Szandtner Zoltán⁹⁰⁴: Új kutatások a félvezető memóriák technológiája és architektúrája területén

Bevezetés

Az Intel "Platform 2015"-ös előrejelzésében a szivárgási áramok okozta hőtermelés után a főtár a processzorhoz képest sokkal nagyobb elérési idejét tartották a számítási teljesítmény növekedés legnagyobb gátjának (1). Ezen problémát szokás "memóriafalnak" is hívni.

A dolgozat elején egy rövid áttekintést nyújtok a jelenleg fejlesztés alatt lévő, érett memóriatechnológiákról, megmutatom, hogy a fejlődés mely irányok mentén zajlik, összehasonlítom ezek főbb jellemzőit a "memóriafal" probléma által felvetett követelmények jegyében.

A technológiák közül az STT-RAM-on részletesebb, szimulációs vizsgálatot végeztem, mind az alkatrész, mind az architektúra szinten, ismertetve a használt eszközök és a mérések jellegzetességeit. A kapott eredmények alapján meghatároztam az STT-RAM nyújtotta memória architektúrák lehetséges képességeit a hagyományos SRAM, DRAM technológiákkal összevetve.

Új memória-technológiák

Technológiai vonalon, három fő ágra bonthatjuk a fejlesztéseket:

- Meglévő technológiák finomítása
- Előrehaladt kutatások alkalmazása
- Új alapkutatások felhasználása

Áttekintésemben a fenti technológiák közül csak a meglévő és előrehaladt kutatásokra térek ki.

A meglévő technológiák finomítása úgymond "kondenzátormentes", kapacitív dinamikus memóriákat jelent, a TTRAM-ot (*Twin Transistor RAM*) és a T-RAM-ot (*Thyristor RAM*). A TTRAM két *SOI*-n (*Silicone On Insulator*) létrehozott sorba kapcsolt tranzisztorból áll. A második a tranzisztor a kondenzátor szerepét tölti be, a közé a szigetelő közé "szorult" töltést kihasználva (2). A T-RAM a tirisztor természetes *NDR* (*Negative Differential Resistance*) karakterisztikáját használja (3). A gyors "programozhatóságot" a kapura kötött parazitív-kondenzátor teszi lehetővé (4) (5).

Az előrehaladt kutatások mind változtatható ellenállású alkatrészek. Az STT-RAM (*Spin-Transfer Torque RAM*), a névadó spinnyomaték-átvitel (*STT*) mechanizmust használja egy szabad mágneses réteg polaritásának változtatására. A kiolvasás elve megegyezik a magneto-rezisztoros olvasófejekével. Az RRAM (*Resistive RAM*) a változtatható vezetésű ellenállás segítségével tárol információt. Formázással szálvezetést hozunk létre, amit *reset*-tel részben megszüntetünk. Ezután már kisebb feszültséggel lehet vezetést létrehozn (6).

A memória-technológiák összehasonlítása

A memória-technológiák összehasonlítását cella szinten érdemes elkezdeni, mivel tömb vagy bank szinten már a kapcsolóhálózat is nagymértékben befolyásolja a működést. Cella szinten az írási és olvasási műveletek közti időkülönbség már jelentős lehet, s tipikusan az utóbbi lassabb. Összehasonlító táblázatomban ezért elérési idő helyett a kapcsolási időket írtam. A kapcsolási idő az az idő mialatt a cella tároló elemei állapotot váltanak, azaz a $0 \rightarrow 1$ és $1 \rightarrow 0$ írási műveletek ideje. A két művelet eltérő időigényű is lehet. (1. táblázat)

⁸²⁰

⁹⁰⁴ mérnök informatikus hallgató, Gábor Dénes Főiskola

Memória	SRAM (7)	DRAM (7)	TTRAM (2)	T-RAM (4) (5)	SST-RAM (8)	RRAM (6)
Kapcsolási idő	0,5 ns	2–10 ns	2–10 ns	0,7 ns	0,5–20 ns	5–10 ns
Üzemmód	statikus	dinamikus	dinamikus	dinamikus	perzisztens	perzisztens
Alkarész/cella	6Т	1T1C	1T1T	1Tir	1T1R	1T1R
Frissítési idő	N/A	≤64 ms	64–2000 ms	266–1500 ms	N/A	N/A
Írható/bit	∞	∞	8	∞	>10 ¹³	10 ⁶ -10 ¹⁰
Maximum kapacitás/chip	64 KB–16 MB	4–8 GB	nem ismert	nem ismert	4–16 MB	1 TB

