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Abstract— In this paper we will present some problems 

which show the connection between algebraic 

formulas and combinatorial principles. Each problem 

is based on the idea counting the number of special 

graphs or subgraphs.  

 

I. INTRODUCTION 

 

Using combinatorial arguments to prove algebraic 

identities is an effective method. In this paper we will 

solve some problems in which both algebraic and 

combinatorial methods are involved. We will see that the 

ideas we use are very general.  

Our methods are elementary but one can have benefits 

from the ideas presented below. We tried to search 

problems on which we have worked.  

The first theorem is a result of Borbély, the proof of the  

third theorem presented in the paper was given by 

Borbély and deviates from the official one. With similar 

approaches one could prove other formulas of this type.. 

 

II. THE THEOREMS 

 

 
As warming-up we prove the following theorem, which 
was a problem in the OKTV in 2013, proposed by 
Borbély. 

 

Theorem 1: For ever positive integer n, the number of 
simple graphs on 2n labeled vertices, whose vertices  

have only odd degrees, is exactly 2
 

2𝑛−1
2

 
.    

 

Proof: 

 

We will find  bijection between the simple graphs on 
(2n-1) labeled vertices and the simple graphs on 2n 
labeled vertices with vertices having only odd degrees.  

 

 

 

Let be the vertices 1,2,...,2n. 

 

Let G be a labeled graph on the vertices 1,2,...,2n-1. 
Then we can connect the vertices of G exactly in a 
unique to get a graph with only odd degrees (we 
connect the vertices with even degree in G with the 
edge 2n). If we do that, then the vertex 2n will have an 
odd degree, too, because in G there mut be an odd 
number of vertices with odd degree, thus there must be 
an odd number of vertices with even degree. 

 

Conversely, if G* is a graph on the vertices 1,2,.., 2n 
with the desired property, then by deleting the vertex 2n 
with the incidental edges we get a unique graph G on 
the vertices 1,2,...,2n-1.  QED 

 

Secondly we will prove the following theorem, which 
appeared in 1979 in the Schweitzer competititon [see 
2].  We will use a clever combinatorial argument in 
order to prove an algebraic formula about directed 
graphs.  

 

The proposer of this problem was Schrijver. 

 

Theorem 2: If for fixed positive integers n and k  we 
denote the number of simple strongly connected  
directed graphs with k edges  on n labeled vertices by 
G(n,k), then 
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    −1 𝑘  𝐺(𝑛, 𝑘)𝑛2−𝑛
𝑘=𝑛 =(n-1)! .  

 

 

Proof: 

 

We will prove the statement by induction on n. For n=1 
the statement of the theorem holds. Let us assume that 
we proved the statement for simple directed graphs with 
1,2,...,n-1 vertices (n≥2). We will prove the statement 
for n, too. 

 

Let 1,2,...,n be the vertices.  

 

We will handle two distinct cases. 

 

Case I:  

 

If exactly two edges are incident to the vertex n, and 
their other endpoints coincide, then let us denote the 
other endpoint by w. If the graph is simple and strongly 
connected, then both nw and wn must be edges. Thus, 
in this case, if we proceed from a strongly connected 
graph, then by deleting the vertex n and the edges 
incident to it, we get a strongly connected graph with 
(k-2) edges on the vertices 1,2,..., (n-1).  Using the 
induction hypothesis, our sum is in this case (n-2)!. The 
vertex w can be chosen in (n-1) different ways, so the 
sum gives (n-1)(n-2)!=(n-1)!, if two edges are incident 
to the vertex n, and their other endpoints are the same. 

