rows if we omit the 
blank of "{}" of the official solution. It is felt that data 
storage is more flexible than in other more traditional 
languages. In addition to the scans, the use of Python was 
convenient (and therefore more advantageous) for sorting. 

During the study and testing of the language, it became 
clear to me why Python was growing fast. On the basis of 
the many positive feedback it can be stated that it is worth 
trying the language and introducing it into secondary 

education. However, I consider it implausible that Python 
does not play a significant role in the Hungarian higher 
education. Thus, entering the higher education of the 
students who are going to take part can be 
disadvantageous. 

 

REFERENCES 

[1] https://www.tiobe.com/tiobe-index/  

[2] https://www.oktatas.hu/kozneveles/erettsegi/2017oszi_vizsgaidosz
ak/2017osz_nyilvanos_anyagok_listaja  

[3] http://nyelvek.inf.elte.hu/leirasok/Python/ 

[4] Mark Summerfield, “Python 3 programozás”, Kiskapu Kiadó, 
2009 

 

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 136 -




