
Graph Algorithm Design for a Local

Transportation Application

K. Zsobrák * and L. Gugolya**
* Óbuda University – Alba Regia Technical Faculty, Székesfehérvár, Hungary

*zsobrak.krisztian@gmail.com

**gugolya.laszlo@amk.uni-obuda.hu

Abstract—In our modern world, the importance of mobile

applications is increasing. These apps can improve our

comfort, we can obtain the needed information faster,

independently from our location. Such applications use

more complex mathematical algorithms, like graph theory,

and therefore graph algorithms.

A special graph build algorithm will be presented in this

paper, which is based on local bus transportation of

Székesfehérvár. The purpose of this algorithm is to find the

best route from the start bus station to the destination, even

by using multiple bus lines. The bus schedule is stored in a

database, in a specified format. The graph is created from

this data, by an algorithm described in this paper. The

search can be performed in this graph, which results in a

path that contains the bus travel information. The difficulty

of such route-finding algorithms, that it has to operate in

both space and time dimensions, because moving from a

location to another can only be performed in specified times.

I. INTRODUCTION

In our fast world we need applications, that makes our
life easier. With these software we feel, we are not
required to remember unnecessary information, because
when we need that, it is available on our mobile device.
Therefore, it came to our mind, we implement a route-
search, route-plan application based on existing similar
solutions, but for Székesfehérvár’s local transportation.

At now, one can get the information of lines by a static
website of KNYKK Company (Fig. 1).

Figure 1. – Static line’s information of Székesfehérvár

Another interface is a map based route planner, where
the user can select the start and the finish bus stop on the
map. (Fig. 2)

Figure 2. – Map based route planner of Székesfehérvár

But this website is not optimized to mobile devices and
tablets, therefore it falters, and drastically slow on them.
Also it is not responsive, and not suitable for use on the
go.

Our example to follow is the BKK Futár solution,
thanks to its clean design and useful functions. The Futár
has a website and a mobile application, both with similar
functionality for the users. It not forces the user to select
the start and finish station on the map, but he or she can
enter it into a text field. It can also search by street
addresses.

Figure 3. – Screenshot of BKK Futár website.

We choose to implement the application to Android
operation system, therefore Java language and SQLite
database is required.

II. TRANSPORT INFORMATION SERVICES

Passenger information services, for example dynamic
route-planning applications are designed to inform people
about when and which line should they take. The base of
this paper is the local transportation of Székesfehérvár,
where only bus is available.

Generally, three parameters are required for the route-
planner algorithm in order to generate useful data for the
user: The departure location, the destination, and the
departure time. The output of the algorithm is a list, from
which the user can select the best. This has to contain the
departure and destination time, the used lane’s name, and
when and where he or she should change.

Google Maps is capable of planning local transportation
trips, and this feature is also available on mobile devices.
The necessary GTFS based database have to be uploaded
to the Google servers, and this function is accessible to
everyone. But this software can be slow on older devices,
which are not designed to have the requirements of the
new versions of Google’s software. The application
mentioned in this paper (extended by many search
optimization) can be faster on these devices, and
independent from having an internet connection.

AIS 2016 • 11th International Symposium on Applied Informatics and Related Areas • November 17, 2016 • Székesfehérvár, Hungary

- 132 -

III. DATABASE PLAN

To create this search algorithm, the schedule data must
be stored in a database. Nowadays a very popular
transportation data format is the GTFS (Google Transit
Feed Specification), which is very comprehensive, and
can store complex schedules. Compared to
Székesfehérvár’s simple bus based transportation, it is
easier to store data in the following database structure, but
it is easily convertible to GTFS, which I plan to do after
the schedule is fully uploaded.

A. Stations, Bus Stops

A station has a name, which is known by the
passengers, and this appears in the schedule. A stop is a
place, where the bus actually stops, and people can get on
or off. The schedule does not contain the stops, but it has
to be stored in order to display it on map. Because often
multiple stops are belonging to a station, they create a 1:N
relation. These are stored in the following relational
database tables:

 Stations:

o id

o name

 Stops:

o id

o stationid

o coordinate

B. Lanes and Lines

In Székesfehérvár people know bus lines by their
number, which starts from 10, and ends with 44. They
usually on the same route back and forth, but there are
exceptions like fast lines, and circle lines. A line may
include multiple lanes.

 Line
Contains multiple lanes, has a publicly known
number, such as 10, 11, 15. This data will be
displayed to the user.

 Lane
A lane has a well-defined path with station
names, and times but there is no public
identification for it. For example: Train station
– Metal industry – Bus station. At least one
lane is assigned to a line

They database structure is the following:

 Lines

o id

o name

 Lanes

o id

o laneid

o mark

o description

C. Paths

A path of a lane is simply the list of the stations where
it stops, and the time it takes to get there from the
departure time. These lists will be stored in a single table,
because filtering by lane or station is easier.

 Path

o id

o laneid

o stationid

o minute

D. Departure times

The buses on lanes depart on specified times. These are
always given in an hour-minute format. Smaller or larger
time unit are unnecessary. For the simplicity, it is easier to
store this time value in the number of minutes from
midnight. If a p time is equal to h hours and m minutes,
then p equals to h times 60 plus m.

 Departure

o id

o laneid

o time

o daytype

IV. A SAMPLE SCHEDULE

Because Székesfehérvár’s schedule is complicated,
here’s a sample one (Fig. 4), in order to visualize the
methods in this paper.

