
Collaborative Spatial Keyword Top-k Query

Liang Liu*, Shuai Guo*, Xiaolin Qin*, Qinxue Wang*
* College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu,

China
liangliu@nuaa.edu.cn, marvel_agent@nuaa.edu.cn, qinxcs@nuaa.edu.cn, nuaawqx@163.com

Abstract—The proliferation of geo-social network, such as
Foursquare and Flickr, enables users to generate location
information and its corresponding descriptive keywords.
Spatial keyword queries are used to find objects in the geo-
social networks. Typical spatial keyword queries meet only a
single user’s need at a time, which contain a single query
location and a single set of query keywords. Collaborative
Spatial Keyword Top-k Query (TKCSKQ) asks for top-k
objects that are close to multiple query positions and theirs
keywords have high relevancy with multi-group query
keywords. To solve the problem that there are repeated and
synonymous keywords in multi-group query keywords, a
keywords similarity calculation formula based on the weight
of query keywords weight is designed. And we propose
SKNIR-tree to support near keywords matching, which is an
extension of the IR-tree. Based on the SKNIR-tree, we
propose a query processing algorithm that prunes search
space through maintaining a priority queue and calculating
the minimum spatial and textual similarity of each node with
the query, to quickly identify the desired objects. Extensive
experiments on real dataset validate the efficiency and the
scalability of the proposed algorithm.

Keywords: spatio-textual object, spatial keyword query,
Top-k query, collaborative query

Ⅰ. INTRODUCTION
With the wide application of the localization technology,

geotagging is incorporated into the text data. For example,
photo sharing sites (e.g., Flickr) have many photos which
contain the location and text description. As another
example, check-ins or reviews in location based social
networks (such as Foursquare) contain both text
description and locations of points of interest. Spatial
keyword query processing technologies [1,2,3,4] are used
to identify the desired spatio-textual objects efficiently,
which have high relevancy with the query while taking into
account both the spatial proximity and the text similarity.

Typical spatial keyword queries meet only a single
user’s need at a time, which take a single query location
and a single set of keywords as input parameters, return the
objects that theirs locations are near the query point and
theirs keywords are highly similar to the query keywords.
But in real life, users often draw up a plan collaboratively.
The query in these applications is submitted by multiple
users. For example, users who are in different companies
dine together. Each user wants the restaurant to be near its
own location and the restaurant’s description is similar to
its own need. In this paper, we study how to find suitable
top-k objects to meet multiple users’ needs. We formulate
a new kind of query called collaborative spatial keyword
top-k query (TKCSKQ), which aims to retrieve top-k

objects for meeting multiple users’ needs. Compared with
traditional spatial keyword queries, TKCSKQ faces the
following challenges:

(1)There are repeated and synonymous keywords in
query keywords submitted by multiple users. Traditional
spatial keyword queries take a single set of keywords
submitted by a single user as parameter, and there are no
duplicate keywords or near keywords in the query
keywords. Theirs keywords similarity calculation method
does not consider the weight of the query keywords.

(2)There is mismatch problem because of the
synonymous keywords. For example, in a collaborative
query, two users propose a query keyword "open-air" and
"outdoor" respectively. Clearly, they both want to query
outdoor restaurant. For an object that contains "open-air"
keyword, it will only match one query keyword while
using traditional query processing technology. But in fact,
it should match the two query keywords.

(3)How can we process TKCSKQ efficiently? It is
another great challenge for TKCSKQ to quickly find top-
k objects that are close to multiple query points and theirs
keywords have high relevancy with query keywords.

To solve the above problem, we proposes a
collaborative spatial keyword top-k query processing
technique, and the main contributions are as follows:

(1)To solve the problem that multiple users submit the
repeated or synonymous keywords, we design the
keywords similarity calculation formula based on the
weight of query keywords.

(2)To process TKCSKQ efficiently and solve mismatch
problem, we propose an efficient hybrid index structure
called Synonymous Keywords Normalization IR-tree
(SKNIR-tree), which normalizes all the keywords and uses
NKI (Normalized Keyword Identification) to represent
keyword, to maximize the users’ satisfactions.