1. táblázat: Új memória-technológi

Jelen kutatás kritériumai szerint a TTRM és utódja, a Z-RAM technológiák kis jelszint különbségük miatt meghaladottak, de egy esetleges energiafogyasztást is vizsgáló kutatásban még jól szerepelhetnek. Egyszerűsége, sűrűsége és sebessége folytán a T-RAM rendkívül ígéretes akár főtár akár cache-ként. Sajnos a technológiáról több éve nem született új cikk, így további vizsgálata nem volt lehetséges.

A másik két technológia perzisztens természete folytán további előnyökkel is járhat. Közülük az RRAM olcsóbb, várhatóan nagyobb kapacitású, de csak 10⁶–10¹⁰ írást visel el bitenként, szemben a drágább STT-RAM >10¹³ értékével, ezért az STT-RAM alkalmasabb DRAM alkalmazásokhoz, míg az RRAM háttértárként sokkal gazdaságosabb.

A fenti okokból az STT-RAM volt a legígéretesebb technológia mélyebb vizsgálatra.

Az STT-RAM működése

Az STT-RAM az MRAM (Magnetoresistive RAM) második generációja.

Az MRAM-ban, az adatot egy mágneses alagútkontaktus (*Magnetic Tunneling Junction* = MTJ) mágneses rétegeinek polarizációja hordozza. Az MTJ egy szigetelő réteggel elválasztott rögzített és egy szabad mágnesezettségű rétegből áll (1. ábra - a.).

1. ábra: Egyszerűsített STT-RAM cella [8]

Párhuzamos polaritás (R_p) esetén alacsony, az ellentétes polaritás (R_{ap}) esetén magas az eszköz ellenállása (1. ábra - b). A különféle MTJ-ket szokás alagutazó mágneses ellenállás arányukkal is jellemezni (*Tunneling Magnetoresitance Ratio* = TMR, 1. ábra - d.). Leszámítva, hogy kondenzátor helyett MTJ-t használunk, a memória cella felépítése megegyezik a DRAM-éval. A legegyszerűbb kiolvasás itt is referenciacellák használatával történik (1. ábra – c), de a DRAM-mal ellentétben feszültség helyett áramerősséget mérünk.

A második generációs MRAM, az STT-RAM az első generáció közvetlen indukciója helyett az STT jelenséget használja, ahol egy rögzített mágnesezettségű, szerepe miatt gyakran spin szűrőnek is nevezett mágneses rétegen áthaladó áram spin polarizálttá válik, s képes lesz a vékony, szabad réteg mágnesezettségének kilendítésére, irányváltására. Mivel az írás indukció helyett áram segítségével történik, ez nem befolyásolja a környező cellák állapotát. További előny, hogy az új cella feszültség és áramerősség értékei CMOS kompatibilisek, ami nagyban felgyorsította a fejlesztéseket.

Mérések menete

Az új eszközök litográfiás gyártása meglehetősen drága, ezért a szimulációs eszközök használata ma már a fejlesztéseknek is integrált része. Az architektúra szintű szimulációs eszközök az alacsonyabb szintű szimulációk, mérések eredményeit bemenő paraméterként használják így először cella szintű méréseket kell végezni.

Méréseim elsősorban a University of Virginia, "The STeTSiMS: STT-RAM Simulation and Modeling System" (STeTSiMS) cikkében közölt alkatrész adatokra támaszkodnak (9). Ennek oka, hogy a tanulmány rendszerezve és egymáshoz képest normalizálva tartalmazza a mérésekhez szükséges bemeneti paramétereket, melyeket az irodalom jelentős része csak hiányosan és modellezési sajátosságokból adódóan nem összehasonlítható formában közöl.

