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Abstract—The proliferation of geo-social network, such as 
Foursquare and Flickr, enables users to generate location 
information and its corresponding descriptive keywords. 
Spatial keyword queries are used to find objects in the geo-
social networks. Typical spatial keyword queries meet only a 
single user’s need at a time, which contain a single query 
location and a single set of query keywords. Collaborative 
Spatial Keyword Top-k Query (TKCSKQ) asks for top-k 
objects that are close to multiple query positions and theirs 
keywords have high relevancy with multi-group query 
keywords. To solve the problem that there are repeated and 
synonymous keywords in multi-group query keywords, a 
keywords similarity calculation formula based on the weight 
of query keywords weight is designed. And we propose 
SKNIR-tree to support near keywords matching, which is an 
extension of the IR-tree. Based on the SKNIR-tree, we 
propose a query processing algorithm that prunes search 
space through maintaining a priority queue and calculating 
the minimum spatial and textual similarity of each node with 
the query, to quickly identify the desired objects. Extensive 
experiments on real dataset validate the efficiency and the 
scalability of the proposed algorithm. 

Keywords: spatio-textual object, spatial keyword query, 
Top-k query, collaborative query 

Ⅰ.  INTRODUCTION 
With the wide application of the localization technology, 

geotagging is incorporated into the text data. For example, 
photo sharing sites (e.g., Flickr) have many photos which 
contain the location and text description. As another 
example, check-ins or reviews in location based social 
networks (such as Foursquare) contain both text 
description and locations of points of interest. Spatial 
keyword query processing technologies [1,2,3,4] are used 
to identify the desired spatio-textual objects efficiently, 
which have high relevancy with the query while taking into 
account both the spatial proximity and the text similarity. 

Typical spatial keyword queries meet only a single 
user’s need at a time, which take a single query location 
and a single set of keywords as input parameters, return the 
objects that theirs locations are near the query point and 
theirs keywords are highly similar to the query keywords. 
But in real life, users often draw up a plan collaboratively. 
The query in these applications is submitted by multiple 
users. For example, users who are in different companies 
dine together. Each user wants the restaurant to be near its 
own location and the restaurant’s description is similar to 
its own need. In this paper, we study how to find suitable 
top-k objects to meet multiple users’ needs. We formulate 
a new kind of query called collaborative spatial keyword 
top-k query (TKCSKQ), which aims to retrieve top-k 

objects for meeting multiple users’ needs. Compared with 
traditional spatial keyword queries, TKCSKQ faces the 
following challenges: 

(1)There are repeated and synonymous keywords in 
query keywords submitted by multiple users. Traditional 
spatial keyword queries take a single set of keywords 
submitted by a single user as parameter, and there are no 
duplicate keywords or near keywords in the query 
keywords. Theirs keywords similarity calculation method 
does not consider the weight of the query keywords. 

(2)There is mismatch problem because of the 
synonymous keywords. For example, in a collaborative 
query, two users propose a query keyword "open-air" and 
"outdoor" respectively. Clearly, they both want to query 
outdoor restaurant. For an object that contains "open-air" 
keyword, it will only match one query keyword while 
using traditional query processing technology. But in fact, 
it should match the two query keywords. 

(3)How can we process TKCSKQ efficiently? It is 
another great challenge for TKCSKQ to quickly find top-
k objects that are close to multiple query points and theirs 
keywords have high relevancy with query keywords. 

To solve the above problem, we proposes a 
collaborative spatial keyword top-k query processing 
technique, and the main contributions are as follows: 

(1)To solve the problem that multiple users submit the 
repeated or synonymous keywords, we design the 
keywords similarity calculation formula based on the 
weight of query keywords. 

(2)To process TKCSKQ efficiently and solve mismatch 
problem, we propose an efficient hybrid index structure 
called Synonymous Keywords Normalization IR-tree 
(SKNIR-tree), which normalizes all the keywords and uses 
NKI (Normalized Keyword Identification) to represent 
keyword, to maximize the users’ satisfactions. 

