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Abstract: 

In this paper we will present a problem from the 

branch of the so called rainbow Ramsey theory. The 

problem was posed by András Gyárfás for the annual 

Schweitzer Miklós Competition in 2009. The solution 

of the problem is based on the argumentation of 

Borbély (who submitted a solution at the competition). 

This solution was refined by the co-author Csala-

Takács.  

 

Introduction 

 

Ramsey theory is a part of mathematics that 

handles problems where one seeks after ordered 

structures in some great arbitrarily chosen structures. In a 

more restricted sense the problems of Ramsey theory 

have abstract or even geometric graphs as their subjects. 

In this context a Ramsey type theorem includes an 

allegation, in which one guarantees the existence of some 

“ordered” subgraphs in every according graph great 

enough. In order to clarify the nature of problems treated 

in Ramsey theory, we hereby draft Ramsey’s classical 

coloring theorem concerning abstract graphs.  

Ramsey used this theorem (in another equivalent 

form, see [2]) to achieve results in the formal logic. 

 

 

 

 

 

 

 

 

 

 

Some Ramsey-type theorems  

 

Here we will present some classical Ramsey-type 

theorems in order to demonstrate the nature of these 

problems. First we present Ramsey’s classical result (see 

[2]):   

 

Theorem 1 (Ramsey, 1930) For every positive integers k 

and s there exists a positive integer R(k, s), such that the 

following is true: if one colors the edges of a complete 

graph G with at least  R(k, s) vertices wit red and blue, 

then there is a complete subgraph of G with k vertices 

having all its edges colored by red, or there is a complete 

subgraph of G with s vertices having all its edges colored 

by blue.   

 

Later this theorem was rediscovered and had a many 
other applications. In a wider sense one can speak about 
the so called Ramsey principle (Ramsey type results in 
other structures). 

 

The theorem can be generalized for more colors in an 
analogous way. 
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Theorem 2 (Ramsey, generalized form) For every 

positive integers 𝑠1, 𝑠2,…, 𝑠𝑘  there exists a positive 

integer  

R(𝑠1, 𝑠2,…, 𝑠𝑘 ) so that the following is true: if one colors 

the edges of a complete graph G having at least   R(𝑠1, 

𝑠2,…, 𝑠𝑘 ) vertices with k colors, then there is a complete 

subgraph of G with 𝑠𝑖  vertices having all its edges 

colored by color i for for some i.  

 

 

There exists even an infinite version of Ramsey’s 

theorem. 

 

Theorem 3 (Ramsey, infinite form) Let X be some 

countably infinite set and colour the elements of X
(n)

 (the 

subsets of X of size n) in c different colours. Then there 

exists some infinite subset M of X such that the size n 

subsets of M all have the same colour. 

 

One of them most substantial theorems of Ramsey theory 

is Van der Waerden’s theorem.  

 

Theorems of the rainbow Ramsey theory have the goal 
to guarantee great structures colored by distinct colors. 
This is a developing branch of mathematics with a wide 
range of problems (see [1]). 

 

 

Our main theorem 
 

 

We present the problem of Gyárfás that was posed in 
2009 at the Schweitzer competition.  

 

 

 

Theorem 4: If 𝑐1, 𝑐2, …, 𝑐𝑚  are colorings of the edges 
of a complete graph with 17 vertices (labeled by the 
numbers 1,2,3,…, 17) by 105 fixed colors in such a way, 
that for every 15-element subset H of the vertices there is 
a j so that in the coloring 𝑐𝑗  all of the 105 colors occur in 

the coloring of the edges of H, then 34≤m. Moreover the 
desired conditions can be fulfilled for m=34. 

 

 

Proof: 

 

 

A complete graph with 17 vertices has exactly 

 
17
2
 =136 edges. First we will prove that every complete  

graph with 17 vertices, whose edges are colored by 105 
colors, contains at most 4 complete subgraphs H with 15 
vertices whose edges are colored by the 105 colors.  

 

Note that such a complete subgraph H has also the 
property that every edge of H has a different color (a 
rainbow property). Let us call such complete subgraphs 
rainbow-subgraphs. Now, with this terminology, we have 
to prove that every every complete graph with 17 vertices, 
whose edges are colored by 105 colors, contains at most 4 
rainbow-subgraphs. 

 

Let us take an arbitrary coloring of the edges of the 
complete graph with 17 vertices by 105 colors.  

We will have two different cases.  

 

Case A, 

 

If there is a 16-element subset of the vertices where we 
can find at least two rainbow-subgraphs, then there is a set 
F of the vertices with 14 elements and two vertices x and 
y such that the graph spanned by the vertices of FU{x} 
and FU{y} are rainbow-subgraphs.  

 

 

Note that in this case the color classes represented 
between the sets {x} and F must be the same as the ones 
represented between {y} and F. Therefore the edges 
whose endpoints are x or y represent at most 17 color 
classes (namely there are 31 edges with the endpoints x or 
y, but there are 14 color classes that are used two times, 
and 31-14=17).  

 

This means that  and y cannot be the vertices of a 
rainbow-subgraph at the same time. Therefore there are 
exactly two rainbow-subgraphs spanned by the vertices of 
the set  FU{x}U{y}. Let z be the seventeenth vertex of the 
complete graph with 17 vertices. If there are another 
rainbow-subgraphs, then their vertex set must contain z. 
Assume that there is such a rainbow-subgraph. In this case 
{z}UF determines a rainbow-subgraph, or there is an 
element u in F so that (F\u)U{z}U{x} or (F\u)U{z}U{y} 
determines a rainbow-subgraph. 