Az áramkör szimulációban a Berkeley SPICE és változatai gyakorlatilag etalonnak számítanak, így cella szintű méréseimet én is egy ilyen eszközzel, az NVMSpice szoftverrel végeztem (10).

Ezt követően a STeTSiMS adatokat felhasználva NVSim méréseket szeretnék végezni. Akárcsak az STeTSiMS-ben használt CACTI 6.3, az NVSim is egy statikus memóriaarchitektúra-modellező eszköz. A CACTI-val ellentétben a Penn State University munkatársai által fejlesztett NVSim képes olyan paraméterek finomhangolására is, amikre a CACTI csak az SRAM/DRAM rögzített ipari paramétereit tudja használni (11).

A SPICE mérések fizikai modellje

A mérésekhez az NVMSpice beépített kompakt modelljét használtam (12), de a modell paramétereink megértését nagyban segíti a SPICE modell alapját képező fizikai modell ismerete.

A szabad réteg mágnesezettségét (M) a szakirodalomból ismert Landau–Lifshitz–Gilbert (LLG) egyenlet írja le (13) :

Zeeman Anizotróp Csillapítás STT

$$\frac{d\vec{M}}{dt} = -\gamma \mu_0 \vec{M} \times \vec{H}_{eff} - \gamma \frac{2k}{M_s^2} (\vec{M} \cdot \vec{u}_{ea}) \cdot (\vec{M} \times \vec{u}_{ea}) + \frac{\alpha}{M_s} \vec{M} \times \frac{d\vec{M}}{dt} + \eta \frac{\mu_B l}{eV}$$
(1)

$M_s =$ mágneses saturáció, eszközjellemző	\vec{H}_{eff} = effektív külső mágneses tér
$\gamma = 1.76 \cdot 10^{11} \frac{raa}{s^T}$ giromágneses állandó	K = anizotrópia konstans, anyagjellemző
$\mu_0 = 4\pi \cdot 10^{-7} \frac{H}{m}$ vákuum permeabilitás	$\alpha = csillapítási konstans$
$\mu_B \approx 9.27 \cdot 10^{-24} \frac{J}{T} = $ Bohr magneton	$\eta \approx 1 = \text{spin-atviter hatastoka}$ $e \approx 1,6 \cdot 10^{-19} = \text{elemi töltés}$

Mivel a mágnesezettség nagysága nem, csak iránya változik, a fenti egyenletet felírhatjuk polárkordinátákkal is. Egyrészt, a hasznos munkát végző, θ szöggel jellemzett kapcsoló komponensre $M_s \frac{d\theta}{dt} = \alpha M_s \frac{d\varphi}{dt} + \eta \frac{\mu_B I}{\epsilon V}$ (2) másrészt a ϕ szöggel jellemzett forgató komponensre bontjuk az LLG egyenletet: $M_s \frac{d\varphi}{dt} = -\gamma \mu_0 M_s H sin\theta - 2\gamma K sin\theta cos\theta$ (3) A felbontás azért hasznos, mivel a θ szög a legjobb paraméter, amiből az eszköz belső állapotára következtethetünk. Az írás csak akkor sikeres, ha a szabad réteg mágnesezettsége átbillent és stabilizálódott és θ ezt jellemzi. Az MTJ ellenállása a belső állapoton kívül, még rákapcsolt feszültségtől és a függ (10):

$$R(\theta) = R_p + \frac{R_{ap} + R_p}{2} (1 - \cos\theta)$$

$$\left(\begin{array}{c} R_p(V) = \frac{R_p}{1 + c_p V^2} \end{array} \right)$$
(4)

$$\begin{cases} R_{ap}(V) = \frac{R_{ap_0}}{1 + c_{ap}V^2} \end{cases}$$
(5)

Az ellenállást leíró (4)-es és (5)-ös egyenletek paraméterei a következők:

