
Aspect Oriented Software Design

Approach and Implementations

Gergely Z. Tóth* and Éva Hajnal**
* evosoft Hungary Ltd, Budapest, Hungary

** University of Óbuda/AREK, Székesfehérvár, Hungary

gergely.toth@evosoft.com

eva.hajnal@arek.uni-obuda.hu

Abstract—Nowadays we can face a new software crisis in

Object Oriented Programming (OOP). Advantages of

Aspect Oriented Programming (AOP) against the OOP

method is really glaring in the development of complex

software systems. The handling of crosscutting is hard in

OOP, especially if a component or an object uses the

services of another component or object for the execution of

its own work. Software design patterns are mitigating this

problem, for suggesting templates to the handling of the

most frequent interactions, but do not give general solutions.

With the enlargement of the complexity of the software, the

numbers of implicit and explicit dependencies are

increasing. The consequence of it, the maintenance of the

system and the integration of new functionality became

more difficult. The new paradigm of AOP shows a

competitive methodology for solving these problems.

I. INTRODUCTION

How Ada Augusta Byron could be surprised if she
could nowadays study the science of computer
programming created by her. Almost each area of our life
is affected by some kind of computing device. And these
devices are controlled exclusively by the descendants of
her first instructions sequences represented by punch
cards: complex software systems.

In the beginning there were ―magicians‖ creating
computer programs using their intuition to figure out the
proper order of machine instructions in order to solve
mathematical problems. The early 50’s have raised the
abstraction of the functionality – as the code gurus created
the FORTRAN and other ―high level‖ languages for
themselves. To the end of 70’s these ―Wizards of OS‖
were absolutely extinct: they were replaced by craftsmen
of structured programming manufacturing the code
instead of perceiving it. Their knowhow was founded by
Dijkstra and Wirth, and their hammer was given them by
Ritchie. With their common methodology and tools they
were able to construct more complex software systems
that even earlier did.

The wheels were turning that a new abstraction was
involved: the paradigm of Object Oriented design. The
spotlight was moved from the algorithms to the
architecture, and the new hero – ser Object – can win over
even more headed dragons of problems to solve.

However it was only a single victory in the heroic war
against the complexity. Each battle won covered more
complex tasks to be solved, and the long-standing
weapons had to be replaced with more advanced ones. Ser
Object has taken the Shield of Design Patterns, he put on

the Armor of Java and .Net Environments, and finally he
mounted the Stallone of Object Relation Mapping.

As the complexity was grown we had to be faced to a
new problem – called ―crosscutting‖. Despite of its
excellent tools and methodology, there were more and
more problems the Object Oriented approach had
difficulties to manage with. Uncovering the structure of
the problem and recognizing the artifacts supporting the
final solution is the good start to construct the system.
However, fulfilling the requirements step by step may lead
to unclear, unmanageable code with unpredictable internal
impacts between the components, because the
requirements simply refuse to be independent.

This is one of the actual problems of the software
manufacturing – probably the biggest one. Nowadays
huge effort is done to find new tools, methodologies or
even a new approach to manage these interdependencies.
Fortunately we have a promising direction to reach these
goals: the Aspect Oriented Software Design.

II. ASPECT ORIENTED APPROACH

A. Why Aspect Oriented Design

To understand why the Aspect Oriented Design was
raised we should start studying its ancestor, the Object
Oriented Approach. It is widely popular because of the
ease of its use. OO programming came to solve two
serious problems: designer modularity and data
abstraction. OO programming presented tools and
methodology to better decomposition of the problem –
like classes, objects, encapsulation, inheritance,
polymorphism, etc.

However, decomposing the problem into classes may
easily lead to forgetting general concerns impacting each
of the atomic assemblies or at least most of them. For
example, while the specific services got separated into
distinct classes, general tasks – like logging or authorizing
– could be repeatedly implemented in each class
addressing them. Actually, multiple inheritances can solve
these problems, but because the huge amount of ambiguity
they can involve, they are banned from the most object
oriented languages.