(3)Based on the SKNIR-tree, we propose an algorithm
TKCSK (Top-K Collaborative Spatial Keyword
processing method) that prunes search space through
maintaining a priority queue and calculating the minimum
spatial and textual similarity of each node with the query,
to quickly identify the desired objects.

In order to evaluate the performance of the SKNIR-tree
and TKCSK algorithm, we conduct extensive experiments
in two aspects of query time and IO. The results
demonstrate that the proposed algorithm is efficient and
scalable and exhibits superior performance over the brute
force method.

The rest of this paper is organized as follows. Section Ⅱ
introduces the related work. We formally define the
problem of collaborative spatial keyword top-k query in

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 109 -

mailto:liangliu@nuaa.edu.cn
mailto:marvel_agent@nuaa.edu.cn
mailto:qinxcs@nuaa.edu.cn

Section Ⅲ. Section Ⅳ introduces the SKNIR-tree. Section
Ⅴ introduces our algorithm for processing TKCSKQ.
Section Ⅵ presents our experimental evaluation. We
summarize our work and discuss future work in Section
Ⅶ.

Ⅱ. RELATED WORK
Typical spatial keyword queries meet only a single

user’s need at a time [5,6,7,8]. They mainly construct the
hybrid index and propose the corresponding algorithm to
search desired objects [9,10,11]. The R*-IF [9] organizes
location information with R tree, each leaf node is
associated with an inverted file to organize text
information. The algorithm finds the nearest neighbor
according to the leaf nodes of R tree. And then in each leaf
node, the objects are sorted according to the textual
relevancy. IR-tree [2] associates an inverted file with each
node of the R tree, and uses the priority queue to query
objects with the maximum relevancy taking into account
both the spatial proximity and keywords relevancy. BR-
tree [10] organizes text information through associating a
bitmap with each node of R tree. The algorithm prunes
search space according to whether the bitmap contains all
query keywords. Then the objects are sorted according to
the distance. Wu et al. [11] study the authentication of
moving top-k spatial keyword queries using the MIR-tree,
which modifies the IR-tree by embedding a series of
digests in each node of the tree. The above queries are all
submitted by a single user. On the contrary, we aim to
solve the spatial keyword queries submitted by multiple
users and find the desired objects to meet the needs of
multiple users.

The existing spatial keyword queries have some
collaborative studies, ALI et al. [12] studies the k-BEST-
SUBGROUPS-NN query. The query is submitted by
multiple users, and asks for results to meet any sub-groups’
demand. The algorithm proposes a data centric approach,
gradually accesses the objects from centric, and identifies
the best subset at each step. The main idea is to develop
the best subset of the visited objects by moving the query
point radially from the centroid, without enumerating all
possible subsets. But this paper only considers the
coordination of space, does not consider keywords. Zhang
et al. [13] proposes TkCoS query taking into account both
the spatial proximity and keywords relevancy, and designs
the STR-tree which prunes search space by calculating the
upper boundary and the lower boundary for each node set.
TkCoS query is submitted by multiple users, and finds the
top-k object sets to satisfy the users’ needs. The collective
spatial keyword queries [14,15,16] are submitted by a
single user, and find the top-k object sets. The keywords
of each object set contain query keywords, the location of
the object set is close to the query location. TKCSKQ is
different from the above researches, the query helps
multiple users in different locations to identify top-k
objects collaboratively while taking into account the
problem of the repeated and synonymous keywords.

