
Multifractal network generator with IGraph
Árpád Horváth

Alba Regia University Centre of Óbuda University,
H-8000 Székesfehérvár, Budai út 45., Hungary

Email: horvath.arpad@arek.uni-obuda.hu
and

Zoltán Trócsányi
University of Debrecen and Institute of Nuclear Research of the Hungarian Academy of Sciences

H-4010 Debrecen P.O.Box 105, Hungary
Email: Z.Trocsanyi@atomki.hu

Abstract—One of the aim of the recent investigations of
complex networks is to explore the reason behind the astonishing
similarity of different networks. We can compare real world
networks with the network models to test our theories about
the evolution of networks. There are cases, when we do not
have evolutionary models for describing the most important
properties of a network. In these cases we can use optimization.
We have examined one of the methods for optimization based on
multifractal networks, and have written a program to realize it.
In our presentation we will introduce the method and the results
produced by our program.

I. INTRODUCTION

Networks are often used as a synonym of the graphs in
the field of sociology and some other fields of the science.
Complex networks are very large networks with a structure
difficult to describe in details. The aim of the science of the
complex networks is to study the general properties of real
networks. The earliest investigations of networks happened
in the field of sociology, when they studied the acquaintance
network of people.

There is a lot of networks in the fields of engineering and
informatics, such as the World Wide Web, the Internet, whose
investigation has brought networks in the forefront of research
recently. In biology and medicine the network of protein
interactions, the food chain or to forecast the spreading of a
disease, the acquaintance and sexual networks are important.
Properties of many networks, network models and methods of
the investigations have been summarized in several papers [1],
[2].

If we want to to create networks with arbitrary properties,
we usually make optimization that means we change the
network to get closer and closer to the properties we want to
achieve. An efficient way of achieving this optimization is the
multifractal network generator [3]. We have implemented this
method based on the IGraph module of the Python language
[4]. We describe here the method, our program and some
results.

II. MULTIFRACTAL NETWORK GENERATION

The method of generating networks with the usage of
multifractals is described in detail in the article of Palla et
al [3].

In the multifractal network generation we define a generat-
ing (probability) measure on the [0, 1[×[0, 1[unit square, then
we create a link probability measure with the iteration of the
generating measure, an finally, we create links between the
nodes using the link probability measure.

A. Generating function and the link probability measure

We divide both of the x and y axes into m not necessarily
equal intervals to define a generating measure. The intervals
on the x and y axes must have the same division points. With
this division we created m2 rectangles on the unit square. We
assign probabilities pij to each of the rectangles in a symmetric
fashion,

pij = pji ,
m−1∑
i,j=0

pij = 1.

The probability assigned to the rectangle at the origin is de-
noted by the p00 and that at the opposite corner is pm−1,m−1.

The kth iteration of the generating measure means a unit
square divided into rectangles with assigned probabilities as
in the generating measure, but with mk × mk rectangles.
By definition the first iteration (k = 1) gives the generating
measure itself.

For the case of k > 1, we obtain the division points
from the division points of the (k− 1)st iteration by dividing
each of its intervals into m subintervals, where the length of
subintervals are proportional to the length of intervals of the
original generating measure.

The pij(k) probabilities of the k-th iteration can be calcu-
lated as

pij(k) =
k∏

q=1

piqjq , (1)

where

iq =

⌊
i mod mk−q+1

mk−q

⌋
. (2)

The notation (i mod d) means the remainder of the integer
division i/d and bxc denotes the floor (integer part) of x.
Analogous equation to (2) gives jq as well.

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

6

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Generator measure (m=3)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Iterated probability measure (k=2)

Figure 1. A generator measure with the division points 0.2 and 0.5, and
the iterated measure we use as link probability measure, and the network
generated from the latter measure. We can see that in the place of a rectangle
of the generating measure there is 3× 3 rectangles in the iterated probability
measure. Network nodes are colored by degree (8: blue, 6 and 7: yellow, 4
and 5: pink, smaller degree: red)

B. Generating the network

The generation of networks proceeds in two steps. First,
we need to iterate the generating measure to get the link
probability measure, and than generate the network from the
link probability measure obtained after the iterations. The latter
goes as follows.