Object oriented programming also has difficulty dealing
with global information. Functionality that requires the
involvement of several different objects results in
interdependency between those objects/components. This
makes the application susceptible to the implementation
changes of a dependent object/component.

64

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary

mailto:gergely.toth@evosoft.com
mailto:eva.hajnal@arek.uni-obuda.hu

Maintenance and enhancement are also problems, as the

interactions between these objects/components are
typically hard coded within the containing object.

 Messy object architectures occur when something that
the application needs to do requires the involvement of
many different objects. Figure 1 introduces such an
application. Logging and Persistence are not business
logic requirements, but those are internal or system level
requirements. So if you think in a concern point of view
system has 3 concerns:

1. Business logic concern (core concern)

2. Logging concern

3. Authorization concern.

For example if Logging is to be added to Accounting,
ATM and Database components, this involves changes in
all three components. Since there are Client-Server
interactions between these modules and the Logging
module, the traditional approach dictates the server to be
invoked by the clients as shown in Figure 2.

B. Crosscutting concerns, aspects and tangled code

According to Kiczales [6], our problem is lies in the
existence of crosscutting concerns. That is, concerns
which cannot be constrained easily into modular form.
These concerns destroy the modularity that we strive for
in our OO programs. They introduce related or even
duplicated code into one or more modules.

Examples of crosscutting concerns are not hard to find
in large systems. A group of crosscutting concerns that
seem common to many programs already exists. In the
example application of Figure 1 Logging and Persistence
are such kind of concerns. Some other examples of these

are performance, synchronization, communication,
graphics manipulation and debugging.

According to the IEEE definition [1][6] a concern
should be ―... those interests which pertain to the system’s
development, its operation or any other aspects that are
critical or otherwise important to one or more
stakeholders‖. A simple concern, non-crosscutting
concern is also known as core concern or requirement. In
the example of Figure 1 Main Logic is a core concern. A
core concern can be easily encapsulated into a generalized
procedure – i.e. a requirement can be implemented by a
classic OOP component.

Crosscutting concerns affect several subsystems. On
Figure 1 Logging and Authorization are crosscutting
concerns as they are affects several components.
Crosscutting concerns can be implemented by aspects. An
aspect then is a representation of a crosscutting concern. A
component is a modular unit of functional decomposition,
which addresses a specific concern or function of the
system. An aspect is similar, in that it addresses a concern
of the system, but it cannot be cleanly decomposed into a
component.

As Figure 2 shows, in a typical OOP approach, cross-
cutting behaviors are factored into separate classes, which
are then instantiated and called directly by business logic
code. This forces business logic code to be intimately
aware of these cross-cutting concerns and creates
numerous problems for the architecture and code quality
of an OOP application.

1. The number of lines of code increase. Cross-cutting
concerns tend to accumulate: a business logic method
that ought to be focused on calculating shipping for an
online order may end up saddled with boilerplate code
dedicated to creating an audit trail, authenticating the
user, notifying the UI that a change has occurred, and
executing its task on a worker thread.

2. An enormous amount of code is duplicated, as these
boilerplate calls are often copied and pasted into new
methods, which can lead to duplication of bugs and
increases the difficulty of refactoring the cross-cutting
concerns. In other words, OOP applications end up
committing one of the very evils that OOP was
designed to prevent: code duplication.

ATM

Database

Logging

Authorization

Accounting

LoggingAuthorization

Implementation
modules

Bookkeeping

Audit

Accounting

Viewpoints

Concerns Main Logic

Figure 1: A typical application

Logging

Accounting

ATM

Database

API invocations

Figure 2: Traditional implementation

Figure 3: The number of defects in a feature is proportional to the

size of the component. [2]

65

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary

3. Business logic code becomes entangled with cross-

cutting code, making it harder to find the actual parts
of the routine dedicated to implementing business
rules. This makes applications harder to understand,
debug and modify.

