
Extracting Information from Sensor Networks

through SQL-like Interface

Rezső Nagy*
* Óbuda University Alba Regia University Center, Székesfehérvár, Hungary

nagy.rezso@arek.uni-obuda.hu

Abstract— Software issues of sensor networks are concerned

for many years in the subject "Micro operating systems" for

the students of Faculty of Informatics, on the branch of

"Ambient Systems". Now we will develop this topic.

First of all, we will survey more detailed the TinyOS

operating system, widely used in wireless sensors.

Programming data collection from sensor networks can be a

very hard task, because their network functioning is rather

complicated. Furthermore the sensors dispose of extremely

limited resources, so they cannot be programmed one by one

on higher level programming languages.

Therefore in the above mentioned subject we will present

TinyDB as well. TinyDB is a query processing system for

extracting information from a network of TinyOS sensors,

providing a simple, SQL-like interface for the application

program.

I. INTRODUCTION

Sensor networks are cooperative networks built of
intelligent sensors. The sensors perform a common task in
a distributed way. Network connections are realized
usually by radio channels with low bandwidth. The
sensors forward the measured values or the data derived
from these values towards a central node: the base station
(or gateway node).

Figure 1. Scheme of a sensor network

The nodes of the sensor networks communicate with the
base station usually not directly, but through each other. In
the subject "Micro operating systems" we survey also

some routing algorithms used in sensor networks. Their
network functioning is rather complicated. Furthermore
the sensors dispose of extremely limited resources, so they
cannot be programmed one by one on higher level
programming languages.

In this paper we deal with the development of the above
mentioned subject. After surveying some problems of
sensor networks, we present a technology which makes
possible the database-like query of the data collected in
the sensor network, using the high-level TinySQL
language similar to standard SQL.

II. SOME PROBLEMS OF SENSOR NETWORKS

The most important problems that sensor networks raise
are the following:

Limited resources: capacity of the power recource is
one of the most important limit. Sensors work
autonomously and power source usually cannot be
replaced. Sensors have small size, low memory capacity
(memory requires a lot of energy). They have low
working and data processing rate.

The amount of energy is in close connection with the
life-time of the network. Therefore sensor nodes spend in
low-power (sleeping) state as much time as possible.

Concurrency: execution of parallel tasks inside the
sensor (parameter measuring, data processing,
communication with the nighbours). On the other hand,
the sensor network itself works as a disrtibuted system,
therefore testing and simulation becomes rather
complicated.

Various architectural solutions: there are several
solutions in both parameter processing and
communication protocols. The operating system running
on the sensor devices has to support the different
architectural solution, while memory capacity and power
resources are limited, so the operating system can not
contain all the alternatives as a monolithic package.

Distributed and unreliable communication channels:
sensors usually communicate through wireless channels
with very small transmitter power. Transmission errors are
relatively frequent. In many cases, the exact location of
the sensors can not be known.

Vulnerable nodes: topology can change because a
sensor breaks down, or simply beacase of running out of
power. Sensors can be stolen, damaged of the weather or
other environmental effects. If topology changes, new
routing is necessary, this requires additional energy.

108

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary

III. TINYOS

A significant part of sensor motes is operated by
TinyOS operating system, it supports their programming.
Its general characteristics are:

Scheduler: limited two-level scheduling

 weak handling of threads and events

Components: commands

 event handlers

 memory frames

 concurrent tasks

Limited memory model:

frames per components, common stack,
no heap

TinyOS is not an operating system in the usual sense,
but a programming framework. Using this framework we
can implement application-specific operating systems for
the different applications. These operating systems contain
only the functions necessary for the given applications.
They are built in the application itself.

The reason of this approach are the extremely limited
hardware resources of the motes. An application of some
tens of kbytes includes typically some hundreds of bytes
belonging to the operating system.

Figure 2. Internal architecture of TinyOS

TinyOS treats the embedded application as a network of
software components, separated by strict interfaces. The
“network” of components is created in compiling time.
Connections cannot be modified later, the system does not
support dynamic reconfiguration in running time.

Components contain a specific service set. Services are
specified by interfaces. Actually, TinyOS consists of a set
of reentrant system components and a task scheduler.

