
Educational Aspects of Massively Parallel

Program Development

Éva Hajnal

Óbuda University, Alba Regia Technical Faculty, Szekesfehervar, Hungary

hajnal.eva@arek.uni-obuda.hu

Abstract – The last three years began the education of

massively parallel programming at our faculty. This means

regular contact education consisting of lectures and

computer laboratory practice with computers containing

simple CUDA capable graphics cards (NVIDIA GeForce GT

430) and supervising student’s projects. This paper

summarizes the educational analysis of two projects and

gives suggestions of the future direction and methods of

massively pareallel programing education.

I. INTRODUCTION

The milestone of GPGPU programming was the year

of 2004, when DirectX 8, a new graphics pipeline was

developed, by which programmable vertex and pixel

shader layers can be defined. In this system, the

instructions were programmable with a special language,

HLSL, which was developed directly for this purpose. If

the data were embedded into a special graphics data

structure, it was capable to manipulate on them. This

method was rather circumstantial, but the reason for

existence of it was in special graphical and scientific

applications [1].

The most important innovation of DirectX 10 was the

totally programmable graphics pipeline, which is

mentioned in the literature as unified pipeline

architecture. The prior fix pipeline becomes

programmable with HLSL, so the dedicated processors

become unnecessary. Developments of hardware

manufacturers make possible to solve more general

programmable problems with these devices and passing

over the graphic API’s, using GPU for general purpose

computation. The hardware manufacturers created new

independent programming interface for GPU’s and

appropriate compilers, which are capable to compile a

higher level of GPU programming language then the

HLSL onto the reduced instruction set architecture. Such

interface is the Compute Unified Device Architecture

(CUDA), which appeared in the year of 2008 and till now

it is the most popular solution. At the same time the

Khronos Group developed OpenCL and a bit later

Microsoft connected to them with C
++

 Amp.

Now there is a large competition in this sector as well,

but by the forecasts the OpenCL or CUDA will be the

determinant in the future.

CUDA is the programming platform of NVIDIA which is

programmed with C and Fortran language extensions.

The vendors offer a complete development kit, CUDA

SDK, which contains C and Fortran compilers and

function libraries to facilitate the software development

process. The NVIDIA Parallel Nsight is an additional tool

for software debugging.

During the appearance of these tools, there were

developed a series of products to help the computation on

massively parallel processors, such as function libraries

in different topics and wrappers. Since 2004 the Parallel

Computing Toolbox for Matlab is under continuous

development and now, among others, contains

instructions for GPU’s. These indicate that the parallel

algorithms became useful in the everyday technical and

computational practice and in user level we can also

operate with them.

In the same time there was a demand for developing

software on higher level languages and for comfortable

execution framework, such as C#, Visual Basic and for

.NET, and among others the CUDAFY SDK [2] play

such role since 2012 helping us to become acquainted

with CUDA.

The education of GPU programming started from

2010/11 as optional subject. The hardware devices made

possible to evaluate small projects in the first semester,

and later, from the year of 2012/13 several computers

were extended with NVIDIA GeForce GT 430 cards, and

from that time systematic education with weekly lectures

and computer laboratory practices were realized. The

education is matching to the other subjects uses Cudafy

SDK and C# programming language in Microsoft Visual

Studio environment.

However this subject is quite popular, the

programming of massively parallel processors does not

seem to be successful from lots of aspects at us and also

over the world.

In this paper the analysis of two student’s project is

described, and the advantages and disadvantages of this

discipline are investigated from educational aspect. These

projects are examined from the aspect of program

development, testing and optimization in the context of

the software performance and human time consuming.

II. PROJECT I.- CELLULAR AUTOMATON

IMPLEMENTATION IN GPU SYSTEM

The task was implementing a cell automaton on CPU

and GPU, and comparing the execution time of the

program, and the time interval of software development

[3–5].

The original problem was developing an ecological

model for phytoplankton communities of which species

AIS 2014 • 9th International Symposium on Applied Informatics and Related Areas • November 12, 2014 • Székesfehérvár, Hungary

75

mailto:hajnal.eva@arek.uni-obuda.hu

coexisting with neutral interaction. This software can

simulate the stochastic behavior of this ecosystem, where

the number of species, the mean reproduction and

mortality rates of each species, the maximum lifetime is

readable from a file. The execution of the simulation is

facilitated with the parallelism of CUDA technology if

the computer contains GPU card (Fig 1).