Ⅲ. PROBLEM STATEMENT
Spatial textual object. 𝑜𝑜 =< 𝜌𝜌,φ > , where 𝜌𝜌 is the

object’s location, φ is a set of keywords of the object.
Collaborative Spatial Keyword Top-k Query. 𝑄𝑄 = {<

𝑞𝑞1.𝜌𝜌, 𝑞𝑞1.𝜑𝜑 >, … , < 𝑞𝑞𝑛𝑛. ρ, 𝑞𝑞𝑛𝑛.φ >}, where 𝑞𝑞𝑖𝑖 .𝜌𝜌 is the ith
user’s query location, 𝑞𝑞𝑖𝑖 .𝜑𝜑 is the ith user’s query
keywords. TKCSKQ asks for top-k objects that are close
to multiple users’ locations and theirs texts are highly
similar to the query keywords.

In order to find the best top-k objects from the dataset,
we propose a ranking function to measure how well an
object satisfies TKCSKQ, as shown in Formula 1. The
function takes into account both the spatial proximity and
keywords relevancy. In Formula 1, 𝛼𝛼 ∈ [0,1] is the user
preference on spatial proximity and keywords relevancy.
The spatial proximity, denoted by 𝐷𝐷(𝑄𝑄, 𝑜𝑜), is obtained by
the maximum distance between qi and object(shown in
Formula 2). 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 denotes the maximal distance between
any two objects in dataset. It is used as a normalization
factor. In Formula 3, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑, 𝑜𝑜.𝜑𝜑) is the keywords
relevancy. Traditional spatial keyword queries are
submitted by a single user, there are no repeated and
synonymous keywords in query keywords. So their
keywords similarity calculation formula does not consider
the weight of a single query keyword. But for TKCSKQ,
multiple users may submit the same keywords or
synonyms keywords, thus query keywords need to be
assigned different weights. We propose a keyword
similarity calculation formula based on the weight of query
keywords (shown in Formula 3). If 𝑡𝑡𝑖𝑖 represents the
keyword that both appear in the query keywords and object
keywords, 𝑤𝑤𝑖𝑖 is the weight of 𝑡𝑡𝑖𝑖, obtained by the number
of times 𝑡𝑡𝑖𝑖 ’s NKI appears in the query keywords. The
smaller the value calculated by Formula 1, the more
satisfied the query condition.

Finally, the goal of a TKCSKQ is to find top-k objects
with the smallest 𝑆𝑆𝑠𝑠𝑠𝑠(Q, o). Our problem can be defined as
Definition 1.
𝑆𝑆𝑠𝑠𝑠𝑠(Q, o) = 𝛼𝛼 𝐷𝐷(𝑄𝑄,𝑜𝑜)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
+ (1 − 𝛼𝛼)(1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑, 𝑜𝑜.𝜑𝜑)) (1)

𝐷𝐷(𝑄𝑄, 𝑜𝑜) = (dist(𝑞𝑞𝑖𝑖 . ρ, o. ρ))1≤𝑖𝑖≤𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚 (2)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑, 𝑜𝑜.𝜑𝜑) = 𝑤𝑤1+𝑤𝑤2+⋯+𝑤𝑤𝑖𝑖
𝑛𝑛𝑛𝑛𝑛𝑛(𝑄𝑄.𝜑𝜑)

 (3)
Definition 1 (TkCSKQ Retrieval) Given a dataset and a
TKCSKQ, find top-k objects ｛𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑘𝑘｝, such that
there does not exist o′that satisfies o′ ∉ {𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑘𝑘} and
𝑆𝑆𝑠𝑠𝑠𝑠(Q, o′) < 𝑆𝑆𝑠𝑠𝑠𝑠(Q, 𝑜𝑜𝑖𝑖) , 𝑜𝑜𝑖𝑖 ∈｛𝑜𝑜1, 𝑜𝑜2, … , 𝑜𝑜𝑘𝑘｝.

Ⅳ. SKNIR-TREE
Figure 1 is an example of eight spatial textual objects.

The left shows the locations of the objects. And the right
shows the keywords information, among them, keyword t2
and t5 are semantically synonymous.

To answer TKCSKQ efficiently, we introduce an
efficient hybrid index structure called SKNIR-tree, which
is an extension of IR-tree, as shown in figure 2. It can
efficiently standardize the nonstandard keyword into the
NKI, to ensure the accuracy and efficiency of the query.