 

Case II: 

 

If the vertex n does not fulfill the conditions described 
in Case I, then there must be different vertices u and v 
such that un and nv are edges of the graph (here we 
used that the graph is strongely connected). Let A be 
the set of graphs which correspond to this description 
and uv is an edge from them, and let B be the set of 
graphs which correspond to this description and uv is 
not an edge from them. It is easy to see that a graph G is 
an element of A iff (G-uv) is an element of B. Thus in 
this case our sum gives 0.  QED 

 

 

The following theorem was proposed by Dályay Pál 
Péter in the journal “A matematika tanítása” (see [1]),  

and solved in the following way by the author Borbély 
(this proof deviates from the official one). 

 

Theorem 3: For every integer greater than one holds 
the identity  

 

 

  −1 𝑘  
𝑛
𝑘
 

2
𝑛
𝑘=0 k!=   −1 𝑘+1𝑛−2

𝑘=0  
𝑛 − 1
𝑘 + 1

  
𝑛
𝑘
 (k+1)!. 

 

 

 

Proof: 

 

 

Throughout of the whole proof, the  𝑎𝑘  will denote the 
sum of  𝑎𝑖’s for which the sum is interpreted. 

Clearly, the right hand side can be written as   

 

  −1 𝑘+1  
𝑛 − 1
𝑘 + 1

  
𝑛
𝑘
 (𝑘 + 1)!. 

 

Let us write the right hand side in the following way: 

 

  −1 𝑘+1  
𝑛 − 1
𝑘 + 1

  
𝑛
𝑘
 (𝑘 + 1)!= 

 

=  −1 𝑘+1 𝑛−1

𝑘+1
 
𝑛 − 2
𝑘

  
𝑛
𝑘
 (𝑘 + 1)!=  

 

= - (n-1)   −1 𝑘  
𝑛 − 2
𝑘

  
𝑛
𝑘
 (𝑘)!. 

 

Thus we have to prove the identity 

 

  −1 k  
n
k
 

2
n
k=0 k!= - (n-1)   −1 𝑘  

𝑛 − 2
𝑘

  
𝑛
𝑘
 (𝑘)!. 

 

Substract from both sides the term  

 

  −1 𝑘  
𝑛 − 2
𝑘

  
𝑛
𝑘
 (𝑘)!. 

 

So we get on the left hand side 

 

 

  −1 k  
n
k
 

2
n
k=0 k! -   −1 𝑘  

𝑛 − 2
𝑘

  
𝑛
𝑘
 (𝑘)! =  

 

=  −1 k  
n
k
 n

k=0 k!  
𝑛
𝑘
 −  

𝑛 − 2
𝑘

  = 

 

=  −1 k  
n
k
 n

k=0 k!  
𝑛 − 2
𝑘 − 1

 −  
𝑛 − 1
𝑘 − 1

  =  

 

=  −1 k n

k
 

n − 1
k − 1

 n
k=0 k!  

𝑛 − 2
𝑘 − 1

 −  
𝑛 − 1
𝑘 − 1

   = 

 

=(- n)   −1 𝑘  
𝑛 − 1
𝑘 − 1

  
𝑛 − 2
𝑘 − 1

 (𝑘 − 1)!  +  

 

(- n)   −1 𝑘  
𝑛 − 1
𝑘 − 1

  
𝑛 − 1
𝑘 − 1

 (𝑘 − 1)! =  

 

=(- n)   −1 𝑘  
𝑛 − 1
𝑘

  
𝑛 − 2
𝑘

 (𝑘)!  + 
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(- n)   −1 𝑘  
𝑛 − 1
𝑘

  
𝑛 − 1
𝑘

 (𝑘)!, 

 

 

and on the right hand side 

 

 

- (n)   −1 𝑘  
𝑛 − 2
𝑘

  
𝑛
𝑘
 (𝑘)!. 

 

 

Thus we have to prove the identity 

 

(- n)   −1 𝑘  
𝑛 − 1
𝑘

  
𝑛 − 2
𝑘

 (𝑘)!  +  

 

+(-n)  −1 𝑘  
𝑛 − 1
𝑘

  
𝑛 − 1
𝑘

 (𝑘)!= 

 

 =(-n)   −1 𝑘  
𝑛 − 2
𝑘

  
𝑛
𝑘
 (𝑘)!. 