The software can be executed on Windows operating

system, and a MSSQL Express database server needs for

the storage of simulation results. The CUDA capable

graphics card does not required only recommended,

because the simulation may be executed on CPU, but the

execution time can be extraordinary large. This

application does not contain graphics user interface, but

the settings are the input parameters.

According to the nature of GPU programming, the

software development was strongly connected to the

hardware solution. In this case the developer

configuration based on an AMD Phenom II X4 processor

with 4 cores, supplemented with 4 GB RAM and Asus

ENGTX460 TOP video card, which contains a G104

GPU (7 stream processor and 32 CUDA core/ processor).

By the point of view of NVIDIA, the optimal usage of

the graphics card is the responsibility of the software

developers, so they have to calculate the number of

threads, and how many bytes from memory is occupied.

This is very important question, because there is no way

to free the allocated memory (included the free

instruction in the source code) until the end of the kernel

execution. If this problem is not handled, the kernel can

allocate the whole memory capacity of the graphics card,

and the calculations that concerning the displayed image

do not executed, which leads to an operating system error

[1], [6], [7]. There are lots of methods for the calculation

of the number of threads; in this project the CUDA

Occupancy Calculator [8], a simple Excel spreadsheet of

NVIDIA was used.

Because of the initial stage of this subject, the decision

about the software development environment was not so

easy, and it was followed by the actuation of this system.

At this project the Visual Studio 2010 Professional

version and CUDA 3 version were chosen, because it is

matching to our mainly used configuration. Visual Studio

builds the projects by a project template file, but there

were no CUDA templates for any graphics environment.

Finally the creation, edition of the template became the

part of this project. Additionally we had to setup the

Visual Studio 2008 C++ Express version also, because

the compiler of this can work on a CUDA project, and its

intellisense tool can at least limitedly helps in this project.

The syntactic check does not cooperates with CUDA,

because it’s syntactic elements e.g. “<<< “and “>>>”,

that are the kernel call, are unknown for it. These features

are partly exist nowadays, and can enhance the duration

of the software development.

The software was implemented by the object oriented

paradigm. The defined classes were grouped by scope of

duties, so they are different by function. For the help of

the later enrichment, base classes as prototypes of some

features were developed, and the concrete

implementations were placed into the derived classes. By

this solution there are several implementations can be

made, and can be replaced without any other changes in

the source code. This method concerned species

distributions and grid rules classes. The Idistribution

base class and its derived classes fill the cell grid

according to different distribution function (lognormal,

zipf etc.). The Rule base class also a re-definable class,

which implements the cell grid rule system.

Further classes in the software are the Cell and Coord

structures, the Cell factory class, which deals with the

cell creation and Cell-space class, which is responsible

for the cell grid manipulations. Important feature of

CUDA projects, that the GPU can manipulate effectively

on one dimensional arrays, and consequently there is a

continuous demand on the conversion between the

several dimensional arrays and vectors on logical or on

data level. The statistics is handled by the Results and

Resultshandler classes, which are implemented on CPU.

For the measurement and comparison of GPU and

CPU execution time check points were settled into the

source code. These points are between the source code

modules, so the creation of the cell grid, the simulation of

the cell automaton and the calculation of the statistics can

be measured on CPU and GPU (Table 1).

TABLE 1. PERFORMANCE COMPARISON OF CPU AND GPU

PROGRAM EXECUTION

Number of cpecies 10

Number of iterations 1000

Number of cells 1024 4096 16384 65536

 CUDA CPU CUDA CPU CUDA CPU CUDA CPU

Cellspace

Creation (ms)
47 47 187 187 764 749 3026 2995

Execution of the

Simulation (ms)
1092 3885 1154 7613 1529 19454 1820 198262

Data export (ms) 78 78 78 78 78 78 78 78

Total (ms) 1217 4010 1419 7878 2371 20281 4924 201335

Figure 1. Block diagram of the cell automaton software, T means

the time check points in the source code.

START

END

Cell types

from file

Initialization of
the cell grid
Cell

distribution

Fill the cell grid Simulation
according to
the grid rules
(CPU/GPU)

 Sampling

Calculation of
statistics

Data export

T

T
T

T

AIS 2014 • 9th International Symposium on Applied Informatics and Related Areas • November 12, 2014 • Székesfehérvár, Hungary

76

Our hardware possibilities at that time did not make

possible the execution of debugging and profiling tools,

so the optimization of the source code was evaluated in

small-scale. Mainly theoretical considerations helped us

to stop or reduce the factors, which made slowly the data

parallel code execution (SIMD programming model),

such as thread divergence etc. In spite of it, the execution

time of this software on GPU was significantly shorter,

often, especially at the really used cases, could be reached

1-2 order of magnitude speedup to the CPU code (Table

1).