(3)Based on the SKNIR-tree, we propose an algorithm 
TKCSK (Top-K Collaborative Spatial Keyword 
processing method) that prunes search space through 
maintaining a priority queue and calculating the minimum 
spatial and textual similarity of each node with the query, 
to quickly identify the desired objects. 

In order to evaluate the performance of the SKNIR-tree 
and TKCSK algorithm, we conduct extensive experiments 
in two aspects of query time and IO. The results 
demonstrate that the proposed algorithm is efficient and 
scalable and exhibits superior performance over the brute 
force method. 

The rest of this paper is organized as follows. Section Ⅱ 
introduces the related work. We formally define the 
problem of collaborative spatial keyword top-k query in 
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Section Ⅲ. Section Ⅳ introduces the SKNIR-tree. Section 
Ⅴ introduces our algorithm for processing TKCSKQ. 
Section Ⅵ presents our experimental evaluation. We 
summarize our work and discuss future work in Section 
Ⅶ. 

Ⅱ.  RELATED WORK 
Typical spatial keyword queries meet only a single 

user’s need at a time [5,6,7,8]. They mainly construct the 
hybrid index and propose the corresponding algorithm to 
search desired objects [9,10,11]. The R*-IF [9] organizes 
location information with R tree, each leaf node is 
associated with an inverted file to organize text 
information. The algorithm finds the nearest neighbor 
according to the leaf nodes of R tree. And then in each leaf 
node, the objects are sorted according to the textual 
relevancy. IR-tree [2] associates an inverted file with each 
node of the R tree, and uses the priority queue to query 
objects with the maximum relevancy taking into account 
both the spatial proximity and keywords relevancy. BR-
tree [10] organizes text information through associating a 
bitmap with each node of R tree. The algorithm prunes 
search space according to whether the bitmap contains all 
query keywords. Then the objects are sorted according to 
the distance. Wu et al. [11] study the authentication of 
moving top-k spatial keyword queries using the MIR-tree, 
which modifies the IR-tree by embedding a series of 
digests in each node of the tree. The above queries are all 
submitted by a single user. On the contrary, we aim to 
solve the spatial keyword queries submitted by multiple 
users and find the desired objects to meet the needs of 
multiple users. 

The existing spatial keyword queries have some 
collaborative studies, ALI et al. [12] studies the k-BEST-
SUBGROUPS-NN query. The query is submitted by 
multiple users, and asks for results to meet any sub-groups’ 
demand. The algorithm proposes a data centric approach, 
gradually accesses the objects from centric, and identifies 
the best subset at each step. The main idea is to develop 
the best subset of the visited objects by moving the query 
point radially from the centroid, without enumerating all 
possible subsets. But this paper only considers the 
coordination of space, does not consider keywords. Zhang 
et al. [13] proposes TkCoS query taking into account both 
the spatial proximity and keywords relevancy, and designs 
the STR-tree which prunes search space by calculating the 
upper boundary and the lower boundary for each node set. 
TkCoS query is submitted by multiple users, and finds the 
top-k object sets to satisfy the users’ needs. The collective 
spatial keyword queries [14,15,16] are submitted by a 
single user, and find the top-k object sets. The keywords 
of each object set contain query keywords, the location of 
the object set is close to the query location. TKCSKQ is 
different from the above researches, the query helps 
multiple users in different locations to identify top-k 
objects collaboratively while taking into account the 
problem of the repeated and synonymous keywords. 

Ⅲ. PROBLEM STATEMENT 
Spatial textual object.  𝑜𝑜 =< 𝜌𝜌,φ > , where 𝜌𝜌  is the 

object’s location, φ is a set of keywords of the object. 
Collaborative Spatial Keyword Top-k Query. 𝑄𝑄 = {<

𝑞𝑞1.𝜌𝜌, 𝑞𝑞1.𝜑𝜑 >, … , < 𝑞𝑞𝑛𝑛. ρ, 𝑞𝑞𝑛𝑛.φ >}, where 𝑞𝑞𝑖𝑖 .𝜌𝜌  is the ith 
user’s query location, 𝑞𝑞𝑖𝑖 .𝜑𝜑  is the ith user’s query 
keywords. TKCSKQ asks for top-k objects that are close 
to multiple users’ locations and theirs texts are highly 
similar to the query keywords. 

