
The netdiff, a Module to Find Differences Between
Complex Networks

Árpád Horváth
Alba Regia University Centre of Óbuda University,

H-8000 Székesfehérvár, Budai út 45., Hungary
Email: horvath.arpad@arek.uni-obuda.hu

Abstract—We have developed a module to find the differences
between complex networks. Its goal is to find the main properties
of the evolution of complex network from snapshots stored in
several files. The module can find new, removed and changed
nodes and edges in a network pair. We present its working
using the more then 2000 saved files of the software package
distribution of the Ubuntu distribution.

I. INTRODUCTION

Complex networks are systems that can be described math-
ematically as a series of graphs. These networks includes
usually more thousands or millions of entities, called vertices
or nodes. All pairs of these vertices can be connected or not.
These connections are called edges. In the case of Internet
the vertices are the routers and computers, and the edges are
the cables. In the Internet the vertices in the both end of the
edges have the same role: both of them can send or receive
data. These type of networks are called undirected networks.
One example of the other type of networks is the Web, where
the web pages are the vertices and the links are the edges. This
network is directed: the page having link to the other and the
linked page have different roles in the connection.

These networks change: vertices and edges appears and dis-
appears, therefore the another graph describes the network in
one moment and another graph in the other. The dynamics of
networks have been extensively studied in the last decade[1],
[2], [3]. These investigations needs to collect information
about these changes. The aim of the netdiff module is to
provide easy to use tools for the data requisition.

II. GENERAL PROPERTIES OF THE NETDIFF MODULE

The netdiff module have been written in Python language,
a general purpose dynamically typed object oriented program-
ming language [4]. The cxnet module is platform independent:
it can be used on Windows, on Linux on Mac Os X, and
on every operating system, where the Python interpreter is
available. It uses the igraph Python module to store and handle
the networks[5].

The network module can deals with a collection of network
data stored in one of the file formats that igraph can read.
These are in fact not different networks, but snapshots of the
same network in several moments. The netdiff module have
two stages to collect this data. In the first one it collects
the properties of the networks and the differences of two
successive snapshots of the network and it stores in Python

shelves, a binary file format can be handled by Python. This
shelves include serialized Python objects.

In the second stage netdiff can collect global properties of
the changes:

• What hours or week days are the most changes on?
• Is there preferential attachment in the network? Prefer-

ential attachment means, that the new vertices tends to
connect vertices with large degree.

III. THE DETAILS AND THE USAGE OF THE NETDIFF
MODULE

The netdiff module needs at least two networks with the
properties below:

• The vertices needs to have name argument. This must be
unique for every vertex.

• The networks need to store the date in a given string
format.

The netdiff module have four main classes.
• The Extractor class creates the list of the snapshots of

networks to process. It uses the NetworkProperties
and NetworkDiff classes to get the properties of
the networks and the differences between the successive
snapshots. It saves the differences into a Python shelf
named diffs.shelf and the properties of the net-
works into shelves named <filename>.shelf where
the <filename> is the name of the file the networks is
stored without the extension.

• The Summarizer class is responsible for the second
stage. This groups the network changes by the day of the
week and the hour of the day and collect the data that
need to check whether preferential attachment is present
in the network or not.

To create an object from the Extractor class one need
to give the parameters below:

inputs
The files we want to process. This can be a list of
file names (list of strings) or a pattern for the file
names (string) like "ubuntu*.graphmlz". In the
letter case the extraction goes through the files in
alphabetic order.

whatched_attributes
The attributes we pay attention to, when we
collect the changed vertices and changed

143

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary



edges. This is a dictionary with two keys:
vertex and edge. The value of the
whatched_properties["vertex"]
is a list of vertex attributes, and
whatched_properties["vertex"] is a
list of edge attributes.

stored_attributes
The attributes we want to store for new, deleted
or changed names. This is a dictionary with the
same two keys as in the whatched_properties,
but there can be attributes in the lists starting
with underscore, that implicate to store a value
given by a method of the vertex or edge instead
of attribute. If the string "_degree" is in the
stored_properties["vertex"] then the de-
gree of the vertex will be stored whenever a vertex
is stored.

time
The name of the graph attribute, that stores the date
and time of the stored snapshot. Its default value is
"time".

time_format
The format of the time attribute. Its default value
is "%Y-%m-%d %H:%M:%S GMT" so times like
"2012-09-01 00:00:07 GMT" can be inter-
pret by default.

Calling the run method of the Extractor object starts to
extract the differences and network properties from the files
of the input parameter.

The NetworkProperties object returns the proper-
ties of the network as a data structure easy to store
by the Extractor object. It does not deals with files,
just the Graph objects of the igraph module. A
NetworkProperties object can be created with the next
parameters:

network
The network object of the igraph.Graph class.

time
The same as in the Extractor class.

time_format
The same as in the Extractor class.

The NetworkDiff object returns the differences of two
networks as a data structure easy to store by the Extractor
object. We call the first network as reference network, and
the second one as network. New vertices or edges are ones,
that are absent from the reference network, and present in

the network, deleted vertices or edges are the ones that are
present in the reference network and absent in the network. A
NetworkDiff object can be created with the next parame-
ters:

refnet_properties
A NetworkProperties instance created using
the reference network.

net_properties
A NetworkProperties instance created using
the network.

whatched_attributes
The same as in the Extractor class.

stored_attributes
The same as in the Extractor class.

The netdiff module has two example script to easy made
the first and the second stages of the data processing,
extractor.py and summarizer.py respectively. This
can be copy and modify for the needs.

The netdiff module was prepared to handle big amount of
network date. If we want to break the running with a keyboard
interrupt. It closes the files, and at the next run the extraction
process will counted where it was finished.

IV. CONCLUSION

The netdiff module is a big help for finding the dynamic
properties of the networks. Our goal is to investigate the
more then 2500 snapshots of the software package dependency
network of the Ubuntu Linux distribution [6]. This snapshots
have been collected from the mid-July of 2012 until now in
every hours.

REFERENCES

[1] H. Jeong, Z. Néda, and A. L. Barabási, “Measuring preferential
attachment in evolving networks,” EPL (Europhysics Letters), pp.
567+, Feb. 2003. [Online]. Available: http://dx.doi.org/10.1209/epl/
i2003-00166-9

[2] M. E. J. Newman, Networks, An Introduction. Oxford University Press,
2010.

[3] M. Barthelemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani,
“Dynamical patterns of epidemic outbreaks in complex heterogeneous
networks,” JOURNAL OF THEORETICAL BIOLOGY, vol. 235,
no. 2, pp. 275–288, JUL 21 2005. [Online]. Available: http:
//arxiv.org/abs/cond-mat/0410330

[4] M. Summerfield, Programming in Python 3: A Complete Introduction to
the Python Language. Addison-Wesley Professional, 2010.

[5] G. Csárdi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal Complex Systems, p. 1695, 2006.

[6] A. Horváth, “Studying complex networks with cxnet,” Acta Physica
Debrecina, vol. XLIV, 2010.

144

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary


