
On some problems of the International Hungarian 
Mathematical Competition 

 

József Borbély 
Óbudai Egyetem, Székesfehérvár 

pocok1999@freemail.hu 
 
 

Abstract—In this paper we present some nice, interesting 
and unusual problems of the International Hungarian 
Mathematical Competition. The problems we investigate all 
need a simple idea but it is not so easy to find the way how 
to solve them. We tried to select the most uncoventional 
ones. We give a solution for all these problems but it is 
highly recommended to the reader searching for other 
solutions and generalizations. 

Our paper is dedicated to the memory of the excellent 
mathematics teacher György Oláh (1940-2012). 

 

 

I. INTRODUCTION 

 
In 1991 Mihály Bencze gave the idea of a Hungarian 
mathematical contest giving the chance to all Middle 
Hungarian high school students in Carpathian Basin to 
compete and to solve mathematical problems of higher 
level. In 1992 György Oláh organized the first time the 
International Hungarian Mathematical Competition in 
Révkomárom. Its Hungarian name is Nemzetközi Magyar 
Matematikaverseny. The competition is held every year 
in spring. It is a relevant aspect of the organizers to give 
the chance to all of the Hungarian regions to receive the 
talented students and their teachers. The programme 
usually lasts four or five days. The main regions are 
Hungary and the Hungarian territories before the First 
World War. The competition plays an essential role in 
cultural and mathematical aspect. It is an appropriate tool 
to strengthen the togetherness of Hungarian people and to 
compare the mathematical culture of the distinct regions. 
In this paper we present four nice and really hard 
problems from the history of the competition. The 
solution of the problems seems to be easy but it is not so 
simple to find the key idea of them. These problems 
illustrate the high standard of the Hungarian mathematics. 
 
 

II. DISCUSSION 

 

 
In this section we present four problems of the 
competition. We chose these problems because their 
solution needs an unusual mathematical idea. We give 

one detailed solution for each problem. The solutions can 
be written very short, but the mathematical background of 
them is deep. The way to solve these problems leads 
through a lot of "aha-observations".  
Problem 1 was suggested in 1995 by Sándor Katz. One 
can find the following solution in [1]. 

 
 
 

 
Problem 1. Let {��, �� ,…, ��} a set consisting of 

positive real numbers. We consider the sums of the 
elements in all nonempty subsets of the given set. Prove 
that we can divide these sums in n classes such that in 
each class the quotient of the maximal and the minimal 
sum is at most 2. 

 
Proof:  
 
We can assume without the loss of generality that  
��,≤��≤…≤��. Now we consider the numbers 

��=�
�(�� � �� �…+��) for i=1, 2,…, n. (1) 

We will prove that all the sums of the nonempty subsets 
of the set {��, �� ,…, ��} lie on the closed 
intervals[�� �,2��]. Assume indirectly that our statement is 
false. That means there is a sum s and a positive integer k 
with property 1≤k≤n such that 2�	 
s
 �	��. By the 
inequality 2�	 
s (or equivalently �� � �� �…+�	< s) 
there is a summand in the representation of s being greater 
than �	. Thus we have �	�� 
 s. (2) 

Summing up the two inequalities we get  
�� � �� �…+�	�� 
2s. (3) 
This contradicts the inequality s
 �	��.QED 
 
Problem 1 is nice because it states that the behaviour of 

the given sums cannot be absolutely irregular. The idea 
how to define the numbers �� is essential and is not trivial. 

 
Problem 2 was suggested by Sándor Kántor in 2010. 

One can find  essentially the same solution in [3]. 
 
 
Problem 2. n people are standing on a line, where n is a 

positive integer greater than 2. Their heights given in 
inches are the terms of a strictly monotone increasing 
sequence from the left to the right. In every minute every 
two of the people can change their position, but every 
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person can change his position at most once in a minute. 
At most how many minutes do they need to stand in 
alphabetical order from the left to the right,if the names of 
the persons are different? 

 
Answer: 2 
 
Proof: 
 
It is easy to see that one minute is not always enough. 

To prove that two minutes are always enough we will use 
algebraic terminology. The key idea is to use the fact that 
all elements of the symmetric group �� are products of 
disjoint cycles. We label the people in their first position 
from the left to the right with numbers 1, 2, ..., n. Let 
�  
denote the position of the ith person in the alphabetical 
ordering for i=1,2,...n. It is clear that 
�, 
�,…, 
� is a 
permutation of the numbers 1, 2,..., n. Let us write this 
composition as a product of disjoint cycles. We can 
imagine every such cycle as a regular polygon with 
labeled vertices. It is enough to see how to achieve our 

goal in a cycle. We have to rotate by 
�π

	  where k is the 
length of the given cycle. It is known that all rotations can 
be considered as a composition of two appropriate 
reflections. We can choose two reflections in such a way 
that they map the polygon into itself and their composition 

is a rotation by 
�π

	 . QED 

 
Problem 2 was unusual in many aspects. Our solution 

clears the algebraic background of the problem (with a 
clever geometric argument). Otherwise the problem is 
interesting because the result usually does not depend on 
n. 