In order to find the best top-k objects from the dataset, 
we propose a ranking function to measure how well an 
object satisfies TKCSKQ, as shown in Formula 1. The 
function takes into account both the spatial proximity and 
keywords relevancy. In Formula 1, 𝛼𝛼 ∈ [0,1] is the user 
preference on spatial proximity and keywords relevancy. 
The spatial proximity, denoted by 𝐷𝐷(𝑄𝑄, 𝑜𝑜), is obtained by 
the maximum distance between qi and object(shown in 
Formula 2). 𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷 denotes the maximal distance between 
any two objects in dataset. It is used as a normalization 
factor. In Formula 3, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑, 𝑜𝑜.𝜑𝜑)  is the keywords 
relevancy. Traditional spatial keyword queries are 
submitted by a single user, there are no repeated and 
synonymous keywords in query keywords. So their 
keywords similarity calculation formula does not consider 
the weight of a single query keyword. But for TKCSKQ, 
multiple users may submit the same keywords or 
synonyms keywords, thus query keywords need to be 
assigned different weights. We propose a keyword 
similarity calculation formula based on the weight of query 
keywords (shown in Formula 3). If 𝑡𝑡𝑖𝑖  represents the 
keyword that both appear in the query keywords and object 
keywords, 𝑤𝑤𝑖𝑖 is the weight of 𝑡𝑡𝑖𝑖, obtained by the number 
of times 𝑡𝑡𝑖𝑖 ’s NKI appears in the query keywords. The 
smaller the value calculated by Formula 1, the more 
satisfied the query condition. 

Finally, the goal of a TKCSKQ is to find top-k objects 
with the smallest 𝑆𝑆𝑠𝑠𝑠𝑠(Q, o). Our problem can be defined as 
Definition 1.  
𝑆𝑆𝑠𝑠𝑠𝑠(Q, o) = 𝛼𝛼 𝐷𝐷(𝑄𝑄,𝑜𝑜)

𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷
+ (1 − 𝛼𝛼)(1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑, 𝑜𝑜.𝜑𝜑)) (1) 

𝐷𝐷(𝑄𝑄, 𝑜𝑜) = (dist(𝑞𝑞𝑖𝑖 . ρ, o. ρ))1≤𝑖𝑖≤𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚                                   (2) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑, 𝑜𝑜.𝜑𝜑) = 𝑤𝑤1+𝑤𝑤2+⋯+𝑤𝑤𝑖𝑖
𝑛𝑛𝑛𝑛𝑚𝑚(𝑄𝑄.𝜑𝜑)

                                    (3) 
Definition 1 (TkCSKQ Retrieval) Given a dataset and a 
TKCSKQ, find top-k objects ｛𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑠𝑠｝, such that 
there does not exist o′that satisfies o′ ∉ {𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑠𝑠} and 
𝑆𝑆𝑠𝑠𝑠𝑠(Q, o′) < 𝑆𝑆𝑠𝑠𝑠𝑠(Q, 𝑜𝑜𝑖𝑖) , 𝑜𝑜𝑖𝑖 ∈｛𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑠𝑠｝. 

Ⅳ. SKNIR-TREE 
Figure 1 is an example of eight spatial textual objects. 

The left shows the locations of the objects. And the right 
shows the keywords information, among them, keyword t2 
and t5 are semantically synonymous. 

To answer TKCSKQ efficiently, we introduce an 
efficient hybrid index structure called SKNIR-tree, which 
is an extension of IR-tree, as shown in figure 2. It can 
efficiently standardize the nonstandard keyword into the 
NKI, to ensure the accuracy and efficiency of the query. 