 

If {z}UF determines a rainbow-subgraph, then the color 
classes represented by the edges running between F and z 
are the same as the ones running between F and x and the 
ones running between F and y. According to our 
observations it is clear that no two elements of the set  

{x, y, z} can be vertices of a rainbow-subgraph at the 
same time, therefore there are totally at most 3 rainbow-
subgraphs.  

 

If  (F\u)U{z}U{y} spans a rainbow-subgraph, then the 
color classes represented by the edges running between z 
and (H\u)U{y} are the same as the ones running between 
u and (H\u)U{y}. Using our argumentations before one 
can easily verify that the vertices u and z cannot be the 
vertices of a rainbow-subgraph at the same time.  
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The same is true for the vertices x and y. Every 
rainbow-subgraph contains at least two vertices of the set 
{x,y,z,u}, but not more than two, because the elements of 
the sets {x, y} and {u, v} exclude each other. Therefore 
there are at most 4 rainbow-subgraphs in Case A, 

 

Case B,  

 

If every subset of the vertices with 16 elements defines 
at most one rainbow-subgraph, then let us take a 16-
element subset of the vertices where there are 15 vertices 
determining a rainbow-subgraph.  

Let us take another rainbow-subgraph, too (if there is 
not any more one, then we are ready). In this case there is 
a subset K of the set of the 17 vertices with |K|=13 and 
vertices r, s, t, v so that the graphs defined by the sets 
{r}U{s}UK and {t}U{v}UK are rainbow-subgraphs.  

Then the color classes represented by the edges running 
between the vertex sets {r}U{s} and K are the same as the 
ones running between {t}U{v} and K (26 colors, totally). 
The edges that have r, s, t, or v as endpoints, can represent 
at most 32 color classes, because 

 

  
4
2
 +26=32. 

 

This means that the vertices r, s, t, v cannot be the 
elements of a rainbow-subgraph at the same time. 
Therefore there are at most 4 rainbow-subgraphs as we 
have stated. 

 

Using our result we have the inequality 4m ≥  
17
15

 , 

 which is equivalent to 34 ≤ m. 

 

 

Now we will prove that there are colorings 𝑐1, …, 𝑐34  
fulfilling the requirements of the theorem.     

         

Let L be a 13-element subset of the vertices and let a, b, 
c, d be the other vertices of the graph.  

 

Let us prepare a rainbow-subgraph on the vertex set 
{a}U{b}UL. Let the color classes between c and L be the 
same as the ones between a and L, and let the color classes 
between d and L be the same as the ones between b and L. 
Let the color of the edge between b and c the same as the 
one between b and a. Let the color of the edge between a 
and d the same as the one between a and b. 

 

In this case the vertex sets {a}U{b}UL, {a}U{d}UL, 
{c}U{b}UL determine rainbow-subgraphs. If we color the 
edge connecting c and d by the color connecting a and b, 
then {c}U{d}UL is a rainbow subgraph, too. We will give 
such colorings in all of the 34 cases. It is enough to choose 
the ordered quadruples (a, b, c, d) in an appropriate way.  

 

Remember that the vertices of the graph are labeled by 
the numbers 1,2, …, 17. We will order to every rainbow- 
subgraph a two element subset in such a way, that we 

identify the rainbow-subgraph with the two vertices that 
are not the vertices of it. 

 

With this notation and our construction, for every 
quadruplet (i, j, k, l) we are able to establish a coloring so 
that the pairs {k, l}, {j, k}, {i, l}, and {i, j} represent a 
rainbow-subgraph. In 17 cases we will make the coloring 
so, that (i, j, k, l) = (x, x+2, x+1, x+4), where x runs 
through the elements of the residue classes modulo 17. 

 

 

k-l = -3 (mod17) ,  

 

 l-k = 3 (mod17)  

 

j-k = 1 (mod17),     

 

k-j = 1 (mod17)  

  

i-l = -4 (mod17) , 

 

 l-i = 4 (mod17)  

  

i-j = -2 (mod17) , 

 

 j-i = 2 (mod17)  

 

Therefore we get all the pairs of indices that have the 
difference (depending on the order) 1, 2, 3, 4,  -1, -2, -3, -4 
modulo 17. 

 

We will make other 17 colorings, using this pattern. In 
this case we will have (i, j, k, l) = (x, x+6, x+1, x+8), 
where x runs through the elements of the residue classes 
modulo 17. In this case we have 

 

 

k-l = -7 (mod17) ,  

 

 l-k = 7 (mod17)  

 

j-k = 5 (mod17),     

 

k-j = -5 (mod17)  

  

i-l = -8 (mod17) ,  

 

l-i = 8 (mod17)  

  

i-j = -6 (mod17) ,  

 

j-i = 6 (mod17)  
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Therefore we get all the pairs of indices that have the 
difference (depending on the order) 5, 6, 7, 8,  -5, -6, -7, -8 
modulo 17. 

 

 

This completes the proof of our theorem. 

 

 

With the same method one can prove the following 
more general result: 

 

 

Theorem 5: If 𝑐1, 𝑐2, …, 𝑐𝑚  are colorings of the edges  
of  a complete graph with n=8k+1 vertices (labeled by 

the numbers 1,2,3,…, 8k+1) by  
𝑛 − 2
2

  fixed colors in  

such a way, that for every (n-2)-element subset H of the 

 vertices there is a j so that in the coloring 𝑐𝑗  all of the  

colors occur in the coloring of the edges of H, then  

 
1

4
∙ 
𝑛
2
  ≤ m.  
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