 $\begin{array}{ll} R_p = {\rm p}{\rm \acute{a}rhuzamos} \; {\rm \acute{a}llapot} \; {\rm ellen\acute{a}ll\acute{a}sa}. & c_p = {\rm p\acute{a}rhuzamos} \; \; {\rm \acute{a}llapot} \; \; {\rm feszülts\acute{e}gar\acute{a}nyoss\acute{a}gi} \\ R_{ap} = {\rm ellent\acute{e}tes} \; {\rm \acute{a}llapot} \; {\rm ellen\acute{a}ll\acute{a}sa}. & {\rm t\acute{e}nyez\acute{o}je}. \\ R_{p_0} = R_p \; {\rm \acute{e}rt\acute{e}ke} \; 0 \; {\rm V}{\rm -n\acute{a}l}. & c_{ap} = {\rm ellent\acute{e}tes} \; \; {\rm \acute{a}llapot} \; \; {\rm feszülts\acute{e}gar\acute{a}nyoss\acute{a}gi} \\ R_{ap_0} = R_{ap} \; {\rm \acute{e}rt\acute{e}ke} \; 0 \; {\rm V}{\rm -n\acute{a}l}. & {\rm t\acute{e}nyez\acute{o}je}. \end{array}$

NVMSpice mérések

Az NVMSpice kompakt fizikai modellt használ, s ténylegesen az LLG egyenletet oldja meg. Mint minden SPICE eszköznél, a mérést netlistával írjuk le (2. ábra), amely a komplex alkatrészek modelljeinek és paramétereinek definíciójából és a kapcsolási rajz csomópontos leírásából áll. A mérésekhez használt netlistában egy elemi cella kapcsolási rajzát definiáltam (3. ábra). A használt MTJ alkatrész paraméterei következő módon feleltethetők meg a fizikai modell paramétereinek:

ms=M _s	hk = $H_k = \frac{2K}{K}$	$rl = R_{p_0}$	vcp = <i>c_p</i>
damping = α	$\mu_0 M_s$	$rh=R_{ap_0}$	vcap = c _{ap}

*MTJ modell és paraméterek 1.2V .model nv_perp sttmtj vcp=0 vcap=0 ms=530k hk=1671k rh=23k rl=14k damping=0.005 * tranzisztor modell .model nmos nmos level=54 version=4.7.0 MTJ * BL feszültség v1 nvdd 0 pwl(0 0 5ns 0 6ns 1.2v) * WL feszültség vcontrol g 0 pwl(0 0 4ns 0 5ns 1.2v) * tranzisztor kapcsolása m1 d g 0 0 nmos l=90n w=2u * MTJ kapcsolása, belső paraméter megadása n1 sttmtj nvdd d nvmmod2 theta0=0.01 **PWL**

2. ábra: NVMSpice mérés netlistája

3. ábra: NSVMSpice mérés kapcsolási rajza

4. ábra: ϑ változása az NVMSpice mérés során

*C*_{*p*}, *C*_{*ap*} parmétereket, így a mérés során eltekintettem az MTJ ellenállásának feszültségfüggésétől. A mérések során felfutó állandó feszültségű jelekkel vizsgáltam a cellát. A tranzisztort vezérlő feszültség a mérés kezdete után 5 ns-nál, az MTJ írófeszültség 6 ns-nál vesz fel stabil értéket. Diagramot készítettem az MTJ θ szög állapotáról (4. ábra). A diagramból

stabilizálódott, és hogy mekkora idő alatt zajlott le a folyamat. Háromféle eszközt vizsgáltam, egy eszközsíkbeli (*in-plane*), egy részben síkra merőleges (*in-plane PPA – Partial Perpendicular Anisotropy*) és egy síkra merőleges anizotrópiájút (*perpendicular*) (2. táblázat).

megállapítom, hogy θ átbillent és

Mivel a STeTSiMS paraméterek közt nem adtak meg cp, cap parmétereket, így a mérés során