We choose the number of iterations (k) and the number of
nodes (N) in the network. If one axis of the generator measure
is divided into m intervals with the division points, there will
be mk intervals in one axis of the link probability measure.
We assign to each node with index l (l ∈ [1, N], integer) an rl
random value from a uniform distribution on the [0, 1[interval.
We determine the il index of the interval where rl is located
(il ∈ [0,mk − 1]).

We now go through the node pairs of the network. Let l1 and
l2 be the indexes of the nodes of the pair with corresponding
rl1 and rl2 values. Then we link the pair with the probability
pil1 il2 (k), where pij(k) are the probabilites after the k-th
iteration of the generator measure defined in eqn. (1).

C. Adjusting the generating function

We define a target property we want to achieve and an
energy function (a non-negative function) that measures the
goodness of the created network. The smaller energy, the
closer the network to the one with the target property.

We need to fix the m numbers of intervals on one axis,
and the k number of iteration. In our program we start with
equal probabilities and equal interval lengths on axes. In each
step we relocate either a division point, or change one of the
probabilities. We create the new link probability measure and
we generate more networks. If the average of the energies of
the generated network E′ is smaller than that belonging to the
network of the existing generating measure E, than we change
the generating measure to the new one, and store the average
energy. If the E′ > E, than we accept the new generating
measure with the probability

P (T) = exp

(
−E′ − E

T

)
, (3)

and reject with 1−P (T) probability. The arbitrary parameter
T plays the role of temperature (in units of the energy).

If we decrease the temperature slowly, the generating pro-
cess allows for possible to escape from local minima. The
smaller the temperature, the more changes will be rejected
and the network converges to one with the target property.

III. THE MFNG PART OF CXNET

There is an existing implementation of the multifractal
network generator written in C++ [3] without the option of
setting target properties. In a previous work, we developed
a software, called CXNet, in Python to investigate complex
networks and bring them into the higher education [5], [6].
In order to be able to set target properties of the generated
network that in a second step can be analyzed with the
CXNet package, we developed our version of mfng as a
part of the cxnet module of CXNet software package.

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

7

The documentation of CXNet can be reached from the page
http://mail.roik.bmf.hu/cxnet.

The mfng includes the ProbMeasure class, the
Generator class, the Property class and its derived
classes.

A ProbMeasure instance contains the probabilities and
the division points. It includes a method to iterate the measure
returning with a new ProbMeasure instance. It implements
two other methods to create a network with a given number
of nodes, and to plot the ProbMeasure with Pylab.
mfng generates a probability measure for networks with

the given properties. In each step of the generation there is
two half steps. In the first half step the generator changes
the probabilities, in the second half step changes the division
points.

The Generator class stores the main settings of the
generations, and the properties we want to achieve. The main
settings are the initial and final temperature, the temperature
factor with which the temperature is multiplied in each step,
the number of generated networks in each step, the m param-
eter of the initial probability measure and the k number of
iteration.

The Generator class stores the properties as instances of
derived classes of the Property class. These classes require
an energy method to give back a value which is used to
rate the goodness of the network generated from the link
probability measure.

If a single property is added to the Generator instance, the
decision will depend on the average of the energies of the
generated networks from the iterated probability measures.
If more than one property is added, the sum of the average
energies will be used.

A. Changing the division points and probabilities

In one step our program changes on of the probabilities first,
then one of the division points.

To change the division points we add zero and one to the
list of the division points, so the division points are:

d0 = 0, d1, d2, . . . , dm−1, dm = 1 (4)

Then the program chooses randomly one of the inner division
points with the index i ∈ [1,m− 1], and chooses a p random
value from the uniform distribution on the [0, 1[interval. We
relocate the chosen division point to di + ∆i(p), where

∆i(p) =


l

(
p− a

l

)n(
1− a

l

)n−1 , if p > a
l

l

(
p− a

l

)n(
−a

l

)n−1 , if p ≤ a
l

. (5)

Here, l = di+1 − di−1, and a = di − di−1 and n > 1. If we
increase the n parameter, the new division point is more likely
to stay in the proximity of the original division point (Fig 2).

0.0 0.2 0.4 0.6 0.8 1.0
p

0.2

0.0

0.2

0.4

0.6

de
lta

The value of the delta function for l=1, a=0.3

n=2
n=3
n=4
n=5

Figure 2. The ∆i(p) function used for relocating a division point. If we use
one inner division point (m = 2) and its actual value is 0.3, the parameters l
and a are l = 1 and a = 0.3. We plotted the function with these parameters
and with the exponents n = 2, 3, 4, 5. The value of the function will be in
the interval [−a, l − a[= [−0.3, 0.7[and as the n increases the value of the
function will be more likely to be close to zero if p is a random value.