SKNIR-tree normalizes the keywords by maintaining a
relational table (shown at the bottom left of Figure 2) and

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 110 -

http://www.sciencedirect.com/science/article/pii/S0020025516313809?via%3Dihub#bib0045

identifies it with an integer number called NKI. The
synonymous keywords will be translated into the same
NKI. The application scenarios (e.g., multiple users who
are in different corporates dine) TKCSKQ process involve
the keywords such as fast food, open-air restaurants and
other tabbed keywords, and the number of tabbed
keywords is always fixed. Therefore, NKI can be
determined in advance, and it is easier to correspond the

Fig.1 Spatial textual objects

Fig.2 SKNIR-tree

normal keywords to the NKI. Although it is laborious, but
only need to be done once. To speed up the query of
keywords in the relational table, we use trie (shown at the
left above of Figure 2) to organize nonstandard keywords.
In the trie, we store an English letter in each node in
addition to the root node, each keyword can be accessed
through a unique path following its letter order. Each leaf
node’s form in trie is (key, P), where key is a keyword,
and P is a pointer to the keyword in the relational table.
During the query process, we start from the root node in
trie, then in the root node’s sub-nodes, hash technology is
used to query the node location of the first letter of the
keyword, until finding the last letter. The trie uses hash
technology to store and query the location of the nodes,
thus the query efficiency is high.

We did a proper transformation based on IR-tree to fit
TKCSKQ (shown at the right of Figure 2). In the inverted
file, NKI replaces the original object keyword. Each leaf
node contains entries of the form (op, o.r, IFp), where op
is the pointer to the object o, o.r is the bounding rectangle
of o, and IFp is the pointer to the inverted file. The inverted
file contains two main components: first, all distinct NKIs
appearing in the corresponding objects; second, posting
lists for each NKI nki that is a sequence of identifiers of
the objects whose NKIs contain nki. Each non leaf node
contains entries of the form (nps, r, IFp), where nps is the
pointer to the child nodes, r is the minimum bounding
rectangle of all rectangles in entries of the child node, and
IFp is the pointer to the inverted file.

Figure 2 gives an example of SKNIR-tree for the objects
in Figure 1. In the relational table, the nonstandard
keywords are standardized into digital tags, and both t2 and

t5 are normalized to 3 because they have the same meaning.
The R tree is constructed according to the locations of the
objects, and the NKI inverted files are constructed for each
node.

Here we describe the construction of the SKNIR-tree, as
shown in the algorithm 1. The overall NKI is pre created,
and then the keywords that appear in the dataset are
identified with the corresponding NKI (line 1-5). Then
insert the (keyword, NKI) into the relational table (line 7),
and insert the nonstandard keywords and their address in
the relational table into the trie (line 8). Finally, we call the
algorithm Insert in IR-tree [2] to insert the object. It is
worth noting that the insertion parameters of the SKNIR-
tree are the minimum bounding rectangle of the object and
the NKIs (line 10).

Algorithm 1：IndexBuilding(o)
1. for each o
2. for each keyword t in o
3. identifying t with NKI
4. end for
5. end for
6. for each nonredundant t
7. insert (t,NKI) to a relational table
8. insert t to trie
9. end for
10. Insert(MBR,NKIs)

Ⅴ. PROCESSING TKCSKQ
In this section, two Baseline algorithms are first

proposed. Then, based on SKNIR-tree, an efficient
algorithm for TKCSKQ processing is proposed.

A. Baseline Algorithms
Baseline 1 Unite Subquery (US). Traditional spatial

keyword queries are submitted by a single user, and return
the objects that theirs locations are near the query point and
theirs texts are highly similar to the query keywords.
TKCSKQ is submitted by multiple users, including
multiple query locations and multi-group query keywords,
and return the objects that theirs locations are near the
multiple query points and theirs texts are highly similar to
the multi-group query keywords. Intuitively, a brute force
approach is to process each subquery qi in Q using
traditional query processing technology independently,
and merge all the results returned by the subqueries.
Obviously, this approach will lead to high processing cost.
First, the same node will be accessed repeatedly in
different subqueries. Second, we need to keep the number
of the result of each sub-query sufficiently large, to ensure
the merged result contains the top-k.

