
Software Development for Embedded Systems

J. Tick

Óbuda University / John von Neumann Faculty of Informatics / Software Engineering Department, Budapest, Hungary

tick@uni-obuda.hu

Abstract— According to some estimates 98% of the

presently operating computer systems all over the world are

embedded systems. These paper examines the convergence

of the PC-friendly software development and the state of art

of embedded system-software development in all three

ranges traditional low-performance, middle-performance

and new type, high performance embedded systems. In the

last part the paper deals with the UML-RT – the new way to

software development for high performance embedded
systems.

I. INTRODUCTION

Embedded systems are small-sized, microcomputer-
based independent systems which manage various
equipment. [3] These pieces of equipment range on a very
wide scale and have an important role in our life. We meet
them in cellular phones, microwave ovens, automotives,
video recorders, watches, games and in several other
devices. [2]

The history of embedded systems has been ever
evolving and shows a faster pace than the development of
personal computers lately. It is shocking that in the latest
years approximately 100 million microprocessors were
sold annually, which were built into desktop computers,
mainly PCs. At the same time 3 billion such
microprocessors have been sold that were incorporated
into embedded systems.

This huge number implies that the development of
software products for embedded systems has become a
serious and good business. While well-developed
methodologies, tools and software directories are available
for software development for large systems, the software
developers face the same problems when developing for
embedded systems as they have already overcome during
the evolution of large systems. Embedded systems are the
most world wide spread computer applications.

According to some estimates 98% of the presently
operating computer systems all over the world are
embedded systems [1]. The structure, the application
fields and the developing of the hardware and software
components of these systems very much differ from the
world of PCs. In the following paragraphs we will
examine such features of embedded systems that become
constraints in the evolution of the development
methodologies of software products indispensible for such
systems.

II. CONVERGENCE OF THE PC-FIRENDLY SOFTWARE

DEVELOPMENT

 The software development of non-embedded systems
differs to a large extent from the development
methodologies used in case of embedded systems. In order
to decrease the performance-deviations the older middle-

category computers and the PC-category applications out
of the presently used applications are regarded as non-
embedded systems. Especially in case of the latter it can
be argued that software development are highly backed
not only by applied languages but by methodology and by
tools (CASE-Tool) as well. Even if we do not go back to
the world of structured methodologies only to the
proliferation of object-oriented paradigm, it can be noticed
that (fig 1. and fig 2.) a wide range of applied languages
and methods were available showing a definite and strong
convergence.

Figure 1 Development of programming languages

source: www.oose.de

The colorful spectrum of languages has disappeared and
practically two, very similar programming languages have
taken the lead. Most of the application developments are
conducted in JAVA and C#.

Considering the methodology side, Rebeca Wirrfs-Brock
at all Responsibility Driven Software Engineering,
Jacobson: Object-oriented Software Engineering,
Raumbought at all: Object Modelling Technique are the
outstanding ones out of the earlier methodologies. Via
these more significant methodologies the Booch-Jacobson
Raumbought (three amigos)-labelled UML (Unified
Modell Language) has emerged, which by now has
already become an entirely accepted developing approach
and notation system. Naturally RUP (Rational Unified
Process) - as the methodology - is paired with this
modeling language.

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

21

Figure 2 The evolution of software development methodologies
source:www.oose.de

This overwhelming success can be thanked to the
UML’s quite rich support in tools (Fig 3.) and, of course,
its extremely strong expressive power. The fact that vast
of models-submodels have been developed and piled up
lately, cannot be neglected, which quite effectively
support Software Reuse.

Figure 3 The structure of UML

III. SOFTWARE DEVELOPMENT FOR EMBEDDED

SYSTEMS

As we saw in PC environment the developing
methodologies converge into one point. However, in case
of embedded systems they converge into two points. The
features of the traditional embedded systems and the new
systems are described in the following.