IV. RESULTS

We defined two target properties as two classes, and as-
signed an energy function to each. This function has one input,
a certain property of the network, and returns a positive value.
We can add one or more properties to the generator instance.
The MaxDegree property has one parameter, the maximum
degree kmax we want to achieve. Its energy function calculates
the k′max maximal degree of the given network, and returns
the value

E =
|k′max − kmax|

kmax
.

The AverageDegree property is similar to the MaxDegree
property, but instead of the maximum degree we use the
arithmetic mean of degrees of the nodes.

We made two series of simulations. In the first one, we
set a single target property, a given maximal degree. In the
second one we set a maximal degree and an average degree
simultaneously.

In the first series of simulations we used the parameters
m = 2, k = 3 and the number of generated networks was
N = 200. We generated 10 networks from each generator
measure to calculate the energy. We started with temperature
T0 = 0.8 and stopped at Tlimit = 0.0005. We multiplied the
temperature with Tfactor in each step. We used the values
Tfactor = 0.999, 0.998 and 0.996. We chose n = 2 in the
exponent in the ∆i function to change the division points.
The target of the maximal degree was 15.

The results are in the Table I. Ei is the energy of the first
network generation with the initial generator measure, Ef is
the final energy with the last accepted generator measure, p00,
p10 and p11 are the 3 independent elements of the probability
matrix (p10 = p01), d1 is the only one division point.

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

8

In the generations, the values of the main diagonal vanish,
so the other two values approach 0.5. The division points are
in the [0.18, 0.26] or in the [0.72, 0.77] intervals. These two
intervals are close to be symmetric with respect to 0.5.

To measure the goodness of the optimization, we generated
100 networks from each of the results of the simulations, and
we measured the arithmetic mean and the sample standard
deviation of the maximum degree and average degree of the
network. These values are denoted by 〈kmax〉 and 〈kavg〉
in the Table I. This measure was carried out for the initial
generator measure (with equal probabilities and equal interval
length) as well. (The networks generated from the initial
generator measure are random networks with link probability
p = 0.25k = 0.0156, giving an estimated value p(N − 1) =
3.109 for the arithmetic mean of the degrees.) The values we
got is in the last row of the table. As we can see the kmax

increased significantly and the average degree decreased.
In the simulation we generated only 10 networks for each

generator measure. The ten values of the maximal degrees
can be significantly larger than the average of the 100 values,
and so the energy function can be more closer to zero as in
the case we would generated more networks. For example,
the maximal degrees of the networks created from the last
accepted generator measure, corresponding to the Ef value
given in the first row of Table I, was

16, 15, 14, 14, 16, 15, 15, 15, 16, 15.

Each element is bigger then the arithmetic mean of the
maximal degrees (12.8) of the 100 network generated later.
These large values have given an energy very close to zero.
To make better result, we need to make more measures during
the simulation, at least for the generator measures we want to
accept.

In the second series of generations we used the same
parameters as in the first one, but we set two properties
simultaneously: the average degree to 3.1 and the maximum
degree to 15. The results are in the Table II.

In the first simulation, where the target was only the
maximal degree 15, the average degree decreased from near
3 to near 1. In this second series of simulations we wanted to
keep constant the average degree during the simulation with
increasing maximal degree. In these simulations the maximal
degree increased with a smaller amount toward the target value
as in the previous ones, but the average degree remained near
to the original value.

V. CONCLUSION

The multifractal network generator based on the IGraph
module is able to generate networks with given properties.
The usage of the program suits for the teaching of complex
networks in higher education. Presently, the program is in the
testing phase.

This work was supported by the TÁMOP 4.2.1./B-
09/1/KONV-2010-0007 project.

REFERENCES

[1] R. Albert and A. Barabasi, “Statistical mechanics of complex networks,”
REVIEWS OF MODERN PHYSICS, vol. 74, no. 1, pp. 47–97, JAN
2002. [Online]. Available: http://arxiv.org/abs/cond-mat/0106096

[2] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, p. 167, 2003. [Online]. Available: http:
//arxiv.org/abs/cond-mat/0303516

[3] G. Palla, L. Lovász, and T. Vicsek, “Multifractal network generator,”
Proceedings of the National Academy of Sciences, vol. 107, no. 17, 2010.