SKNIR-tree normalizes the keywords by maintaining a 
relational table (shown at the bottom left of Figure 2) and 
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identifies it with an integer number called NKI. The 
synonymous keywords will be translated into the same 
NKI. The application scenarios (e.g., multiple users who 
are in different corporates dine) TKCSKQ process involve 
the keywords such as fast food, open-air restaurants and 
other tabbed keywords, and the number of tabbed 
keywords is always fixed. Therefore, NKI can be 
determined in advance, and it is easier to correspond the 

 
Fig.1 Spatial textual objects 

 

 
Fig.2 SKNIR-tree 

normal keywords to the NKI. Although it is laborious, but 
only need to be done once. To speed up the query of 
keywords in the relational table, we use trie (shown at the 
left above of Figure 2) to organize nonstandard keywords. 
In the trie, we store an English letter in each node in 
addition to the root node, each keyword can be accessed 
through a unique path following its letter order. Each leaf 
node’s form in trie is (key, P), where key is a keyword, 
and P is a pointer to the keyword in the relational table. 
During the query process, we start from the root node in 
trie, then in the root node’s sub-nodes, hash technology is 
used to query the node location of the first letter of the 
keyword, until finding the last letter. The trie uses hash 
technology to store and query the location of the nodes, 
thus the query efficiency is high. 

We did a proper transformation based on IR-tree to fit 
TKCSKQ (shown at the right of Figure 2). In the inverted 
file, NKI replaces the original object keyword. Each leaf 
node contains entries of the form (op, o.r, IFp), where op 
is the pointer to the object o, o.r is the bounding rectangle 
of o, and IFp is the pointer to the inverted file. The inverted 
file contains two main components: first, all distinct NKIs 
appearing in the corresponding objects; second, posting 
lists for each NKI nki that is a sequence of identifiers of 
the objects whose NKIs contain nki. Each non leaf node 
contains entries of the form (nps, r, IFp), where nps is the 
pointer to the child nodes, r is the minimum bounding 
rectangle of all rectangles in entries of the child node, and 
IFp is the pointer to the inverted file. 

Figure 2 gives an example of SKNIR-tree for the objects 
in Figure 1. In the relational table, the nonstandard 
keywords are standardized into digital tags, and both t2 and 

t5 are normalized to 3 because they have the same meaning. 
The R tree is constructed according to the locations of the 
objects, and the NKI inverted files are constructed for each 
node. 

Here we describe the construction of the SKNIR-tree, as 
shown in the algorithm 1. The overall NKI is pre created, 
and then the keywords that appear in the dataset are 
identified with the corresponding NKI (line 1-5). Then 
insert the (keyword, NKI) into the relational table (line 7), 
and insert the nonstandard keywords and their address in 
the relational table into the trie (line 8). Finally, we call the 
algorithm Insert in IR-tree [2] to insert the object. It is 
worth noting that the insertion parameters of the SKNIR-
tree are the minimum bounding rectangle of the object and 
the NKIs (line 10). 

Algorithm 1：IndexBuilding(o) 
1. for each o 
2.   for each keyword t in o 
3.     identifying t with NKI 
4.   end for 
5. end for 
6. for each nonredundant t 
7.   insert (t,NKI) to a relational table 
8.   insert t to trie 
9. end for 
10. Insert(MBR,NKIs) 

Ⅴ.  PROCESSING TKCSKQ  
In this section, two Baseline algorithms are first 

proposed. Then, based on SKNIR-tree, an efficient 
algorithm for TKCSKQ processing is proposed. 

A. Baseline Algorithms 
Baseline 1 Unite Subquery (US). Traditional spatial 

keyword queries are submitted by a single user, and return 
the objects that theirs locations are near the query point and 
theirs texts are highly similar to the query keywords. 
TKCSKQ is submitted by multiple users, including 
multiple query locations and multi-group query keywords, 
and return the objects that theirs locations are near the 
multiple query points and theirs texts are highly similar to 
the multi-group query keywords. Intuitively, a brute force 
approach is to process each subquery qi in Q using 
traditional query processing technology independently, 
and merge all the results returned by the subqueries. 
Obviously, this approach will lead to high processing cost. 
First, the same node will be accessed repeatedly in 
different subqueries. Second, we need to keep the number 
of the result of each sub-query sufficiently large, to ensure 
the merged result contains the top-k. 

