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Abstract— In this paper we will present some two-

personal mathematical games. The problems will be 

taken from mathematical competitions  and we will 

give a winning strategy for special cases in every game 

presented below. Some of the problems were invented 

by the author. 

I. INTRODUCTION 

 

In this paper we will present some abstract strategy 

games, where no chance is involved. In all of the 

investigated games we will use some “pairing principle”, 

i.e. we will establish disjoint pairsto describe how one 

can win the game.  

The tools used to solve these problems are totally 

elementary, but one needs to have a good idea to find the 

winning strategy (or to find out which player has a 

winning strategy). The problems were posed in 

mathematical competitions like Nemzetközi Magyar 

Matematikaverseny (NMMV), Országos középiskolai 

tanulmányi verseny (OKTV), or the Tournament of the 

Towns (TT).  

Let us begin with a theorem that will ensure the 

determinancy of our games (see [1]): 

Theorem 1 (Zermelo, 1912) In any combinatorial game, 

at least one of the players has a non-losing strategy. 

Theorem 1 is called the fundamental theorem of 

combinatorial games. Using this theorem, we always can  

be sure that in the investigated game one of the players 

has a winning strategy. 

We will call the players in all of the games “first player” 

and “second player”. The “first player” will be tha player 

who makes the first step in the game. 

 

II. FINDING PAIRS 

 

 
The following is a generalization of a problem posed in 
the OKTV competititon in 2014 (the proposer was 
Borbély).  

 

Game 1: Two players alternately delete a number from 
the set {1,2,..., n} until two numbers remain. If the sum 
of the two remaining  numbers is a square number, then 
the second player wins, otherwise the first player wins. 

 

We will prove the following result:  

 

Theorem 2: If n is divisible by 8, then in Game 1 the 
second player has a winning strategy.  

 

Proof: 

 

We will prove by induction on k, that the elements of 
the set {1,2,..., 8k} can be ordered into pairs in such a 
way that the sum of the numbers in every pair equals a 
square number.   

 

Note that this would imply the result of the theorem, 
because player two has the possibility to erase in each 
of his step the number, that was the pair of the number 
deleted by player one in the previous step.    

 

For k=1 the statement holds, because the pairs (1,8), 
(2,7), (3,6), (4,5) correspond to the conditions. 

Let us assume that we proved the statement for 1,2,...,k-
1. We will prove the statement for k, too. Let s be the 
smallest odd square number greater then 8k (where 
k≥2). We will show that s<16k. 
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Let s be s= 2𝑚 + 1 2=4𝑚2+4m+1. 

 

Note that if k≥2, then m≥3. If m≥ 3, then we have the 
estimates 

 

 
𝑠

8𝑘
= 

4𝑚2+4m+1

8𝑘
 <  

4𝑚2+4m+1

4𝑚2−4m+1
 =1+  

 

+ 
8m

4𝑚2−4m+1
 ≤ 1+  

 4m−4 m

4𝑚2−4m+1
<1+1=2, 

 
which implies the inequality s<16k. 

 

It is easy to see that (s-1) is divisible by 8, thus we can 
make pairs in the following way:  

(8k, s-8k), (8k-1, s-8k+1),..., (
𝑠−1

2
,
𝑠+1

2
) . In these pairs  

the sum of the numbers is a square (namely the number  

s). The number (s-8k-1) is divisible by 8, thus by the 
induction hypothesis we can make pairs from the 
elements of the set {1,2,...,s-8k-1} in the appropriate 
way. So our proof is complete, we proved the required 
result.  

 

Remark: it is an open question which of the two 
players has a winning strategy if n is not divisible by 8. 

 

The following is a generalization of a problem posed in 
the NMMV competititon in 2012 (the proposer was 
Borbély) 

 

Game 2: n andk are fixed positive integers. Two players 
alternately delete a number from the set {1,2,..., n} until 
two numbers remain. If the absolute value of the 
difference of the two remaining  numbers is a prime  
number greater than k, then the second player wins, 
otherwise the first player wins. 

 

We will prove the following result: 

 

 

Theorem 3: If n is even,
𝑛

2
 is a composite number, q is 

the greatest prime number not exceeding 
𝑛

2
 - 1 ,  

and q+
𝑛

2
 is also a prime number, then in Game 2 the  

second player has a winning strategy iff k≤q-1 . 

 

 Proof: 

 

1. If k≥q, then the first player can play in such a way 
that he always deletes the greatest number that was 
not 

deleted. If he plays so, then the absolute value of the 
difference of the two remaining numbers cannot exceed 

 
𝑛

2
,  

thus (by the definition of q) cannot be a prime number 
greater than q.  

 

2. Now assume that k≤q-1. 

 

We will order the elements of the set {1,2,...,n} into 
disjoint pairs in such a way that the absolute value of 
the differences for every pair is a prime number. That 
implies that in this case the second player has a winning 
strategy, because player two has the possibility to erase 
in each of his step the number, that was the pair of the 
number deleted by player one in the previous step. Let 
us make the pairs in the following way: 

 

First we establish the pairs  

 

(1, q+
𝑛

2
 +1), (2, q+

𝑛

2
 +2),...,(

𝑛

2
 – 𝑞, 𝑛) , then we establish  

 

the pairs    

 

(
𝑛

2
 – 𝑞 + 1,

𝑛

2
 + 1) ,  (

𝑛

2
 – 𝑞 + 2,

𝑛

2
 + 2), ..., (

𝑛

2
 ,

𝑛

2
 + 

 

+𝑞). 