Problem 3 was suggested by József Borbély in 2010. 
 
Problem3: Let n be a fixed positive integer and ��, �� 

,…, �� nonnegative real numbers. It is known that ��� � ���� �� ��� � �� � ��� �…+n��=2012. Find 
the minimal possible value of the sum �� � �� �…+��. 

 

Answer: 
�������������

�  

 
Proof: 
 
Let S denote the sum �� � �� �…+��. By the 

nonnegativity of the numbers �� clearly we have 
2012≤S·(S+n). (4) 

So we have to solve the quadratic inequality  
0≤��+nS-2012 in S. (5) 

This leads us to 
�������������

� ≤S (6) 

(Here we use the fact that all �� 's are nonnegative). The 
inequality is sharp, because we can choose the numbers 
such that �� � �� �…� ����=0,  

�� ���������������
� . QED 

 

One can easily understand the solution of Problem 3. 
But the problem was solved only by two contestants 
during the competition and noone came up with the idea 
given in our solution. Both contestants gave a solution via 
a clever changing argument. The key idea of them was 
that by changing a positive real number ��with property  

i< n to ��=0 will decrease S. Thus we can achieve the 
minimal value of S if we choose �� � �� �…� ����=0, 

�� ���������������
� .  

One can read both of the given solutions in [3].    
Problem 4 was suggested by József Borbély in 2012. 
 
Problem 4. A and B play the following two-player 

game. At the beginning of the game the numbers 1, 2, 3,..., 
2012 are written on the board. In each turn a player deletes 
exactly one number of these numbers. A begins. The game 
ends if there are only two numbers on the board. If the 
absolute value of their difference is a prime number 
greater than a fixed positive integer k than B wins, 
otherwise A is the winner. Give the values of k such that 
player B has a winning strategy. 

 
Answer: If k≤996, than B wins, otherwise A. 
 
Proof: 
 
At first we will prove that for 997≤k A has a winning 

strategy. The numbers 998, 999, 1000,..., 1006 are not 
primes. This means that for 997≤k B can only win if the 
absolute value of the difference of the last two numbers is 
a prime number greater than 1006. It is easy to verify that 
B cannot reach such a difference. If A deletes always the 
minimal number he can find on the board than the 
absolute value of the difference of the last two numbers is 
maximum 1006. Thus for 997≤k A has a winning strategy.  

Otherwise for k≤996 player B can win the game. To 
prove our statement we will consider disjoint two-element 
subsets of the set {1, 2,..., 2012}$ such that the absolute 
values of the differences in all these pairs are prime 
numbers greater than 996. For 1≤i≤9 let be the number 
i+2003 the pair of i. For 10≤ j≤ 1006$ let be the number 
j+997 the pair of j. So in each turn depending on the 
choice of A player B has to delete the pair of the number 
deleted by A in his last step. QED 

 
Noone could solve this problem during the competition. 

Some contestants gave a winning strategy for A if 997≤ k, 
but noone could see the "pairing-idea". But even that 
makes this problem unusual. 

 
Problem 5 was proposed by József Borbély in 2011. 
 
Problem 5. Let t(n) denote the number of the distinct 

prime divisors of the positive integer n. There are 
infinitely many positive integers n, such that t(��+n) is 
odd, and there are infinitely many positive integers n, such 
that t(��+n) is even.  

 
Proof: 
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Let us consider a coloring of the positive integers with 

the following rules: we color positive integers having an 
even number of distinct prime divisors by red, the positive 
integers having an odd number of distinct prime divisors 
are colored by blue. For every positive integer n the 
numbers n and n+1 are relatively primes, that means they 
do not have any common prime divisor. It is 
straightforward that there are infinitely many red and 
infinitely many blue numbers. Let us take a red positive 
integer m. Let k be the minimal positive integer such that 
m+k is blue. In this case m+k-1 can play the role of the 
number n, because t��� � � � ���� � ��  is odd.  

We have to prove that there are infinitely many positive 
integers n such that t(��+n) is even. Consider the numbers !	, !	+1, …, 3·!	. The number !	 is blue, the number 
3·!	 is red. The number of the elements in the set  

{!	, !	+1, …, 3·!	} is odd. That means thera are two 
neighbouring numbers in this set having the same color. If 
we denote these numbers by n and n+1, then t(��+n) is 
even. The sets {!	, !	+1, …, 3·!	} are disjoint (k=1, 2, , 
3, …). Thus our proof is complete, we proved the required 
results. QED 

 
Problem 5 was solved by three participiants. Two 

contestants solved only the case, if t(��+n) is odd. 
 