 

Dividing both sides by (-n), we have to prove that 

 

  

  −1 𝑘  
𝑛 − 1
𝑘

  
𝑛 − 2
𝑘

 𝑘!  +   

 

+  −1 𝑘  
𝑛 − 1
𝑘

  
𝑛 − 1
𝑘

 𝑘! =  

 

=   −1 𝑘  
𝑛 − 2
𝑘

  
𝑛
𝑘
 𝑘!. 

 

 

For fixed positive integers r and s let 𝐾𝑟,𝑠 denote the 
complete bipartite graph with labeled vertices and two 
vertex-classes having respectively r and s vertices. Let 
𝑝𝑘 (r,s) be the number of k-matchings in 𝐾𝑟,𝑠 (i.e. the 
number of matchings that cover 2k vertices). In order to 
construct such a k-matching, we have to choose k 
vertices from both of the vertex-classes and we have to 
decide how to establish pairs.  

 

Thus 𝑝𝑘 (r,s) =  
𝑟
𝑘
  

𝑠
𝑘
 k!. 

 

In order to prove our theorem we have to verify that 

 

  −1 𝑘𝑝𝑘(n − 1, n − 2) +  −1 𝑘𝑝𝑘(n − 1, n − 1) =  

 

=  −1 𝑘𝑝𝑘(n − 2, n) . 

 

Let A and B be the two vertex-classes of the complete 
bipartite graph 𝐾𝑟,𝑠 with |A|=r and |B|=s. Let x be a 
vertex in A.  

 

The number of k-matchings, which do not cover the 
vertex x, is exactly 

 

𝑝𝑘 (r-1,s). 

 

The number of k-matchings, which do cover the vertex 
x, is exactly  

 

(s-k+1)𝑝𝑘−1(r-1,s). 

Thus we have the recursion 

 

 𝑝𝑘 (r,s) = 𝑝𝑘 (r-1,s) + (s-k+1)𝑝𝑘−1(r-1,s). 

 

 

Thus we get 

 

 

  −1 𝑘𝑝𝑘(n − 2, n) =  

 

  −1 𝑘𝑝𝑘(n − 2, n − 1) + 

 

+   −1 𝑘 𝑛 − 𝑘 − 1 𝑝𝑘−1(n − 2, n − 1) = 

 

=  −1 𝑘𝑝𝑘(n − 2, n − 1) + 

 

+   −1 𝑘+1 𝑛 − 𝑘 − 2  𝑝𝑘(n − 2, n − 1) = 

 

=  −1 𝑘+1 𝑛 − 𝑘 − 3 𝑝𝑘−1(n − 2, n − 1) . 

 

 

On the other side we have 

 

 

  −1 𝑘𝑝𝑘(n − 1, n − 2) +  −1 𝑘𝑝𝑘(n − 1, n − 1) =  

 

=  −1 𝑘𝑝𝑘(n − 2, n − 1) + 

 

+  −1 𝑘𝑝𝑘(n − 1, n − 1) = 

 

=  −1 𝑘𝑝𝑘(n − 2, n − 1) + 

 

+  −1 𝑘𝑝𝑘(n − 2, n − 1) +  

 

+   −1 𝑘(𝑛 − 𝑘)𝑝𝑘−1(n − 2, n − 1) = 

 

=  −1 𝑘𝑝𝑘(n − 2, n − 1) + 

 

 +  −1 𝑘𝑝𝑘(n − 2, n − 1) + 

 

+  −1 𝑘+1(𝑛 − 𝑘 − 1)𝑝𝑘(n − 2, n − 1) = 

 

=   −1 𝑘+1 𝑛 − 𝑘 − 3 𝑝𝑘−1(n − 2, n − 1) . 
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Thus the two sides are equal, and so we proved the 
statement of the theorem.  QED 
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