Baseline 2 First Space Then Text (FSTT). This 
algorithm uses Formula 3 and relational table to calculate 
the text relevancy of all objects based on the inverted file. 
The calculation result is denoted as TRank. Then through 
extending the method of searching neighbor objects [18], 
the algorithm incrementally finds neighbors that are 
closest to multiple users using R-tree, and maintains top-k 
result through calculating neighbors’ spatial textual 
relevancy based on Formula 1. The algorithm keeps track 
of the maximum text relevancy in TRank, denoted by 
MaxT that has not been calculating so far. For a newly 
calculated object in R-tree, if the combined score 
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computed from its location and MaxT exceeds kth result 
object, the Algorithm stops since it is guaranteed that all 
un-calculated objects will not have a lower score than the 
current kth result object. 

B. TKCSK Algorithm 
In this section, we propose the TKCSK algorithm to 

processing TKCSKQ. The algorithm maintains a priority 
queue that stores minimum spatial textual relevancy 
between Q and SKNIR-tree nodes. The relevancy 
calculation function is shown in Formula 4. min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) 
is the relevancy between Q and the node N. And the 
relevancies between Q and the objects in minimum 
bounding rectangle of node N are all greater than 
min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N). We give the formal definition in Theorem 
1, and give the proof. The priority queue is arranged from 
small to large. The algorithm iterates over the elements 
from the head, and calculates the min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) of its child 
nodes, then inserts them into the queue. If we get an object 
from the head of the queue, then the object is the one of 
the top-k. Until we get the all top-k result, the algorithm 
stops. Other nodes and objects in the priority queue do not 
need to be accessed and calculated to achieve the purpose 
of fast pruning search space and improving query 
efficiency. 
min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) =  𝛼𝛼 𝐷𝐷(𝑄𝑄,𝑁𝑁)

𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷
+ (1 − 𝛼𝛼)(1 −

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑,𝑁𝑁.𝜑𝜑))                                                                 (4) 
Theorem 1 Given a TKCSKQ Q and a node N of SKNIR-
tree, and the minimum bounding rectangle of the node N 
contains the objects os, then ∀o ∈ os (min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) ≤
 𝑆𝑆𝑠𝑠𝑠𝑠(Q, o)). 
Proof.  dist(𝑞𝑞𝑖𝑖 . ρ,𝑁𝑁) ≤ dist(𝑞𝑞𝑖𝑖 . ρ, o. ρ) , then 

(dist(𝑞𝑞𝑖𝑖 . ρ,𝑁𝑁))1≤𝑖𝑖≤𝑛𝑛
𝑚𝑚𝑖𝑖𝑛𝑛 ≤ (dist(𝑞𝑞𝑖𝑖 . ρ, o. ρ))1≤𝑖𝑖≤𝑛𝑛

𝑚𝑚𝑖𝑖𝑛𝑛 , 
𝐷𝐷(𝑄𝑄,𝑁𝑁) ≤ 𝐷𝐷(𝑄𝑄, 𝑜𝑜). And because the node N contains all 
the keywords of the objects os, 1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑,𝑁𝑁.𝜑𝜑) ≤
1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑, 𝑜𝑜.𝜑𝜑) . In summary, min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) ≤
𝑆𝑆𝑠𝑠𝑠𝑠(Q, o). 

The algorithm’s pseudocode is shown in Algorithm 2. 
First of all, we transform the query keywords from 
multiple users into NKIs, and sort NKIs (line 2-7). Then 
we calculate the number of time each NKI appears as the 
weight of the NKI (line 8). The algorithm maintains a 
priority queue U which is arranged from small to large 
according to 𝑆𝑆𝑠𝑠𝑠𝑠, and firstly the root node of the SKNIR-
tree is stored in U (line 9-10). If U is not empty and the 
number of result is less than k (line 11), the algorithm 
iteratively checks the first element E in U. If E is an object, 
it is returned as a top-k result. If E is a leaf node, we 
compute the 𝑆𝑆𝑠𝑠𝑠𝑠(Q, o) of E’s objects and push them into U. 
If E is a non leaf node, we compute the min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) of 
E’s child nodes and push them into U. (line 12-23). 