4. Business logic code is tightly coupled to crosscutting
concerns. If a change to transaction handling requires a
change to the public interfaces of the transaction
handling component, then potentially all of the code
that uses that component must change as well.

The end result of this approach to crosscutting concerns
is a code base that is hard to author, hard to maintain, and
hard to debug. A study published in IEEE Transactions on
Software Engineering [2] demonstrated that the number of
defects in a feature is correlated to two factors:

1. the number of lines of code implementing that feature;
and (see Figure 3)

2. the scattering of that feature throughout numerous
source code artifacts. (see Figure 4)

The study, based on the analysis of three widely used
open-source projects, also showed that cross-cutting
concerns – whose implementation is always very scattered
– have more defects than classical business features.
Using a rank-order correlation coefficient, the authors
found a strong correlation between a feature's bug count
and that feature's diffusion across multiple classes and
methods. "Crosscutting concerns" in traditional software,
noted the researchers "are hard to find, understand, and
work with."

C. …And how AOP deals with them

Now that the nature of the problem is understood, the
next logical step is to provide a solution. The Aspect
Oriented Paradigm simply reverses the invocation routes
as seen in Figure 5.

As you can see in Figure 5, the main difference with the
traditional approach, that AOP moves the responsibility of
the invocation to the server side. Rather than the clients
should know about the aspects concerning them, the
aspect itself have to ―connect‖ the clients it support.

The structure is very similar to the Observer design
pattern described in [3]. However, to avoid unnecessary
impact to the client modules – they should not be ―know‖

about a new aspect was implemented – they should not
send notifications to the server/observer. So the aspect
itself should ―inject‖ the invocations of itself into the
clients’ code.

Kiczales’ solution [6] is to provide support in the
language (or provide another language) for defining
aspects along with the already present support for defining
components. This new approach to programming is
known as Aspect Oriented Programming (AOP) and is
still in its infancy. AOP puts a greater focus on
crosscutting concerns than is present in OO or many other
language paradigms. It allows aspects to be cleanly
separated and placed into modules that can be composed
with other components (including other aspects) in the
system.

D. AOP Development Stages

In many ways, developing a system using AOP is
similar to developing a system using other methodologies:
identify the concerns, implement them, and form the final
system by combining them. The AOP research community
typically defines these three steps in the following way:

1. Aspectual Decomposition – In this step, you

decompose the requirements to identify crosscutting
and core concerns. This step separates core-level
concerns from crosscutting, system-level concerns. For
example, in the Typical Application example (see
Figure 1), suppose the following concerns: core
business logic, logging, cache management, thread
safety, contract enforcement, persistence, and
authorization. Of these, only the core business logic is
the core concern of Typical Application. All other
concerns are system wide concerns that will be needed
by many other modules and therefore are classified as
crosscutting concerns.

2. Concern Implementation – In this step, you implement
each concern independently. Using the previous
example, developers would implement the business
logic unit, logging unit, authorization unit, and so

Accounting

ATM

Database Logging

Logging Aspect

Automatic weaving
invocations

API invocation

Figure 5: Implementation by AOP

Figure 6: AOP development stages. [8]

Figure 4: As a feature becomes more scattered through the code

base, the odds that it will suffer from more defects increase
dramatically. [2]

66

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary

forth. For the core concern of a module, you can utilize
procedural or OOP techniques as usual.

For example, let’s look at authorization. If you are
using OOP techniques, you may write an interface for
the authorization, a few concrete implementations for
it, and perhaps a class to abstract the creation of the
authorization implementation used in the system.
Understand that the term ―core‖ is a relative term. For
the authorization module itself, the core concern would
be mapping users to credentials and determining if
those credentials are sufficient to access an authorized
service. However, for the business logic module, the
authorization concern would be a peripheral concern
and so would not be implemented in the module at this
time.

3. Aspectual Recomposition – In this step, you specify
the recomposition rules by creating modularization
units, or aspects. The actual process of recomposition,
also known as weaving or integrating, uses this
information to compose the final system. For our
example, you would prescribe that each operation
must first ensure that the client has been authorized
before it proceeds with the business logic.