A. Typical software develoment method of traditional

low-performance embedded systems

The low-category layer of these systems are the very
cheap, low performance, very simply structured systems

in mass production, most of which entails a one-chipped
microcomputer. The processor itself is typically of 8 bits,
its clock frequency ranges between 0.1 MHz and 4-8
MHz. Its storage capacity is from some hundred bites up
to 2 Kbyte, the managed I/O ports are usually digital,
between 4 and 8. Microchip 16f84 is one of the examples
to be mentioned, which is widely used in these systems.

The software is developed at assembly level or with the
help of a simple C compiler. The comfortable developing
on foreign platform (usually PC) is typical. The
programme can be loaded to the microcomputer through
some simple serial interface and/or electronically or can
be burned with masking technique.

The phases of development are not specially supported
by methodologies, the available developing tools are
company specific ones. Its basic components are the
editor, the assembler, the simple debugger, the support
library and the downloader (Fig 4.). The course of
application and the development are typically simple; the
realized algorithms are not complicated.

Figure 4 Scheme of the typical software development tool of a low-

performance embedded system

B. Typical software developmentmethod of traditional

middle-performance embedded systems

These systems have favorable price/performance
attribute, their central component is a quite complicated,
on one-chipped microcomputer.

The processor itself is typically of 16 bits, with RISC
architecture, its clock frequency ranges between 4-8 MHz
and 40 MHz. Its storage capacity is between 2 and 8
Kbyte, the managed I/O ports are analogue and/or digital,
and their number goes from 8 up to 32. Several other
inboard services like multi-layer interrupt possibilities,
various timers, counters, fast analogue-digital converters
to ensure distinct communication possibilities are added.

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

22

Figure 5. User interface of the Integrated Development Environment
(Microchip) source: www.microchip.com

The software is usually written in C, with the help of an
entirely realized C compiler and only in a small number of
cases is written at assembly level. The comfortable
developing on foreign platform (usually PC) is typical.
The programme can be loaded into the microcomputer via
an intelligent interface, and/or electronically, or can be
burned with masking technique.

The Cross-Development Tool is typical an Integrated
Development Environment (IDE) which is fullintegrated
in the Cross-operating system. The IDE contains case-
sensitive source-text editor, macroassembler, powerful
symbolic debugger with trace functions, advanced
software cross-simulator for a wide range of devices
(included peripheral simulation). One of the widely spread
system is the Microchip’s MPLAB (Fig 5.)

The software development methods in this range are
really not supported with widely spread standard
methodology.

C. Typical software development methods of new type,
high performance embedded systems

The new applications, mainly in the field of mobile
informatics and multimedia, having developed due to
improvement in tools established new demands and
expectations required from software products and thus
from developing methodologies. These expectations are
high from both the user’s and the application
environment’s side, being present in three fields:

1. From the user interface side the users have
already accustomed to the comfortable Windows-based
interface in case of PCs and would like to see the same in
their small-sized devices as well. The windows-based
graphical interface is, however, resource intensive and
requires the development of significantly more complex
programming.

2. The processing speed is a determining feature
partly for users (do not want to wait a lot) and it is for the
application environment as well (realtime applications).

3. The adequate solution for multitasking is also a
significant claim, since the majority of these systems

execute realtime commands. The realisation of all these is
a serious challenge in case of scarce resources. (eg. use of
cellular phones)

All three requirements necessitate the development of
much more complex systems, which require the strict
usage of developing methodologies and thus an
indispensable paradigm change widespread and in the
category of high performance embedded systems in
general.

On examining the software development options the
origo is not to make the solutions applied for embedded
systems extraneous for the world of PCs since the
development must be conducted there. Another significant
aspect is that it is much easier to phase in and spread a
well-known already introduced methodology, phylosophy
in the world of micros since the user willingness is larger.

At the selection of the methodology and the application
environment the following aspects are practical to be
considered:

• To be a well-known, acknowledged and widely
used methodology

• To ensure large machine, PC support

• To ensure comfortable developing environment

• To enable real-time task management

• To realize the most possible out of the object-
oriented concepts

• To ensure adequatly large programme directory

• To produce extremely compressed code since
memory capacity is restricted in the micro environment

• Not to require large resources in process, because
then the running of the application slows down

• To ensure portability of the application, namely
to make the runner programme accessible on most
physical architectures (machines)

• To ensure platform free running, namely not to
bind to any attributes of physical or operating systems

In accordance with the statements in chapter II, a
logical step is the use of UML in developing embedded
systems. Apart from some benefits, this solution has some
drawbacks as well:

• The developers of embedded systems found
UML a too large and laborious system compared to the
environment used so far.