Algorithm 2：Search(index R, TKCSKQ Q) 
1. Result ← ∅ 
2. for each 𝑞𝑞𝑖𝑖 .φ 
3.   for each keyword t 
4.     Q.NKIs.add(t->NKI) 
5.   end for 
6. end for 
7. sort(Q.NKIs) 
8. Q.NKI.w ← count(Q.NKI) 
9. U ← EmptyPriorityQueue 

10. U.push(R.root,0) 
11. while U is not empty and Result.length<k 
12.   E ← U.pop() 
13.   if E is an object 
14.     result.add(E) 
15.   else if E is a leaf node 
16.     for each object o in the leaf node 
17.       U.push(o, 𝑆𝑆𝑠𝑠𝑠𝑠(Q, o)) 
18.     end for 
19.   else 
20.     for each node n in E 
21.       U.push(n, min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N)) 
22.     end for 
23.   end if 
24. end while 

Ⅵ. EXPERIMENTS  

A. Experimental Setting 
The experiment is performed on ThinkPad T450, with 

the following configuration: CPU: Intel (R) Core (TM) i5-
5200U CPU @ 2.20GHZ, RAM: 6G, Hard disk: 500G, 
Operation System: Windows 10. All algorithms of the 
experiment are implemented in Java, and the integrated 
development environment is IntelliJ IDEA Community 
Edition 14.0.2. 

We use the yelp_academic_dataset_business dataset [17] 
provided by the Yelp web site in the experiments. It 
collects 85,901 restaurants from 11 cities in 4 countries. 
Each line in the dataset records a restaurant’s information 
which contains 31 items, such as merchant identification, 
address, latitude and longitude, classification etc. We use 
latitude and longitude as object location and use 
classification as object keywords. We also extend the 
dataset by the method of random sampling based on the 
original dataset. Because the keywords in the dataset do 
not have synonymous keywords, we randomly select 
multi-group 2-4 keywords as synonymous keywords. 

The existing technologies about spatial keyword query 
cannot deal with TKCSKQ. Thus we only compare our 
TKCSK algorithm with two Baseline algorithms proposed 
in the 5.1 section. We normalize the object keywords and 
then put it into memory in FSTT algorithm in advance. 

B. Performance Evaluation 
We compare TKCSK algorithm with two Baseline 

algorithms in two aspects of query efficiency and IO cost, 
and the IO cost is measured by the number of objects 
accessed. In the following, n is the number of users, k is 
the number of results, and α is the user's preferences on 
spatial proximity and keywords relevancy. 
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a) query time 

 
b) IO 

Fig.3 Effect of n 
(1) Effect of n 

Here, we fix k at 10, the number of query keywords 
for each user at 3 and 𝛼𝛼 at 0.5. Fig.3 shows the impact of 
different number of users on query time and IO cost. 
Because each subquery in the US algorithm will access 
the index once, and each subquery needs to maintain a 
result that is much larger than k to ensure the fusion result 
including top-k, so the query time and IO cost of US 
algorithm are much larger than that of TKCSK algorithm. 
In the FSTT algorithm, all the object NKIs are stored in 
memory, and the algorithm incrementally finds neighbors 
that are closest to multiple users using R-tree. The 
algorithm stops when the combined score computed from 
its location and MaxT exceeds kth result. So the number of 
object accessed is not much different from that of TKCSK 
algorithm as shown in Fig.3(b). However, as each iteration 
step of the algorithm needs to find the MaxT in TRank, 
though it may not be needed every step, but it also causes 
high cost, so the query time of FSTT algorithm is greater 
than that of TKCSK. In addition, the number of subqueries 
increases with the increase of n in US algorithm, so as 
shown in the figure, both the query time and the IO cost 
increase. The increase of n does not affect the pruning rate 
of TKCSK and FSTT algorithms, so as shown in the figure, 
with the increase of n, the query time and IO cost of 
TKCSK and FSTT algorithms are almost unchanged. 