III. ASPECTJ: AN AOP LANGUAGE

AspectJ is a general-purpose, aspect-oriented extension
to the Java programming language. Given that AspectJ is
an extension to Java, every valid Java program is also a
valid AspectJ program.

AspectJ consists of two parts: the language
specification and the language implementation. The
language specification part defines the language in which
you write the code; with AspectJ, you implement the core
concerns using the Java programming language, and you
use the extensions provided by AspectJ to implement the
weaving of crosscutting concerns.

The language implementation part provides tools for
compiling, debugging, and integrating with popular
integrated development environments (IDEs).

In AspectJ, the implementation of the weaving rules by
the compiler is called crosscutting; the weaving rules cut
across multiple modules in a systematic way in order to
modularize the crosscutting concerns. AspectJ defines two
types of crosscutting: static crosscutting and dynamic
crosscutting.

Dynamic crosscutting is the weaving of new behavior
into the execution of a program. Most of the crosscutting
that happens in AspectJ is dynamic. Dynamic crosscutting
augments or even replaces the core program execution
flow in a way that cuts across modules, thus modifying the
system behavior.

For example, if you want to specify that a certain action
be executed before the execution of certain methods or
exception handlers in a set of classes, you can just specify
the weaving points and the action to take upon reaching
those points in a separate module.

Static crosscutting is the weaving of modifications into
the static structure – the classes, interfaces, and aspects –
of the system. By itself, it does not modify the execution
behavior of the system. The most common function of
static crosscutting is to support the implementation of
dynamic crosscutting. For instance, you may want to add
new data and methods to classes and interfaces in order to

define class-specific states and behaviors that can be used
in dynamic crosscutting actions. Another use of static
crosscutting is to declare compile-time warnings and
errors across multiple modules.

A Join Point is an identifiable point in the execution of
a program. Join cuts are defined by languages so different
languages support different join cuts. AspectJ supports 11
different join points. It could be a call to a method or an
assignment to a member of an object. In AspectJ,
everything revolves around join points, since they are the
places where the crosscutting actions are woven in.

A pointcut is a program construct that selects join
points and collects context at those points. For example, a
pointcut can select a join point that is a call to a method,
and it could also capture the method’s context, such as the
target object on which the method was called and the
method’s arguments.

An advice is the code to be executed at a join point that
has been selected by a pointcut. Advice can execute
before, after, or around the join point. Around advice can
modify the execution of the code that is at the join point, it
can replace it, or it can even bypass it. Using an advice,
we can log a message before executing the code at certain
join points that are spread across several modules.
Pointcuts and advice together form the dynamic
crosscutting rules. While the pointcuts identify the
required join points, the advice completes the picture by
providing the actions that will occur at the join points.

The introduction is a static crosscutting instruction that
introduces changes to the classes, interfaces, and aspects
of the system. It makes static changes to the modules that
do not directly affect their behavior. For example, you can
add a method or field to a class.

The compile-time declaration is a static crosscutting
instruction that allows you to add compile-time warnings
and errors upon detecting certain usage patterns.

The aspect is the central unit of AspectJ, in the same
way that a class is the central unit in Java. It contains the
code that expresses the weaving rules for both dynamic
and static crosscutting. Pointcuts, advice, introductions,
and declarations are combined in an aspect. In addition to
the AspectJ elements, aspects can contain data, methods,
and nested class members, just like a normal Java class.