• In the beginning, UML did not have such
techniques with which real-time solutions could be
effectively managed in case of embedded ystems.

• Such Tools were missing that generated
applications to real-time operating system environment.

IV. UML-RT – THE NEW WAY TO SOFTWARE

DEVELOPMENT FOR HIGH PERFORMANCE EMBEDDED

SYSTEMS

In the last years UML has recently undergone a major
upgrade, resulting in a revision called UML 2. The
motivation for this revision was to make UML better
suited to model-driven development MDD, and for
embedded systems. So in order to eliminate the previously

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

23

described disadvantages, the real-time UML (UML-RT)
has emerged.

UML-RT is an extension of standard UML for better
modeling embedded real-time systems. UML-RT adds
new elements to the standard UML model. Three of them
are used to model the architecture of the system (capsules,
ports and connectors) and the fourth element (protocols)
to model the communications within the system [4]. The
new blocks serve the following purposes [5]:

Capsules: model the complex components of systems.
Capsules may be structured hierarchically, containing
subcapsules in it. Depending from the abstraction level,
subcapsules may contain further subcapsules.

Ports: are like protocols which define the information-
flow between the capsules and the environment. Ports can
be private or public. Public ports have to be located on the
border of the capsules.

Connectors: are used to interconnect two or more ports
of capsules and define the communication relationships
between capsules.

Protocols: are used to specifying the type of
interactions between the connectors (for example a
communication sequence).

With the application of UML-RT in embedded systems
several paradigms have already been elaborated an tried
out.

REFERENCES

[1] R. Hartenstein, “The changing role of computer architecture

education within cs curricula.” Invited talk, Workshop on

Computer Architecture Education WCAE 2004 at 31
st

International Symposium on Computer Architecture.
http://helios.informatik.uni-

kl.de/staff/hartenstein/lot/hartensteinwcae04.

[2] Gy. Györök, “Embedded hybrid Controller with programmable
Analog Circuit.” IEEE 14th International Conference on

Intelligent Systems. Gran Canaria, Spain, May 5-7. 2010., pp. 1-
4., Paper 59., ISBN:978-4244-7651-0

[3] Gy. Györök, “Sensorless DC Motor Control.” 11th International

Carpatian Control Conference. Eger, Hungary, May 26-28. 2010.,
pp. 71-74., ISBN:978-963-06-9289-2

[4] K. C. Thramboulidis, “Using UML in Control and Automation: A
Model Driven Approach.” 2th IEEE International Conference on

Industrial Informatics INDIN’04, June 24-26. 2004, Berlin,
Germany

[5] C. K. Duby, “Accelerating Embedded Software Development with

a Model Driven Architecture.” Pathfinder Solutions, September
2003.

[6] P. Marwedel: “Embedded System Design.” Kluwer Academic

Publishers, 2003., ISBN-10 1-4020-7690-8

[7] A. Sangiovanni-Vincentelli, G. Martin: “Plattform-Based Design

and Software Design Methodoogy for Embedded Systems”, IEEE
Design & Test of Computers, November-December 2001, pp. 23-

33.

[8] R. Orfali, D. Harkey: “Client/Server Programming with JAVA and
CORBA”, John Wiley & Sons, Inc. New York, 1997, ISBN 0-

471-16351-1

[9] N. Wirth: “Compiler Construction”, Addison-Wesley, 1996, ISBN
0-201-40353-6

[10] Andrew W. Appel: “Modern Compiler Implementation in JAVA”,
Cambridge University Press, New York, Cambridge, 1997, ISBN

0-521-58388-8

[11] B. Venners: “Inside the JAVA Virtual Machine”, McGraw-Hill,
1999, ISBN 0-07-135093-4Phil. Trans. Roy. Soc. London, vol.

A247, pp. 529–551,

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

24