The application connects the components by a “wiring
specification”. This wiring specification is independent of
the implementation of components. It determines the
whole component set used by the application.

A component has two interface classes: interfaces of the
provided and of the used services.

Interfaces are bidirectional: they include commands and
events as well.

Command is a function implemented by the provider
of the interface, and event is implemented by the user of
the interface.

Figure 3. Internal communication of a software component in TinyOS

In a sensor network events can happen at any time.
They can have influence on the current computations and
other operations. Some of these events can be time-
critical, therefore TinyOS starts a handler immediately in
the form of “active message”.

Name of the interface Task of the interface

ADC Hardware interface of the sensor

Clock Hardware clock

EEPROMRead/Write Read and write of EEPROM

HardwareId Access to hardware identifier

I2C Interface to I2C bus

Leds LEDs (red/yellow/green)

MAC Radio Media Access Control
sublayer

Mic Microphone interface

Pot Hardware potentiometer

Random Random number generator

ReceiveMsg Receive Active Message

SendMsg Send Active Message

StdControl Initialization, start and stop
components

Time Get current time

TinySec Lightweight
encryption/decryption

WatchDog Watchdog timer control

Figure 4. Core interfaces provided by TinyOS

Scheduling of the tasks is not preemptive, that is the
tasks run until their completion. Various not preemptive
scheduling algorithms are usable. The standard TinyOS
scheduler works according to the FCFS (First Come First
Served) strategy, but other strategies were implemented as
well e.g. EDF (Earliest Deadline First) algorithm which is
suitable for real-time tasks.

Thus, tasks cannot interrupt each other, but they can be
interrupted by interrupt handlers connected with
commands and events. In this respect we distinguish
synchronous and asynchronous codes.

Synchronous Code (SC): reachable only from tasks.

Asynchronous Code (AC): reachable from at least one
interrupt handler.

109

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary

Network communication system of TinyOS works by
the principle of Active Messages (AM). It transmits small
(36-byte) packets provided with a 1-byte handler
identifier.

AM implements an unreliable, single-hop datagram
protocol. It provides a unified interface to wired and
wireless communication. Wired communication can work
using the built-in serial port. This can be important mainly
for base stations. Controlling computer is connected to
base stations usually by wire. The base station is a
permanently working node, therefore it is advisable to use
a wired connection, because we can also supplying power
through the network cable.

IV. TINYDB

TinyDB is a query processing system. Using it, we can
extract information from such sensor networks, where
motes are operated by TinyOS operating system. This task
can be programmed without writing embedded programs
for the sensors. Instead of this, we only have to install the
TinyOS components serving TinyDB to the motes.
TinyDB will provide data collected from the motes in the
form of a data base.

For writing query applications running on the computer
TinyDB provides a simple Java API and the TinySQL
query language. A simple graphical interface is also
available for building queries and displaying the results.

A. Some Features of TinyDB

Metadata management (catalogue of the kinds of
reading occuring in the sensor network).

High level queries (the declarative query language used
by TinyDB makes possible that we only refer to the
requested data, without giving the method of obtaining
them). By this means the program will be independent of
the sensor types as well.

Management of the network topology (TinyDB
manages the underlying radio network: it tracks
neighbours, maintains routing tables, ensures the efficient
and reliable delivery of the data to the user).

Running multiple queries (multiple queries can be run
simultaneously on the same set of motes, eventually
having different sample rates and accessing different
sensors).

Scalability (new motes can be placed into the network;
to these motes we only have to install TinyOS with the
TinyDB components, the motes send tasks to each other in
network messages automatically).

TinyDB system can be divided to two subsystems: the
sensor network software and the Java-based client
interface. In the subject "Micro operating systems" we
will survey the components of the two subsystems.

The sensor network software is the “heart” of TinyDB,
although most of the users never modify it. It runs on each
mote of the network, its main parts are as follows:

Sensor catalogue and schema manager: records the
features of the different sensors and the readable data
types. The network can be heterogenous by the type of
devices and can be able to report different properties, so

the characteristic of the list can be different for the
different sensors.