A. Traditional Application example in AspectJ

1: public class Logging {
 2: public void Trace(){
 3: System.out.println("Logging.Trace");
 4: }
 5: }
 6:
 7: public class ATM {
 8: public void foo(int number, String name){
 9: System.out.println("ATM.foo");
10: }
11: }
12:
13: public aspect Log{
14: pointcut callPointcut() :
15: call(void ATM.foo(int, String));
16: before() : callPointcut() {
17: System.out.println("Log aspect");
18: Logging logger = new Logging();
19: logger.Trace();
20: }
21: }

 The example code above illustrates the implementation
model of Figure 5. The Logging and ATM modules are

67

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary

traditional Java classes not knowing about each other.
There is a Log aspect declared in the 13

th
—20

th
 lines to

link these classes together. In the 14
th

 and 15
th

 lines it
declares a pointcut with the name of callPointcut. This
pointcut will be in effect whenever a call will be made to
the foo method of the ATM class. (The full signature
should be presented to distinguish the overrides of the
same function.) Then the 16

th
..20

th
 lines specify an advice

to be executed just before a join point matching to the
pointcut callPointcut is reached.

IV. POSTSHARP: AN AOP FRAMEWORK

IMPLEMENTATION

As an approach to software development, aspect-
oriented programming can be implemented through
different technologies: source code weaving,
bytecode/MSIL weaving, or dynamic proxies. Many tools
are available on the market for most programming
languages. Although all tools support basic features, they
largely differ in their ability to scale to complex projects
and large teams.

PostSharp relies on post-compilation, also called static
weaving or MSIL/bytecode rewriting, which enhances the
output of the compiler by producing a new executable
program that includes additional behaviors added by
aspects.

Instead of introducing a new programming language,
PostSharp rather extends the existing ones with the
capability of specifying aspects to resolve the problem of
crosscutting. It uses static and dynamic pointcuts as
AspectJ does, but PostSharp let the programmers to use
their comfort programming languages in .Net
environment.

A. “Hello World” example with PostSharp

1) Create core component
 The ―core component‖ is as simple as possible: it

writes out the classic ―Hello World‖ message, end exits.
To see the effects of AOP logging, the component leaves
traces also when it was created and disposed.

using System;

class Program : IDisposable
{
 static void Main(string[] args)
 {
 new Program(args).Run();
 Console.WriteLine("Press any key...");
 Console.ReadKey();
 }

 public Program(string[] args)
 {
 Console.WriteLine("Program created");
 }

 public void Run()
 {
 Console.WriteLine("Hello World!");
 }

 public void Dispose()
 {
 Console.WriteLine("Program disposed");
 }
}

2) Create a traditional attribute class
To extend the program with logging capabilities, you

should first add a reference to the PostSharp.dll
component.

Your aspect will take the form of a .NET attribute that
is applied to your code using declarative syntax. Create a
new class ending in the suffix Attribute, such as
TraceAttribute:

using System;

public sealed class TraceAttribute : Attribute
{
 private readonly string _category;

 public TraceAttribute(string category)
 {
 this._category = category;
 }

 public string Category
 {
 get { return _category; }
 }
}

3) Derive from OnMethodBoundaryAspect
To make this class an aspect, it must derive from an

aspect parent class defined by PostSharp. Import the
namespace PostSharp.Aspects, and declare that your
aspect will derive from OnMethodBoundaryAspect.

A last thing: the aspect must be made serializable.

using PostSharp.Aspects;

[Serializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect

4) Implement Advices
Advices are the notifications provided when you enter

and exit a method. Add handlers for the OnEntry and
OnExit events to capture these notifications. These events
are where your aspect will provide its services.

public override void OnEntry(MethodExecutionArgs args)
{
 Console.WriteLine("{0}: Entering {1}.{2}.", Category,
 args.Method.DeclaringType.Name,
 args.Method.Name);
}

public override void OnExit(MethodExecutionArgs args)
{
 Console.WriteLine("{0}: Leaving {1}.{2}.", Category,
 args.Method.DeclaringType.Name,
 args.Method.Name);
}

5) Apply Aspects to Methods
A .NET attribute declaration is all it takes to wire your

new aspect into one or more existing class methods. Add
your aspect to an entire class to add your new behavior to
all the class methods, or apply it only to individual
methods.