[4] G. Csárdi and T. Nepusz, “Igraph,” 2003–. [Online]. Available:
http://igraph.sourceforge.net/

[5] A. Horváth, “Studying complex networks with cxnet,” Acta Physica
Debrecina, vol. XLIV, 2010.

[6] A. Horváth and Z. Trócsányi, “Complex networks in the curriculum
of computer engineers,” IEEE Proceedings of the 8th International
Symposium on Applied Machine Intelligence and Informatics, 2010.

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

9

Table I
THE RESULTS OF THE GENERATION WITH kmax = 15

Tfactor Ei Ef p00 p10 p11 d1 〈kmax〉 〈kavg〉
0.999 0.413 0.0733 5.24× 10−16 0.50000 3.03× 10−14 0.257 12.8± 3.35749 1.0502± 0.230682
0.999 0.440 0.0600 2.16× 10−13 0.50000 1.76× 10−14 0.730 13.19± 4.65083 0.6844± 0.211495
0.999 0.407 0.0667 1.36× 10−15 0.50000 4.51× 10−16 0.221 12.64± 3.12216 1.2734± 0.270985
0.999 0.387 0.0533 1.19× 10−14 0.50000 2.79× 10−14 0.757 12.63± 3.63389 1.0092± 0.217524
0.999 0.440 0.0667 6.67× 10−16 0.50000 2.01× 10−15 0.184 12.86± 2.67808 1.5588± 0.26123
0.999 0.373 0.0333 7.94× 10−16 0.50000 4.44× 10−16 0.775 12.32± 2.95379 1.3636± 0.264684

0.998 0.387 0.0667 6.28× 10−9 0.50000 2.03× 10−8 0.763 12.8± 3.56753 1.1964± 0.247172
0.998 0.420 0.0733 2.90× 10−8 0.50000 6.62× 10−9 0.743 12.79± 3.15042 1.3904± 0.248409

0.996 0.407 0.0400 7.94× 10−5 0.49975 4.14× 10−4 0.761 13.59± 2.69716 1.2226± 0.20976
0.996 0.387 0.0600 2.43× 10−5 0.49995 6.95× 10−5 0.251 12.93± 2.83291 1.2933± 0.235552
Original generator measure 0.25 0.25 0.25 0.5 8.83± 1.1106 3.0846± 0.179525

Table II
THE RESULTS OF THE GENERATION WITH 〈k〉 = 3.1 AND kmax = 15

Tfactor Ei Ef p00 p10 p11 d1 〈kmax〉 〈kavg〉
0.999 0.455 0.3156 7.16× 10−18 0.50000 3.56× 10−16 0.573 9.12± 1.18305 2.9106± 0.203573
0.999 0.470 0.3094 1.76× 10−15 0.50000 2.91× 10−14 0.439 9.05± 1.29002 2.948± 0.17363
0.999 0.445 0.3111 2.28× 10−17 0.50000 2.14× 10−15 0.380 9.91± 1.40054 2.6088± 0.234082
0.999 0.479 0.3457 1.76× 10−17 0.50000 1.21× 10−16 0.383 9.99± 1.45987 2.6236± 0.255705
0.999 0.503 0.3187 1.36× 10−16 0.50000 2.62× 10−17 0.413 9.41± 1.09263 2.7985± 0.24648
0.999 0.470 0.3049 1.29× 10−16 0.50000 1.26× 10−16 0.426 9.44± 1.33576 2.9242± 0.170188

0.998 0.490 0.3476 6.73× 10−7 0.50000 5.69× 10−8 0.374 10.06± 1.72808 2.5689± 0.244044
0.998 0.406 0.3323 1.89× 10−8 0.50000 3.41× 10−8 0.401 9.84± 1.3005, 2.7728± 0.217437

0.996 0.489 0.3592 3.31× 10−4 0.49980 7.27× 10−5 0.460 9.11± 1.14499 3.0522± 0.193368
0.996 0.472 0.3672 4.20× 10−5 0.49997 9.12× 10−6 0.539 8.95± 1.08595 3.0554± 0.19343
Original generator measure 0.25 0.25 0.25 0.5 8.83± 1.1106 3.0846± 0.179525

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

10