Unfortunately the duration of the software

development and testing without substantial optimization

was about 2-3 fold to the desktop CPU software

development.

III. PROJECT II. – REAL TIME AFFIN

TRANSFORMATIONS ON IMAGES

In the industrial practice raised the request for a real

time image processing program library, which can

recognize and measure some products on the conveyor

belt independently from their position. This purpose can

be reached by several 2D geometrical transformations

such as shearing, rotation and translation. These

transformations are called affine transformations, and

their mathematical basis is solved by matrix

manipulations [9], [10]. Figure 3 shows the integrate

description of these calculations with homogenous

coordinates. For 2D transformations a special 3x3 matrix

can be used, of which last row is constant (1), and needs

only for the symmetry of operations.

Every pixel has a coordinate (x, y), in which the x

means the column and y means the row. The modification

of the pixel coordinates results the image manipulations,

rotation, translation, reflexing etc.

However the theoretical basis of this method is simple,

the computational demand is high at large resolution

images. The problem suggests the data parallel solution.

This was made on CUDA compatible GPU card which

compute capability is minimally 2.1. The software

development was realized on Nvidia Geforce GT 440

card, and optimized onto Windows 8 operating system,

and :NET 3.5 framework with CUDA driver. A language

of the host program was the C#, and the Visual Studio

2010 Professional version was the development

environment, which was supplemented with a CUDA

wrapper, CUDAfy 1.22 version [2].

Nvidia Visual Profiler and Nvidia Nsigh were used for

the software test and analysis. They can integrate into the

Visual Studio, which make the work easier.

The real time software debugging is not possible in our

laboratory configuration, because the GPU card can

execute only one task, either the calculations or the

debugging. For the real time debug needs a second GPU

card.

The principle of the solution is a map back algorithm,

which was programmed both on CPU and GPU. (GPU

block diagram is on fig 2).

Optimization possibilities were taken into account

when the program was developed. Especially the memory

usage was restricted. In the present technology we can

use only 32 byte register capacity per thread. The purpose

is to avoid the extra bytes, which are copied into the

much more slowly shared memory.

Other optimization technics are the instruction level

optimization with optimal instructions (shift >>1 instead

of divide by 2) and the reducing of the number of

instructions (intermediate data storage into a register).

The code insurance supported with quick execution is

possible with the usage of atomic instructions.

The main factor in the execution speed is the

determination of the optimal number of blocks and

threads in the grid, during the kernel code launch.

GPU
start

launch

For every
threads

Check the
image

boundaries
Thread inside

Determination of the

origo

Rotation, shearing

Translocation

Vector index calculation
from coordinates

Copy into the calculated
index

If all threads
finished

Data copy from the
device

GPU end

t

f

Figure 2 Block diagram of the software

AIS 2014 • 9th International Symposium on Applied Informatics and Related Areas • November 12, 2014 • Székesfehérvár, Hungary

77

[

]

a: enlargement in x direction

b: shearing in y direction

u: constant, 0

c: shearing in x direction

d: enlargement in y direction

v: constant, 0

tx: translation by x axis

ty: translation by y axis

w: constant, 1

Figure 3 The matrix of the coordinate transformation, and the

meaning of the elements of this matrix.

The warp is not an architectural part of the GPU, but a

scheduling unit. Threads of one warp execute the same

operation parallel, so the threads inside one warp do not

need synchronization. The more fully allocated warps are

working the more efficient is the data processing.

However there is no need for synchronization,

sometime a thread and consequently a whole warp does

not work. This can occur, if the thread is waiting for a

memory word to an operation, but the memory access

needs relatively long time on the graphics card. When a

warp is idle, the timer start another ready warp. If there

are several ready warps, the choice is made by priority.

If the number of blocks and threads is not suit the

card’s possibilities, the number of warps will be higher

and the number of threads in a warp will be lower than

the optimum, that causes significant slow, and in extreme

cases the timer cannot execute any warps.

The optimization of the warps does not cause speedup

in all cases, because the instructions in the kernel code

also may cause slow. If there are not so much memory

read or write operations, the bottleneck of the execution

is the warp scheduling, but in other cases the execution

time is limited by the memory bandwidth. According to

the general experience, the optimization of memory usage

is a serious and frequently occurring need in GPU

programming.