Figure 4. – A sample city

This sample city has 6 stations, labelled from A to F.
There are two lines: 10 and 20. Each line has two lanes,
one going forward, and the other backwards. The goal is
to create an algorithm, that can easily find a route from
station A to F.

A. Schedule

This is a list of the lines and lanes of the sample
schedule. The list of stations and minutes are in pairs,
showing the required time by the bus to get to that station
from the departure time, in minutes.

 Line 10:

o Lane 10-f:

 Stations: A, B, C, D

 Minutes: 0, 2, 6, 8

 Departs: 8:00, 8:20

o Lane 10-b:

 Stations: D, C, B, A

 Minutes: 0, 2, 6, 8

 Departs: 8:10, 8:30

 Line 20:

o Lane 20-f:

 Stations: E, B, F

 Minutes: 0, 2, 6

AIS 2016 • 11th International Symposium on Applied Informatics and Related Areas • November 17, 2016 • Székesfehérvár, Hungary

- 133 -

 Departs: 8:05, 8:25

o Lane 20-b:

 Stations: F, B, E

 Minutes: 0, 4, 6

 Departs: 8:15, 8:35

From now on, I will use this sample data in the
examples.

V. BUILDING THE GRAPH

Graphs in discrete mathematics, more specifically in
graph theory, are mathematical abstractions, which
contains two sets, nodes and edges, where a pair of nodes
are interconnected by edges. A large number of graph
types are extension of this definition. For example, a
directed graph has edges, which node pairs are ordered,
therefore a direction is assigned to it. The nodes and edges
have a unique identification, usually natural numbers. This
leads to assign multiple records of information to a graph
object. This thesis defines this kind of graphs.

We know where a bus will be at any given time from
the schedule. To display the location simpler, only one
dimension is required, which will be the station
identification number. Timeliness also requires only one
dimension; which metric is the minute. These values are
easier to present in a two-dimensional grid (Fig. 5).

Figure 5. – Default grid

First add the nodes. We know the departure time, and
where and when will the bus stop. For example, let’s take
lane 10-f, at 8:00 from the sample schedule. It departs
from station A at 8:00. It takes 2 minutes to get to station
B, therefor it is in B at 8:02, and so on. Add these nodes to
the grid (Fig. 6.).

Figure 6. – Grid with a line’s nodes

Connecting these nodes with directed edges will mean,
that one can travel by bus between these points in space
and time, but only in forward direction. The edges must
contain the bus lane id data, and its weight, which is its
time dimension length.

Then add all the nodes by iterating through all of the
departure times, and connect them likewise. After that we
got the full map of bus lines. (Fig. 7.)

Figure 7. – The map of bus lines

Apart from that the figures are in a grid, this is a regular
directed graph, with information assigned to its edges and
nodes. But this is yet incomplete. For creating a simpler
search algorithm, the graph must be extended by adding
edges that connect station nodes in a chronologically
ascending order. (Fig. 8.) These will represent the waiting
at a station.

Figure 8. - The extended graph by the waiting edges

An example: Travel from station A to station F could
not be done without change at station B. The shortest path
would be node 0, 1, 17, 18.

VI. GRAPH SEARCH

At the beginning of the search, the algorithm knows the
start and finish station, and start time, but does not know
the start nor the end node. For the better performance, a
trip-end-time must be created, which the search algorithm
cannot exceed. For example, 90 minutes from the start
time. The start node is easier to find, because it will be the
first that has the department station as station data, and its
time data is greater or equals to the department time. The
algorithm must try multiple start nodes between the start
and end time to get better results.

When a start node is selected, a non-informed search
has to find the nearest node, which has the arrival station
as station data. The nearest node has the lowest weight
path from the start node. This could be done by breadth-
first search, or depth-first search.

However, this algorithm has to be fast with relatively
low memory complexity, due to the mobile environment.
Series of optimization has to be done on the graph build,
the search algorithm, and the model of classes.

VII. CONCLUSION

In this solution, the mobile app is independent from
other route planning services, efficient in offline mode,
and gives more freedom for the developer. The application
can be lightweight, and free from unnecessary services.
But a possible drawback could be the lack of integration
with other applications.

There are multiple designs for the search algorithm, that
give the best route for the user, but they have to be

AIS 2016 • 11th International Symposium on Applied Informatics and Related Areas • November 17, 2016 • Székesfehérvár, Hungary

- 134 -

implemented and tested for memory and time complexity.
Numerous optimization methods are planned, but these
will be significant, when the full 100 lane schedule of
Székesfehérvár is uploaded to the database, also which
size is yet unknown. Based on the performance on mobile
devices, the location of the calculation has to be taken into
considered too. A device-based method gives the feature
of offline route-planning, but the database has to be copied
on modification. The server-based has the benefit of
reliable calculation time, and address geocoding for
departure or destination location, but slow internet
connection can greatly affect the performance.

REFERENCES

[1] M. Braga, M. Y. Santos, A. Moreira, “Integrating Public
Transportation Data: Creation and Editing of GTFS Data”, New
Perspectives in Information Systems and Technologies, Volume 2,
2014, pp 53-62

[2] T. Teorey, S. Lightstone, T. Nadeau, H. V. Jagadish, Database
Modeling and Design: Logical Design, 2011

[3] R. J. Trudeau, Introduction to Graph Theory, 1993

[4] I. Fekete, T. Gregorics, S. Nagy, Bevezetés a mesterséges
intelligenciába, [Introduction to Artificial Intelligence] 2006

AIS 2016 • 11th International Symposium on Applied Informatics and Related Areas • November 17, 2016 • Székesfehérvár, Hungary

- 135 -