	Normalizált paraméterek			NVMSpice SI mértékegységeire alakítva		
	In-plane	In-plane PPA	Perpendicular	In-plane	In-plane PPA	Perpendicular
hk	500 Oe	220 Oe	21 kOe	40 kA/m	17,5 kA/m	1671 kA/m
ms	1050 emu/cm3	808 emu/cm3	530 emu/cm3	1050 kA/m	808 kA/m	530 kA/m
α	0.02	0.015	0.005	0.02	0.015	0.005
rl	0.14 kΩ	0.57 kΩ	14 kΩ	0.14 kΩ	0.57 kΩ	14 kΩ
rh	0.36 kΩ	1.14 kΩ	23 kΩ	0.36 kΩ	1.14 kΩ	23 kΩ
Δ	60	60	61	60	60	61

2. táblázat: MTJ paraméterek (9)

A mérések során a STeTSiMS mérésektől részben eltérő eredményeket kaptam. A kapcsolás eléréséhez nagymértékben nagyobb író feszültséget kellett használjak. Ezt feltehetően az állandó ellenállás okozta, mivel így a feszültséggel fordítottan arányosan nem esett az ellenállás, ami miatt a szükséges áramerősséget csak jóval nagyobb feszültségek mellett érték el az eszközök. Az *in-plane* MTJ-nél legalább 2.1V, a *perpendicular* MTJ-nél egy nagyon magas 8–9V feszültséget kellett alkalmazzak.

A kapcsolási feszültség értékek oly nagymértékben tértek el a referencia mérésektől, hogy a három eszköz így már nem összehasonlítható és a használt modell pontossága is kérdésessé vált. Fölvettem a kapcsolatot az NVMSpice egyik fejlesztőjével, Yuhao Wanggal. Ő megerősítette, hogy az NVMSpice ugyan friss eszköz, de a használt diszkrét modell régebbi, így csak az *in-plane* eszköz szimulációjára alkalmas, ezért mérési eredményeimet csak erről az eszközről közlöm (5. ábra):

4. ábra: In-Plane MTJ kapcsolási ideje az író feszültség függvényében

A mért eredmények, még ennél az eszköznél is jelentős mértékben eltértek a STeTSiMS mérési eredményektől. Ennek oka a korábban említett feszültségarányossági tényezők mellett a hőmozgás okozta instabilitás hatásának elhagyása volt. A modellben ez csak θ szög kezdeti értékének növelésével közelíthető és a méréskor még nem találtam olyan összegfüggést, amely kapcsolatot teremtett volna a STeTSiMS Δ eszközjellemző paramétere és a kezdeti θ szög közt.

A fenti paraméterek, a kapcsolófeszültség értékét mind lefelé befolyásolják, így figyelembevételükkel várhatóan alacsonyabb feszültségértékek mellett is megtörténik a kapcsolás és az gyorsabban zajlik le.

NVSim mérések

Mivel a cella szintű mérésekkel nem sikerült a STeTSiMS méréseket reprodukálni, így még nem állnak rendelkezésre a szükséges SET, RESET áramerősség és idő értékek, ezért az architektúra szintű vizsgálatok előtt más publikált bemeneti paramétereket kell használni, vagy a cella szintű méréseket kell finomítani a STeTSiMS paraméterek helyett saját paraméterek használatával az eredeti fizikai MTJ alkatrész-paraméterekre támaszkodva.

Magának az NVSim-mel más paraméterekkel már végeztem példaméréseket, így egyedül a megfelelő bemeneti paraméterek akadályoztak meg a statikus architektúra szintű vizsgálatban.

Konklúzió

A kutatásom során:

- Irodalomkutatás segítségével összehasonlítottam a mai technológiákat.
- Cella szintű méréseket végeztem több különböző MTJ paraméterű szimulált eszközön.
- Megismerkedtem az NVMSpice és NVSim szimulációs eszközökkel és bennük az STT-RAM vizsgálatához szükséges modellek jellegzetességeivel.

A kutatás megteremtette a további vizsgálatokhoz szükséges mérési környezetet, s áttekintő jellege révén megkönnyíti a további hasonló kutatások folytatását, meghatározza melyek azok a kritikus paraméterek, amelyekre a szimulációs mérések során szükség van.

Akár minimális forrásokkal is nagyban növelhető a jövőben a kutatás eredményessége, ha ezek segítségével gyorsabb és közvetlenebb hozzáférést kaphatok a mindenkori friss irodalomhoz.