Query processor: it fetches the values of local attributes
from the above mentioned catalogue, receives the read
data from the sensors of neighboring nodes, combines and
aggregates the values together, filters out undesired data
and transmits the obtained values

Memory manager: it is a small, handle-based dynamic
memory manager, through which TinyDB extends the
possibilities of TinyOS.

Network topology manager: TinyDB manages network
connections for the sake of efficient routing of data and
query sub-results.

Client interface is Java-based. It runs on a PC,
connected to the network through a base station. It makes
possible the SQL-based query of the data collected on the
network’s motes. It consists of Java classes and
applications. Its most important classes are as follows:

Network interface class: allows applications to send
queries to the network and to receive answers from it.

Classes to build and transmit queries.

A class to receive and parsing answers.

Class to extract information about the attributes and
abilities of devices.

A graphical user interface for building queries.

A graphical user interface for displaying diagrams and
tables representing individual sensor results.

A graphical user interface to visualize dynamic network
topologies.

A demo application consisting of a few objects, which
realizes an interface working with queries over a sensor
network.

B. TinySQL in TinyDB

The TinySQL query programming language is based
upon the standard SQL. There are a few limitations in its
possibilities as compared with standard SQL, and it
contains some sensor- specific features.

TinyDB uses the TinySQL query language in the
database-like management of sensor networks. The
current state of the network in a given moment is stored in
a table. This table will be actualized periodically.

Lines in the table represent the individual nodes, and
columns represent the measured values and certain
properties of the nodes. Querying of the current state can
be done according to the usual SQL syntax. Earlier states
can be stored by creating so-called saving points.

General form of TinySQL queries:

 SELECT select-list

 [FROM sensors]

 WHERE where-clause

[GROUP BY gb-list

[HAVING having-list]

[TRIGGER ACTION command-name [(param)]]

[EPOCH DURATION integer]

110

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary

Usage of SELECT, WHERE, GROUP BY and
HAVING is very similar to the standard SQL. Arithmetic
expressions are allowed. If using optional GROUP BY,
optional HAVING is also applicable.

C. Power Management and Time Synchronization

When running queries longer than a certain time
(default value is 4 seconds) TinyDB activates power
management and time synchronization function. This
means, that each sensors will be active in exactly the same
4 seconds in every sampling period. In this time slice all
results should arrive to the base station.

This synchronization and power management makes
possible a long lifetime for the nodes of the sensor
network.

For example, let’s suppose that a mote requires 100 μA
of current in sleeping state and 12 mA in active state, its
batteries can supply 2400 mAh of energy, and active state
lasts 4 seconds. If the sample period is 30 seconds, then
the probable lifetime of the mote will be 60 days.
Increasing sample period to 120 seconds, probable
lifetime will increase to 200 days.

Some comments:

As we have seen, optimal choice of sample period is
extremely important.

The base station (with the mote identifier 0) never
sleeps. As we mentioned earlier, it is practical to supply it
via cable, otherwise we should change batteries in every
2-3 days. It is not a problem, because location of the base
station is always known, and connects directly to the
controlling computer.

The “waking period” can be changed. Its default value
is 4 seconds. Decreasing it is not recommended. By
increasing it, probaly a larger proportion of the network
messages will arrive successfully.

V. SUMMARY

In this paper we treated the development of the subject
“Micro operating systems”. We surveyed the idea,
characteristics and operation of the sensors and wireless
sensor networks.

We presented the TinyOS operating system, which is
used on a lot of motes.

We described a way of sensor network programming,
when one can collect the values perceived by the sensors
with queries written in TinySQL language using the
TinyDB data base management system, builded on the
special components of TinyOS.

ACKNOWLEDGMENT

Thanks to my former colleague Andrásné Kovács, to
Sebestyén Dóra (Unicomp), to Zóra Barta and Zsolt
Viniczai (Seacon).

REFERENCES

[1] DHOUTAUT D., « Etude du standard IEEE 802.11 dans le cadre
des réseaux ad hoc : de la simulation à l’expérimentation », PhD
thesis, CITI Laboratory, INSA de Lyon, december 2003.

[2] George F. Riley; “The Georgia Tech Network Simulator”;
Proceedings of the ACM SIGCOMM 2003 Workshops, August
2003.