Baseline 2 First Space Then Text (FSTT). This
algorithm uses Formula 3 and relational table to calculate
the text relevancy of all objects based on the inverted file.
The calculation result is denoted as TRank. Then through
extending the method of searching neighbor objects [18],
the algorithm incrementally finds neighbors that are
closest to multiple users using R-tree, and maintains top-k
result through calculating neighbors’ spatial textual
relevancy based on Formula 1. The algorithm keeps track
of the maximum text relevancy in TRank, denoted by
MaxT that has not been calculating so far. For a newly
calculated object in R-tree, if the combined score

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 111 -

computed from its location and MaxT exceeds kth result
object, the Algorithm stops since it is guaranteed that all
un-calculated objects will not have a lower score than the
current kth result object.

B. TKCSK Algorithm
In this section, we propose the TKCSK algorithm to

processing TKCSKQ. The algorithm maintains a priority
queue that stores minimum spatial textual relevancy
between Q and SKNIR-tree nodes. The relevancy
calculation function is shown in Formula 4. min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N)
is the relevancy between Q and the node N. And the
relevancies between Q and the objects in minimum
bounding rectangle of node N are all greater than
min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N). We give the formal definition in Theorem
1, and give the proof. The priority queue is arranged from
small to large. The algorithm iterates over the elements
from the head, and calculates the min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) of its child
nodes, then inserts them into the queue. If we get an object
from the head of the queue, then the object is the one of
the top-k. Until we get the all top-k result, the algorithm
stops. Other nodes and objects in the priority queue do not
need to be accessed and calculated to achieve the purpose
of fast pruning search space and improving query
efficiency.
min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) = 𝛼𝛼 𝐷𝐷(𝑄𝑄,𝑁𝑁)

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
+ (1 − 𝛼𝛼)(1 −

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑,𝑁𝑁.𝜑𝜑)) (4)
Theorem 1 Given a TKCSKQ Q and a node N of SKNIR-
tree, and the minimum bounding rectangle of the node N
contains the objects os, then ∀o ∈ os (min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) ≤
 𝑆𝑆𝑠𝑠𝑠𝑠(Q, o)).
Proof. dist(𝑞𝑞𝑖𝑖 . ρ,𝑁𝑁) ≤ dist(𝑞𝑞𝑖𝑖 . ρ, o. ρ) , then

(dist(𝑞𝑞𝑖𝑖 . ρ,𝑁𝑁))1≤𝑖𝑖≤𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚 ≤ (dist(𝑞𝑞𝑖𝑖 . ρ, o. ρ))1≤𝑖𝑖≤𝑛𝑛

𝑚𝑚𝑚𝑚𝑚𝑚 ,
𝐷𝐷(𝑄𝑄,𝑁𝑁) ≤ 𝐷𝐷(𝑄𝑄, 𝑜𝑜). And because the node N contains all
the keywords of the objects os, 1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑,𝑁𝑁.𝜑𝜑) ≤
1 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑄𝑄.𝜑𝜑, 𝑜𝑜.𝜑𝜑) . In summary, min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) ≤
𝑆𝑆𝑠𝑠𝑠𝑠(Q, o).

The algorithm’s pseudocode is shown in Algorithm 2.
First of all, we transform the query keywords from
multiple users into NKIs, and sort NKIs (line 2-7). Then
we calculate the number of time each NKI appears as the
weight of the NKI (line 8). The algorithm maintains a
priority queue U which is arranged from small to large
according to 𝑆𝑆𝑠𝑠𝑠𝑠, and firstly the root node of the SKNIR-
tree is stored in U (line 9-10). If U is not empty and the
number of result is less than k (line 11), the algorithm
iteratively checks the first element E in U. If E is an object,
it is returned as a top-k result. If E is a leaf node, we
compute the 𝑆𝑆𝑠𝑠𝑠𝑠(Q, o) of E’s objects and push them into U.
If E is a non leaf node, we compute the min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N) of
E’s child nodes and push them into U. (line 12-23).

Algorithm 2：Search(index R, TKCSKQ Q)
1. Result ← ∅
2. for each 𝑞𝑞𝑖𝑖 .φ
3. for each keyword t
4. Q.NKIs.add(t->NKI)
5. end for
6. end for
7. sort(Q.NKIs)
8. Q.NKI.w ← count(Q.NKI)
9. U ← EmptyPriorityQueue

10. U.push(R.root,0)
11. while U is not empty and Result.length<k
12. E ← U.pop()
13. if E is an object
14. result.add(E)
15. else if E is a leaf node
16. for each object o in the leaf node
17. U.push(o, 𝑆𝑆𝑠𝑠𝑠𝑠(Q, o))
18. end for
19. else
20. for each node n in E
21. U.push(n, min𝑆𝑆𝑠𝑠𝑠𝑠(Q, N))
22. end for
23. end if
24. end while

Ⅵ. EXPERIMENTS

A. Experimental Setting
The experiment is performed on ThinkPad T450, with

the following configuration: CPU: Intel (R) Core (TM) i5-
5200U CPU @ 2.20GHZ, RAM: 6G, Hard disk: 500G,
Operation System: Windows 10. All algorithms of the
experiment are implemented in Java, and the integrated
development environment is IntelliJ IDEA Community
Edition 14.0.2.

We use the yelp_academic_dataset_business dataset [17]
provided by the Yelp web site in the experiments. It
collects 85,901 restaurants from 11 cities in 4 countries.
Each line in the dataset records a restaurant’s information
which contains 31 items, such as merchant identification,
address, latitude and longitude, classification etc. We use
latitude and longitude as object location and use
classification as object keywords. We also extend the
dataset by the method of random sampling based on the
original dataset. Because the keywords in the dataset do
not have synonymous keywords, we randomly select
multi-group 2-4 keywords as synonymous keywords.

The existing technologies about spatial keyword query
cannot deal with TKCSKQ. Thus we only compare our
TKCSK algorithm with two Baseline algorithms proposed
in the 5.1 section. We normalize the object keywords and
then put it into memory in FSTT algorithm in advance.

B. Performance Evaluation
We compare TKCSK algorithm with two Baseline

algorithms in two aspects of query efficiency and IO cost,
and the IO cost is measured by the number of objects
accessed. In the following, n is the number of users, k is
the number of results, and α is the user's preferences on
spatial proximity and keywords relevancy.

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 112 -

a) query time

b) IO

Fig.3 Effect of n
(1) Effect of n

Here, we fix k at 10, the number of query keywords
for each user at 3 and 𝛼𝛼 at 0.5. Fig.3 shows the impact of
different number of users on query time and IO cost.
Because each subquery in the US algorithm will access
the index once, and each subquery needs to maintain a
result that is much larger than k to ensure the fusion result
including top-k, so the query time and IO cost of US
algorithm are much larger than that of TKCSK algorithm.
In the FSTT algorithm, all the object NKIs are stored in
memory, and the algorithm incrementally finds neighbors
that are closest to multiple users using R-tree. The
algorithm stops when the combined score computed from
its location and MaxT exceeds kth result. So the number of
object accessed is not much different from that of TKCSK
algorithm as shown in Fig.3(b). However, as each iteration
step of the algorithm needs to find the MaxT in TRank,
though it may not be needed every step, but it also causes
high cost, so the query time of FSTT algorithm is greater
than that of TKCSK. In addition, the number of subqueries
increases with the increase of n in US algorithm, so as
shown in the figure, both the query time and the IO cost
increase. The increase of n does not affect the pruning rate
of TKCSK and FSTT algorithms, so as shown in the figure,
with the increase of n, the query time and IO cost of
TKCSK and FSTT algorithms are almost unchanged.