Irodalomjegyzék

- 1. R. M. Ramanathan and Vince Thomas (editors), Intel Corporation. *Platform 2015: Processor and Platform Evolution for the Next Decade.* s.l. : Intel Corporation, 2005. Whitepaper.
- 2. A High-Density Scalable Twin Transistor RAM (TTRAM) With Verify Control for SOI Platform Memory IPs. Arimoto, K., és mtsai. 11, hely nélk. : IEEE, 2007. Nov., Solid-State Circuits, IEEE Journal of, 42. kötet, old.: 2611,2619. doi: 10.1109/JSSC.2007.907185.
- 3. *Negative Differential Resistance Circuit Design and Memory Applications.* Chen, Shu-Lu, Griffin, Peter B. és Plummer, James D. 4, Electron Devices, IEEE Transactions on : IEEE, 2009. April, 56. kötet, old.: 634,640. doi: 10.1109/TED.2009.2014194.
- 4. *Embedded Volatile Memories*. Farid Nemati, CTO T-RAM Semiconductor Inc. IEEE International Conference for Computer Aided Design (ICCAD) 2008 : IEEE, 2008.
- 5. A novel capacitor-less DRAM cell using Thin Capacitively-Coupled Thyristor (TCCT). Cho, Hyun-Jin, és mtsai. Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International : IEEE, 2005. old.: 311,314. doi: 10.1109/IEDM.2005.1609337.
- 6. Sekar, Deepak C. *Resistive RAM: Technology and Market Opportunites.* MonolithIC 3D Inc : NuPGATM Corporation, 2010. IEEE Santa Clara Valley Electron Devices Society.
- 7. Intel Corporation. *Performance Analysis Guide for Intel® Core™ i7 Processor and Intel® Xeon™ 5500 processors*. 2008-2009. Performance Analysis Guide.
- 8. A Scaling Roadmap and Performance Evaluation of In-Plane and Perpendicular MTJ Based STT-MRAMs for High-Density Cache Memory. Chun, Ki Chul, és mtsai. 2, Solid-State Circuits, IEEE Journal of : IEEE, 2013. February, 48. kötet, old.: 598,610. doi: 10.1109/JSSC.2012.2224256.
- The STeTSIMS STT-RAM simulation and modeling system. Smullen, C.W., és mtsai. Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference on : IEEE, 2001. old.: 318,325. doi: 10.1109/ICCAD.2011.6105348.

- 10. Yu, Hao & Wang, Yuhao,. Chapter 3 Nonvolatile State Identification and NVM SPICE. *Design Exploration of Emerging Nano-scale Nonvolatile Memory.* New York : Springer Science+Business Media, 2014.
- 11. *NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory.* Dong, Xiangyu, és mtsai. 7, Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on : IEEE, 2012. July, 31. kötet, old.: 994,1007. doi: 10.1109/TCAD.2012.2185930.
- 12. Mark D Stiles, Jacques Miltat. Spin-Transfer Torque and Dynamics. *Spin Dynamics in Confined Magnetic Structures III.* Berlin : Springer Berlin Heidelberg, 2003, old.: 225-308.
- Compact modeling of STT-MTJ for SPICE simulation. Xu, Zihan, és mtsai. Bucharest : Solid-State Device Research Conference (ESSDERC), 2013. old.: 338,341. doi: 10.1109/ESSDERC.2013.6818887.
- Larry A. Crum. University of Washington. 4 Memory Cache. *TCSS 372A Computer Architecture (Fall 2009)*. [Online] 2009. Lecture Note Diagrams. http://faculty.washington.edu/lcrum/TCSS372AF09/4_Memory_Cache.ppt.
- 15. Zihan Xu, Ketul Sutaria, Chengen Yang, Chaitali Chakrabarti, Yu (Kevin) Cao. *SPICE Modeling of STT-RAM for Resilient Design*. Zihan Xu, 5th International MOS-AK/GSA Workshop, Sanfrancisco : School of ECEE, ASU, 2012.