This problem can be generalized. We formulate and 

prove the general statement in the following 
 
Generalization: For fixed positive integer k there are 

infinitely many positive integer numbers n such that the 
sum t(n+1)+t(n+2)+…t(n+k) is odd and there are 
infinitely many positive integer numbers n such that the 
sum t(n+1)+t(n+2)+…t(n+k) is even. 

 
Proof of the generalization: 
 
We will prove that for a fixed k there are infinitely 

many positive integers n such that t(n+k)-t(n) is an odd 
number.  

Let us consider the same coloring as in the proof of 
Problem 5. Let p be a prime such that k is not divisible by 
p. In this case the numbers t(�") and t(p�") do not have 
the same parity. Consider the set of the positive integers m 
that are divisible by k and have the property �"≤m≤ p�". 

t(�") and t(p�") do not have the same parity, thus there 
are two elements in this set having not the same parity, 
whose difference is equal to k. That means we found a 
number n such that t(n+k)-t(n) is an odd number. We can 
choose the number r free and so we have infinitely many 
positive integers n such that t(n+k)-t(n) is an odd number. 

If t(n+k)-t(n) is an odd number, then  
 
the difference 
 
t(n+1)+t(n+2)+…t(n+k)- 
-�#�$� � #�$ � �� � � #�$ � % � ��� 
 
is odd or equivalently one of the numbers  

t(n+1)+t(n+2)+…t(n+k) and 
t(n+1)+t(n+2)+…t(n+k) is odd, and the other is even. 

This completes the proof of the required result. 
 
 
Problem 6 was proposed by Mihály Bencze in 2010. 
The following solution can one find in [3]. 
 
Problem 6. The sequence ��� is defined recursively.  
���=1 and �� � ���������=n, if n≥1. Then for n≥2 hold 
the following inequalities:  
 

&'���
� � �(

�
<1+�

� ) �	��	*� <������
��  

 
Proof: 
 
The key of the solution is that one has to use induction 

in an unusual way. The proof is based on the following 
lemma: 

 

Lemma: ��-1<���<�� � �, when n≥2 (7) 
 
Proof of the lemma:  
 
We prove our lemma with induction. If n=2 or 3, then 

the statement of the lemma is true, because ���=�
� and 

�+�=�
+.  If the inequality  

 

��-1<���<�� � �  
 
holds for a fixed positive integer n, then 
 �
������< �

��,-�<
�
��. (8) 

 
Thus we proved the upper bound. We have to prove the 

lower bound. It is enough to verify the inequality  
 

�� � � - 1< �
������. (9) 

 
But this inequality is obviously true, because  
 

�� � � - 1 = �
������ < �

������. (10) 
 
So we made the induction step, the proof of the lemma 

is complete. 
 
With this lemma we can prove the inequalities of the 

problem easily. By the lemma we have 
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k-2��+1<�	�<k-1, if k≥2. (11) 
 

It is a known fact that ) ��	*� =������
� . (12) 

 
Thus we have  
 
������

�  – 1 - 2) ���	*� < 

) .� � � � ���/�	*� < 

) �	��	*� <
������

� . (13) 
 
By the inequality on the right hand side we have  
 

1+�
� ) �	��	*� <1+ ������

��  = ������
�� . (14) 

 
We proved one of the given inequalities. We have to 

prove that  
 

&'���
� � �(

�
<1+�

� ) �	��	*� . (15) 

 
It is enough to verify that  
 

) ���	*� <n'���
� . (16) 

 
We will prove this with the Cauchy-Schwarz inequality.  
 
Let �	 be equal to 1, if 1≤k≤n and let 0	 be equal to 

��, if 1≤k≤n. The Cauchy-Schwarz inequality states that 
 

) �	�	*� 0	≤1) �	��	*� � ') 0	��	*� �. (17) 

 
Thus we get the required result. QED 
 
Noone was able to solve Problem 6 during the 

competition. The critical point of the solution was to find 
the statement of the lemma. Without this observation the 
solution of the problem seems to be hopeless. We think 
that this makes Problem 6 really hard. 

 

III. REMARK 

 
After the 21th competition we hope that it will be held 

even many years later. We want that the Hungarian high 
school students will train their mathematical abilities 
solving the problems of the International Hungarian 
Mathematical Competition. We are sure that the 
competition must be kept alive because of its high 
standards in every aspect. 
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