a) query time

b) IO

Fig.4 Effect of k
(2) Effect of k

In this set of experiments, we evaluate the
performance of the three algorithms with a varying k
while fixing n at 3, the number of query keywords for
each user at 3 and 𝛼𝛼 at 0.5. As shown in Fig.4(a) and
Fig.4(b), the TKCSK algorithm has shorter query time
and smaller IO cost than two Baseline algorithms for all
values of k. With k increasing, as the number of results
increases, the amount of pruning will decrease
accordingly, so as shown in the figure, query time and IO
cost increase. And since the US algorithm needs to
maintain a larger value than k (experimental setting is 2
times), its growth rate is greater than that of TKCSK
algorithm and FSTT algorithm.

a) query time

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 113 -

b) IO

Fig.5 Effect of keywords
(3) Effect of the number of query keywords

Fig.5 shows the effect of the number of query
keywords for each user on query time and IO cost when
we fix k at 10, n at 3, and 𝛼𝛼 at 0.5. Specifically, TKCSK
algorithm has shorter query time and smaller IO cost than
two Baseline algorithms for all values of the number of
keywords. As shown in figure, query time and IO cost
remain unchanged with the number of query keywords
increasing, because the number of keyword queries does
not affect the pruning rate of the all algorithm.

a) query time

b) IO

Fig.6 Effect of α
(4) Effect of 𝛼𝛼

Fig.6 shows the effect of 𝛼𝛼 on query time and IO cost
when we fix k at 10, n at 3 and the number of query
keywords for each user at 3. Specifically, TKCSK
algorithm has shorter query time and smaller IO cost than
two Baseline algorithms for all values of the 𝛼𝛼. Recall that
α is used to adjust user’s preferences for spatial proximity

and keywords relevancy. The greater 𝛼𝛼 value is, the more
user cares about the location of results. The smaller alpha
value is, the more user cares about the keywords relevancy
of results. As shown in the figure, query time and IO cost
of US and TKCSK algorithms increase with the increase
of α. This is because the spatial differentiation is small and
the pruning rate using spatial proximity is small. For FSTT
Algorithm, because it firstly uses R tree to incrementally
calculate the object closest to multiple users, the change of
𝛼𝛼 will not affect algorithm’s termination condition,
therefore query time and IO cost of the FSTT algorithm do
not change with α increasing.

a) query time

b) IO

 Fig.7 Scalability
(5) Scalability

In order to evaluate the scalability of TKCSK, we
generate dataset from two million to ten million based on
the original dataset. The location of the generated object is
the random neighbors of the location of the object in the
original dataset, and the keyword is randomly obtained
from the keyword set in the original dataset. Fig.7 shows
the tendency of query time and IO cost of algorithms with
changing the amount of data when we fix k at 10, n at 3, α
at 0.5 and the number of query keywords for each user at
3. As shown in the figure, TKCSK algorithm is scalable
and better than two Baseline algorithms.

Ⅶ. CONCLUSIONS
In this paper, we study the problem of collaborative

spatial keyword top-k query (TKCSKQ), which aims to
find top-k objects that are close to multiple query points
and theirs texts have high relevancy with query keywords.
Because there are repeated and synonymous keywords in
query keywords, we design the keywords similarity

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 114 -

calculation formula based on the weight of query
keywords. To solve mismatch problem and efficiently
process TKCSKQ, we present an efficient query
processing algorithm that is based on a hybrid index called
SKNIR-tree. The algorithm prunes search space through
maintaining a priority queue and calculating the minimum
spatial and textual similarity of each node with the query
locations and query keywords, to quickly identify the
desired objects. Our experimental evaluation shows that
the proposed algorithm is efficient and scalable and
superior performance compared with two baseline
methods.

REFERENCES
[1] De Felipe I, Hristidis V, Rishe N. Keyword Search on Spatial

Databases[C]// IEEE, International Conference on Data
Engineering. IEEE Computer Society, 2008:656-665.