 
a) query time 

 
b) IO 

Fig.4 Effect of k 
(2) Effect of k 

In this set of experiments, we evaluate the 
performance of the three algorithms with a varying k 
while fixing n at 3, the number of query keywords for 
each user at 3 and 𝛼𝛼 at 0.5. As shown in Fig.4(a) and 
Fig.4(b), the TKCSK algorithm has shorter query time 
and smaller IO cost than two Baseline algorithms for all 
values of k. With k increasing, as the number of results 
increases, the amount of pruning will decrease 
accordingly, so as shown in the figure, query time and IO 
cost increase. And since the US algorithm needs to 
maintain a larger value than k (experimental setting is 2 
times), its growth rate is greater than that of TKCSK 
algorithm and FSTT algorithm. 

 
a) query time 
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b) IO 

Fig.5 Effect of keywords 
(3) Effect of the number of query keywords 

Fig.5 shows the effect of the number of query 
keywords for each user on query time and IO cost when 
we fix k at 10, n at 3, and 𝛼𝛼 at 0.5. Specifically, TKCSK 
algorithm has shorter query time and smaller IO cost than 
two Baseline algorithms for all values of the number of 
keywords. As shown in figure, query time and IO cost 
remain unchanged with the number of query keywords 
increasing, because the number of keyword queries does 
not affect the pruning rate of the all algorithm. 

 
a) query time 

 
b) IO 

Fig.6 Effect of α 
(4) Effect of 𝛼𝛼 

Fig.6 shows the effect of 𝛼𝛼 on query time and IO cost 
when we fix k at 10, n at 3 and the number of query 
keywords for each user at 3. Specifically, TKCSK 
algorithm has shorter query time and smaller IO cost than 
two Baseline algorithms for all values of the 𝛼𝛼. Recall that 
α is used to adjust user’s preferences for spatial proximity 

and keywords relevancy. The greater 𝛼𝛼 value is, the more 
user cares about the location of results. The smaller alpha 
value is, the more user cares about the keywords relevancy 
of results. As shown in the figure, query time and IO cost 
of US and TKCSK algorithms increase with the increase 
of α. This is because the spatial differentiation is small and 
the pruning rate using spatial proximity is small. For FSTT 
Algorithm, because it firstly uses R tree to incrementally 
calculate the object closest to multiple users, the change of 
𝛼𝛼  will not affect algorithm’s termination condition, 
therefore query time and IO cost of the FSTT algorithm do 
not change with α increasing. 

 
a) query time 

 
b) IO 

         Fig.7 Scalability 
(5) Scalability 

In order to evaluate the scalability of TKCSK, we 
generate dataset from two million to ten million based on 
the original dataset. The location of the generated object is 
the random neighbors of the location of the object in the 
original dataset, and the keyword is randomly obtained 
from the keyword set in the original dataset. Fig.7 shows 
the tendency of query time and IO cost of algorithms with 
changing the amount of data when we fix k at 10, n at 3, α 
at 0.5 and the number of query keywords for each user at 
3. As shown in the figure, TKCSK algorithm is scalable 
and better than two Baseline algorithms. 

Ⅶ. CONCLUSIONS 
In this paper, we study the problem of collaborative 

spatial keyword top-k query (TKCSKQ), which aims to 
find top-k objects that are close to multiple query points 
and theirs texts have high relevancy with query keywords. 
Because there are repeated and synonymous keywords in 
query keywords, we design the keywords similarity 
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calculation formula based on the weight of query 
keywords. To solve mismatch problem and efficiently 
process TKCSKQ, we present an efficient query 
processing algorithm that is based on a hybrid index called 
SKNIR-tree. The algorithm prunes search space through 
maintaining a priority queue and calculating the minimum 
spatial and textual similarity of each node with the query 
locations and query keywords, to quickly identify the 
desired objects. Our experimental evaluation shows that 
the proposed algorithm is efficient and scalable and 
superior performance compared with two baseline 
methods. 

REFERENCES 
[1] De Felipe I, Hristidis V, Rishe N. Keyword Search on Spatial 

Databases[C]// IEEE, International Conference on Data 
Engineering. IEEE Computer Society, 2008:656-665. 