 

In our construction in the first group the difference is 

always q+
𝑛

2
 ,  which is by our assumption a prime  

number. In the second group the difference is always q. 
The pairs are disjoint, thus we proved the desired result. 

 

 

Remark: it is an open question which of the two 
players has winning strategy if n and k have other 
number theoretical properties. 

     

The following is a generalization of a problem posed in 
the OKTV competition in 2005: 

 

Game 3: Let n be a fixed positive integer. Two player 
write alternately numbers on the board. Player one 
writes down the number 1. Then in each turn the 
following player writes down a number that is a sum or 
a product of two already  written numbers, but he 
cannot write down  numbers that are already on the 
board and he cannot write down a number greater than 
n. The player who writes down the number n wins the 
game. 

    

We will prove the following result: 

 

Theorem 4: If n is an odd prime number, then in Game 
3 player one has a winning strategy.   

 

 

Proof: 

 

Note that if n is a prime number, then the number n can 
be generated only by addition.   
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Let us order the elements of the set {1,2,...,n} into 
disjoint pairs with the exception of the element n: 

 

(1, n-1), (2, n-2),..., (
𝑛−1

2
, 
𝑛+1

2
). 

 

Let player one play in the following way: after each 
step of player two he shall write down the least positive 
integer x such that neither x nor n-x were written down. 
If he always can do that, then he wins the game because 
n is odd. Thus we have only to prove that player one 
can use this strategy throughout the whole game. 

 

We prove this by induction on the number of the steps. 
In the first step he can use this strategy (he writes down 
the number 1). Let k≥2 and let us assume that player 
one was able to apply his strategy. Let us assume, that 
each of the players made k steps, and it is player one’s 
turn. Let x be the least positive integer such that neither 
x nor n-x were written down (if no such x exists, then 
player ine can write down the number n).  

 

x≤2k+1, because in the set {1,2,...,2k+1} there must be 
a number y such that neither y nor n-y were written 
down (2k numbers were written down). By the strategy 
of player one, he chose all his k numbers  from the set 
{1,2,...x-1}. Player two had to choose as his first step 
the number 2, thus at least k+1 elements of the set 
{1,2,...x-1} are already written on the board. That 
means that player one can establish the number x by 
addition, because x≤2k+1.    

 

Thus player one has a winning strategy. 

 

 Remark: one can similarly show that if n is the double 
of a prime number, then player two has a winning 
strategy. But generally it is an open question which of 
the two players has a winning strategy. 

 

Finally we present two games from the reputed 
competition Tournament of the Towns, and we will 
show that the two games have a common root. 

  

 

The following game was presented in the TT 
competititon in 1987: 

 

 

Game 4: The game is played on an 8*8 chessboard. 
Player one places a knight on the board. Then each 
player in turn moves the knight, but cannot place it on a 
square where it has been before. The player who cannot 
make a move looses. 

 

The following game was presented at the TT 
competititon in 2009: 

 

 

Game 5: Player one and player two visit Archipelago 
with 2009 islands. Some pairs of islands are conneceted 
by boots which run both ways. The folllowing game is 
played: 

 

Player one chooses the first island where they arrive by 
plane. Then player two chooses the next island they will 
visit. Thereafter, the two take turns  choosing an island 
which they  not have yet visited. When they arrive at an 
island which is connected only to islands they had 
already visited, whoever’s turn to choose next would be 
the looser.   

 

And now we will show the connection between Game 4 
and Game 5. The problems will be reformulated in the 
language of graphs. 

 

 

Game 6: Player one and player two alternately select 
distinct vertices 𝑣1, 𝑣2,...  of a graph in such a way that 
𝑣𝑖  and 𝑣𝑖+1 always must be adjacent vertices. The last 
player able to choose a vertex wins the game.    

 

We will exactly determine when player one and when 
player two in Game 6 has a winning strategy. Using our 
result we can easily determine which of the players has 
a winning strategy in Game 4 and game 5. 

 

Theorem 5: In Game 6 player two has a winning 
strategy iff the graph they use for the game has a 
perfect matching.  

 

 Proof: 

 

If the graph has a perfect matching, then player two 
clearly has a winning strategy: he can always choose 
the pair of the vertex chosen by player one, and thus 
cannot loose the game. 

 

If in the graph there are not any perfect matchings, then 
let M be a maximal matching in the graph. Player one 
begins with a vertex that is not covered by M. Then 
player two has to choose a vertex covered by M 
(because M was maximal). In his next turn, player one 
chooses the pair of the vertex chosen by player two.  

 

We will show that player one can continue the game in 
such a way. More exactlx, we state that player two 
cannot choose a vertex not covered by M. 

 

Namely, if in any of his steps player two would be able 
to choose a vertex not covered by M, then let us 
consider the tour already made by the players. In the 
tour they used an odd number of edges, that were 
alternately not in M and in M (in this order). Thus 
changing the rules of the edges in this tour we could 
find a matching greater than M, which is impossible.  

 

Thus player two can only choose vertices covered by M 
and player one has a winning strategy.   
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Remark: using the result of Theorem 5, it is easy to see 
that in Game 5 the first player has a winning strategy. 
In Game 4 one can find a proper pairing which shows 
that here the second player has  winning strategy (see 
[2]). 
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