[2] Cong G, Jensen C S, Wu D. Efficient retrieval of the Top-k
most relevant spatial web objects[J]. Proceedings of the
Vldb Endowment, 2009, 2(1):337-348.

[3] Chen Y Y, Suel T, Markowetz A. Efficient query processing
in geographic web search engines[C]// ACM SIGMOD
International Conference on Management of Data, Chicago,
Illinois, Usa, June. DBLP, 2006:277-288.

[4] Cao X, Cong G, Jensen C S. Retrieving Top-k prestige-
based relevant spatial web objects[J]. Proceedings of the
Vldb Endowment, 2010, 3(1):373-384.

[5] Cao X, Chen L, Cong G, et al. Spatial Keyword Querying[M]//
Conceptual Modeling. Springer Berlin Heidelberg, 2012:16-29.

[6] Chen L, Cong G, Jensen C S, et al. Spatial keyword query
processing: an experimental evaluation[J]. Proceedings of
the Vldb Endowment, 2013, 6(3):217-228.

[7] De Felipe I, Hristidis V, Rishe N. Keyword Search on
Spatial Databases[C]// IEEE, International Conference on
Data Engineering. IEEE Computer Society, 2008:656-665.

[8] Zhang D, Tan K L, Tung A K H. Scalable Top-k spatial
keyword search[C]// International Conference on Extending
Database Technology. ACM, 2013:359-370.

[9] Zhou YH, Xie X, Wang C, GongYC, Ma WY. Hybrid index
structures for location-based Web search. In: Proc. of the CIKM.
New York: ACM Press, 2005. 155−162. [doi:
10.1145/1099554.1099584].

[10] Zhang DX, Chee YM, Mondal A, Tung AKH, Kitsuregawa M.
Keyword search in spatial databases: Towards searching by
document. In: Proc. of the ICDE. Washington: IEEE, 2009.
688−699. [doi: 10.1109/icde.2009.77] .

[11] Wu D., Choi B., Xu J., C.S. Jensen. Authentication of moving top-
k spatial keyword queries. IEEE Trans. Knowl. Data
Eng., 27 (4) (2015), pp. 922-935

[12] Ali M E, Tanin E, Scheuermann P, et al. Spatial Consensus Queries
in a Collaborative Environment[J]. Acm Transactions on Spatial
Algorithms & Systems, 2016, 2(1):3.

[13] Zhang J, Meng X, Zhou X, et al. Co-spatial Searcher: Efficient Tag-
Based Collaborative Spatial Search on Geo-social Network[C]//
International Conference on Database Systems for Advanced
Applications. Springer-Verlag, 2012:560-575.

[14] Cao X, Cong G, Jensen C S, et al. Collective spatial keyword
querying[C]// ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June. DBLP,
2011:373-384.

[15] Zhang P, Lin H, Yao B, et al. Level-aware Collective Spatial
Keyword Queries ☆[J]. Information Sciences, 2016, 378(C):194-
214.

[16] Long C, Wong C W, Wang K, et al. Collective spatial keyword
queries: a distance owner-driven approach[C]// ACM SIGMOD
International Conference on Management of Data. ACM,
2013:689-700.

[17] https://www.yelp.ca/dataset_challenge/dataset
[18] G. R. Hjaltason and H. Samet. Distance browsing in spatial

databases. ACM Trans. Database Syst., 24(2):265–318, 1999.

AIS 2017 • 12th International Symposium on Applied Informatics and Related Areas • November 9, 2017 • Székesfehérvár, Hungary

- 115 -

https://www.yelp.ca/dataset_challenge/dataset

	Ⅰ. Introduction
	Ⅱ. Related work
	Ⅲ. Problem Statement
	Ⅳ. SKNIR-Tree
	Ⅴ. Processing TkCSKQ
	A. Baseline Algorithms
	B. TKCSK Algorithm

	Ⅵ. Experiments
	A. Experimental Setting
	B. Performance Evaluation

	Ⅶ. Conclusions
	References