After the program development and optimization

several software execution parameter were measured and

the CPU and GPU execution were compared (Table 2).

The purpose of the project was reached, because a

relatively cheap and low compute capability graphics

card could realize real time calculations on about

1000x1000 pixel resolution images. However the

program development environment was much more

maturated and its possibilities made the work more

comfortable and effective the duration of the software

development onto GPU remained at least 4-8 fold to that

one onto CPU.

TABLE 2 COMPARISON OF THE PROGRAM EXECUTION ON GPU

AND CPU

Image size

(pixel)

Data

(Byte)

CPU

execution

(ms)

GPU

execution

(ms)

Compute

capacity of

GPU

(GFLOPS)

40x134 3331 0.69 0.88 4.77

2048x1536 872373 471 19 9.56

3648x2736 3824694 1515 168 4.98

IV. DISCUSSION

The parallel programming concept was raised at the

first time of the computing technic, and till now there

were made a lot of efforts to implement it. Nowadays we

can say that it is the part of the everyday software

technological practice. It became useful not only in

specific tasks or in large computing systems, but in

almost all the desktop applications, which can be used on

personal computers. Especially the data parallel

programming concept is used widely. So the teaching and

learning of this subject is evident in the education of

engineers as it was realized in all faculty of informatics or

technical faculty.

The human brain originally can work sequent or very

often can execute parallel tasks, but the data parallel

thinking - which seems to be very simple at the first meet

- is proved to be alien for us. The consequence of it is

very serious. However there is a continuous ambition to

develop the services of the data parallel environment

making the work more and more comfortable. The

duration and the effort in the software development

processes both in the education and in the industry remain

relatively high, which keeps the costs of the software

development at high level.

In the future we can meet with the reduction of the

software development costs by the creation of widely

useful, general data parallel program libraries. It will

cause some performance lost because of the missing of

the specific optimization. Finally there are nowadays

AIS 2014 • 9th International Symposium on Applied Informatics and Related Areas • November 12, 2014 • Székesfehérvár, Hungary

78

tendencies to move the decision of the usage of data

parallel functions onto the hardware optimization level.

These tendencies are very important aspects in the

education, which requires teaching the data parallel

principles, algorithms and the methods of embedding data

parallel functions into the applications, and makes

optimization methods a bit subsidiary.

V. ACKNOWLEDGMENT

Thanks for Tamás Bajzát and Dávid Horváth for

motivating me to continuous learning.

The project was supported by TÁMOP-4.2.3.-

12/1/KONV „Alba Regia Egyetemi Központ tudományos

eredményeinek disszeminációja, mérnöki és kutatói

utánpótlás biztosítása a közép-dunántúli régióban” grant.

VI. REFERENCES

[1] D. B. Kirk and H. Wen-mei W., Programming Massively
Parallel Processors, Second Edition, Elsevier. Waltham USA:

, 2012.

[2] “Cudafy user Manual 1.12,” 2012.
[3] T. Bajzát, “Cell Automaton Modelling Algorithms:

Implementation and Testing in GPU Systems,” in 15th

International Conference on Intelligent Engineering Systems,
A. Szakál, Ed. Budapest: IEEE Hungary Section, 2011, pp.

177–181.

[4] É. Hajnal and T. Bajzát, “Ecological Modelling with Cellular
Automaton Software Implemented in GPU System,” ÓBUDA

UNIVERSITY E-BULLETIN, vol. 2, pp. 499–508 PG – 9,

2011.
[5] É. Hajnal and T. Bajzát, “Parallel Programming in GPU

Systems: Case Study,” in International Symposium on Applied

Informatics and Related Areas, Székesfehérvár: Óbudai

Egyetem, 2011, p. &.

[6] R. Farber, CUDA application design and development,

Elsevier. Waltham USA: , 2011.
[7] E. Kandrot and J. Sanders, CUDA by Example. Michigan

USA: , 2011.

[8] M. Harris, “CUDA Occupancy Calculator.” [Online].
Available:

https://devtalk.nvidia.com/default/topic/368105/cuda-

occupancy-calculator-helps-pick-optimal-thread-block-size/.
[9] L. Szirmay-Kalos, Számítógépes Grafika. Budapest: , 1999.

[10] L. Szirmay-Kalos, “Számítógépes grafika,” Firka, 2009.

AIS 2014 • 9th International Symposium on Applied Informatics and Related Areas • November 12, 2014 • Székesfehérvár, Hungary

79