[3] Esteban Egea-Lopez, Javier Vales-Alonso, Alejandro Martinez-
Sala, Pablo Pavon-Marino, Joan Garcia-Haro ; “Simulation
Scalability Issues in Wireless Sensor Networks”; IEEE
Communications Magazine, July 2006.

[4] Jamal N. Al-Karaki, Ahmed E. Kamal; “Routing techniques in
Wireless Sensor networks: A survey”; IEEE Wireless
Communications, December 2004.

[5] Fabrice Theoleyre, Fabrice Valois; “A virtual structure for Hybrid
networks”; Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC), Atlanta, Georgia USA,
2004

[6] Fabrice Theoleyre, Fabrice Valois; “Virtual Structure Routing in
Ad hoc Networks”; Proceedings of the IEEE International
Conference on Communications (ICC), Seoul, Korea, 2005

[7] Wendi Rabiner Heinzelman, Anantha Chandrakasan, Hari
Balakrishnan; “Energy- Efficient Communication protocol for
Wireless Microsensor Networks”; Proceedings of the 33rd
Hawaii International Conference on System Sciences, 2000

[8] Nathalie Mitton, Anthony Busson, Eric Fleury;”Analysis of the
Self-Organization in Wireless Multi-Hops Networks”; Rapport de
recherche, RR-5328, INRIA, October 2004.

[9] Tim Daniel Hollerung;”The Cluster-Based Routing Protocol”;
Project group ‘Mobile Ad-hoc Networks Based on Wireless
LAN’, winter semester 2003/2004.

[10] Hannes Frey and Ivan Stojmenovic; " On Delivery Guarantees of
Face and Combined Greedy-Face Routing Algorithms in Ad Hoc
and Sensor Networks", in Proceedings of the Twelfth ACM
Annual International Conference on Mobile Computing and
Networking (MOBICOM), Los Angeles, CA, USA , 2006.

[11] Dr. Paul J.M. Havinga: Cooperating objects in Wireless Sensor
networks

[12] Ph. Levis, S. Madden, J. Polastre, r. Szewczyk, K. Whitehouse, A.
Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, D. Culler: TinyOS:
An Operating System for Sensor Networks

[13] Vidács Attila: Szenzorhálózatok, BMEVIMM9082, 2005
http://hsnlab.tmit.bme.hu/~vidacs

[14] S. Madden, J. Hellerstein, W. Hong: TinyDB: In-Network Query
Processing in TinyOS

[15] http://volgy.com/pubs/BIR_SensorNetworks.pdf

[16] A. Kovács, R. Nagy: Szenzorhálózatok alkalmazása

[17] Levendovszky János: Új algoritmusok a vezetéknélküli
szenzoriális kommunikációhoz
(www.hacusa.org/press/Levendovszky.pdf)

[18] Vass Dorottya, Vidács Attila: Energiahatékony kommunikáció
szenzorhálózatokban

[19] www.cs.berkeley.edu/~culler/cs252-s02/slides/lec08-wireless.ppt

[20] www.artistembedded.org/docs/Events/9-ARTIST-DATE06-
Havinga.pdf

[21] Vidács Attila: Szenzorhálózatok, hálózati réteg, 2007;
http://hsnlab.tmit.bme.hu/~vidacs/education/vimm9082/2007/0703
22.pdf

111

AIS 2012 • 7th International Symposium on Applied Informatics and Related Areas • November 7, 2012 • Székesfehérvár, Hungary

http://volgy.com/pubs/BIR_SensorNetworks.pdf
http://www.hacusa.org/press/Levendovszky.pdf
http://www.artistembedded.org/docs/Events/Artist%20WS%20at%20DATE06_Munich/9-ARTIST-DATE06-Havinga.pdf
http://www.artistembedded.org/docs/Events/Artist%20WS%20at%20DATE06_Munich/9-ARTIST-DATE06-Havinga.pdf
http://hsnlab.tmit.bme.hu/~vidacs/education/vimm9082/2007/070322.pdf
http://hsnlab.tmit.bme.hu/~vidacs/education/vimm9082/2007/070322.pdf