[Trace("Trace Message")]
class Program : IDisposable

6) Multicasting attributes: a “real pointcut”
Using attributes to mark the join point in the source is a

very elegant feature; however it involves some changes in
the core component when a new aspect is inserted into the
system. There is another way to specify the scope of an
aspect without touching other parts of the code: applying

68

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary

the aspect attribute to the assembly itself. You only should
insert a following code before any class code in the aspect
module:

[assembly: Trace("Trace Message",
AttributeTargetTypes="Prog*")]

V. CONCLUSION

Though AOP/AOSD approach has a more than twelve
year old past, it is hardly can be seemed to be widely
spread. It cannot be obvious concerning the height of the
problem it is targeted to solve.

Crosscutting concerns could be the most frequented
source of the lack of maintainability of the code and
leaving hidden defeats in it.

May be the thin language support was the reason why
AOP was not accepted widely in software manufacturing.
But today, AOP is supported in most languages and
platforms. AspectJ, the reference AOP implementation, is
the leading tool for Java. For Microsoft .NET, PostSharp
is by far the most advanced and mature framework.

The best way for teams to learn AOP is to begin with
simple aspects and add them to non-critical applications.
For instance, developers can use diagnostic aspects during
development and remove them from the production
release, all without any impact on code. Then, as
developers become more confident in AOP, they can
begin to add more complex aspects in more critical
applications.

By embracing aspect-oriented programming today,
engineers are moving toward software of higher quality
and lower complexity.

REFERENCES

[1] M. Clifton ―Aspect Oriented Programming / Aspect Oriented
Software Design‖, Code Project Publication, April 2003
Available online at http://www.codeproject.com/ Articles/ 4039/
Aspect-Oriented-Programming-Aspect-Oriented-Softwa#2

[2] Eaddy M., Zimmerman T., Sherwood K., Garg V., Murphy G.,
Nagappan N., Aho A. ―Do Crosscutting Concerns Cause
Defects?‖ IEEE Transactions on Software Engineering, Vol. 34,
No. 4, July/August, 2008.
Available online at http:// citeseerx.ist.psu.edu/ viewdoc/
download? doi=10.1.1.164.7117 &rep=rep1 &type=pdf

[3] G. Fraiteur ―Producing High-Quality Software with Aspect-
Oriented Programming (Technical Whitepaper)‖, SharpCrafters
s.r.o., July 2011

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides ―Design
Patterns: Elements of Reusable Object-Oriented Software‖
Addison-Wesley Professional, November 1994.

[5] T.J. Highley, M. Lack and P. Myers ―Aspect Oriented
Programming – A critical analysis of a new programming
paradigm‖, University of Virginia Department of Computer
Science, Programming Languages – CS655 Semester Project

[6] IEEE ―1471Conceptual Framework‖,
Available online at http://www.iso-architecture.org/ 42010/ cm/
cm-1471-2000.html

[7] G. Kiczales, J. Lamping, A. Mendhekar, et al., ―Aspect-Oriented
Programming‖, Xerox PARC, Palo Alto, CA. June, 1997.

[8] R. Laddad ―AspectJ in Action‖, Manning Publications Co., 2003

[9] K. Ch. Ravipati ―Introduction to Aspect Oriented Programming‖,
M.Tech IInd Year. School of Info. Tech., August 2005

[10] Xerox’s AspectJ Team ―The AspectJ™ Programming Guide‖,
Xerox Corporation, 2002-2003,
Available online at http://www.eclipse.org/ aspectj/ doc/ next/
progguide/ index.html

69

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary

http://www.codeproject.com/%20Articles/%204039/%20Aspect-Oriented-Programming-Aspect-Oriented-Softwa#2
http://www.codeproject.com/%20Articles/%204039/%20Aspect-Oriented-Programming-Aspect-Oriented-Softwa#2
http://www.iso-architecture.org/%2042010/%20cm/%20cm-1471-2000.html
http://www.iso-architecture.org/%2042010/%20cm/%20cm-1471-2000.html
http://www.eclipse.org/%20aspectj/%20doc/%20next/%20progguide/%20index.html
http://www.eclipse.org/%20aspectj/%20doc/%20next/%20progguide/%20index.html