[2] Cong G, Jensen C S, Wu D. Efficient retrieval of the Top-k 
most relevant spatial web objects[J]. Proceedings of the 
Vldb Endowment, 2009, 2(1):337-348. 

[3] Chen Y Y, Suel T, Markowetz A. Efficient query processing 
in geographic web search engines[C]// ACM SIGMOD 
International Conference on Management of Data, Chicago, 
Illinois, Usa, June. DBLP, 2006:277-288. 

[4] Cao X, Cong G, Jensen C S. Retrieving Top-k prestige-
based relevant spatial web objects[J]. Proceedings of the 
Vldb Endowment, 2010, 3(1):373-384. 

[5] Cao X, Chen L, Cong G, et al. Spatial Keyword Querying[M]// 
Conceptual Modeling. Springer Berlin Heidelberg, 2012:16-29. 

[6] Chen L, Cong G, Jensen C S, et al. Spatial keyword query 
processing: an experimental evaluation[J]. Proceedings of 
the Vldb Endowment, 2013, 6(3):217-228. 

[7] De Felipe I, Hristidis V, Rishe N. Keyword Search on 
Spatial Databases[C]// IEEE, International Conference on 
Data Engineering. IEEE Computer Society, 2008:656-665. 

[8] Zhang D, Tan K L, Tung A K H. Scalable Top-k spatial 
keyword search[C]// International Conference on Extending 
Database Technology. ACM, 2013:359-370. 

[9] Zhou YH, Xie X, Wang C, GongYC, Ma WY. Hybrid index 
structures for location-based Web search. In: Proc. of the CIKM. 
New York: ACM Press, 2005. 155−162. [doi: 
10.1145/1099554.1099584]. 

[10] Zhang DX, Chee YM, Mondal A, Tung AKH, Kitsuregawa M. 
Keyword search in spatial databases: Towards searching by 
document. In: Proc. of the ICDE. Washington: IEEE, 2009. 
688−699. [doi: 10.1109/icde.2009.77] . 

[11] Wu D., Choi B., Xu J., C.S. Jensen. Authentication of moving top-
k spatial keyword queries. IEEE Trans. Knowl. Data 
Eng., 27 (4) (2015), pp. 922-935 

[12] Ali M E, Tanin E, Scheuermann P, et al. Spatial Consensus Queries 
in a Collaborative Environment[J]. Acm Transactions on Spatial 
Algorithms & Systems, 2016, 2(1):3. 

[13] Zhang J, Meng X, Zhou X, et al. Co-spatial Searcher: Efficient Tag-
Based Collaborative Spatial Search on Geo-social Network[C]// 
International Conference on Database Systems for Advanced 
Applications. Springer-Verlag, 2012:560-575. 

[14] Cao X, Cong G, Jensen C S, et al. Collective spatial keyword 
querying[C]// ACM SIGMOD International Conference on 
Management of Data, SIGMOD 2011, Athens, Greece, June. DBLP, 
2011:373-384. 

[15] Zhang P, Lin H, Yao B, et al. Level-aware Collective Spatial 
Keyword Queries ☆[J]. Information Sciences, 2016, 378(C):194-
214. 

[16] Long C, Wong C W, Wang K, et al. Collective spatial keyword 
queries: a distance owner-driven approach[C]// ACM SIGMOD 
International Conference on Management of Data. ACM, 
2013:689-700. 

[17] https://www.yelp.ca/dataset_challenge/dataset 
[18] G. R. Hjaltason and H. Samet. Distance browsing in spatial 

databases. ACM Trans. Database Syst., 24(2):265–318, 1999. 
 

 

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 115 -

https://www.yelp.ca/dataset_challenge/dataset

	Ⅰ.  Introduction
	Ⅱ.  Related work
	Ⅲ. Problem Statement
	Ⅳ. SKNIR-Tree
	Ⅴ.  Processing TkCSKQ
	A. Baseline Algorithms
	B. TKCSK Algorithm

	Ⅵ. Experiments
	A. Experimental Setting
	B. Performance Evaluation

	Ⅶ. Conclusions
	References




