
An Introduction to Intelligent System

Algorithms

G. Papadourakis
*
 and I. Kyriakidis

*

* Department of Applied Informatics & Multimedia

Technological Educational Institute of Crete

Heraklion, Greece GREECE

papadour@cs.teicrete.gr, kyriakidis@teicrete.gr

Abstract—Huge successes have been achieved through

modeling the biological and natural systems to develop new
algorithmic models to solve complex problems. Those

systems are so-called "intelligent systems". Intelligent

Systems include algorithms like artificial neural networks,

evolutionary computing, swarm intelligence, and fuzzy

systems. These intelligent algorithms, included with logic,
deductive reasoning, expert systems, case-based reasoning

and symbolic machine learning systems, form part of the

field of Artificial Intelligence (AI). Artificial intelligence is

the established name for the field that has defined as

Computational Intelligence (CI). This paper presents an
introduction to some of these intelligent algorithms, under

the umbrella of computational intelligence.

I. EXPERT SYSTEMS

Expert systems [1-2] encode human expertise in
limited domains by representing it using if-then rules.
Imagine a piece of software that runs on your PC which
provides the same sort of interaction and advice as a
career counselor helping you decide what education field
to go into and perhaps what course to pursue. It can be a

piece of software which asks you questions about your
defective TV and provides a diagnosis about what is
wrong with it. Actually such software exists and called
expert systems. Expert systems are a part of the larger
area of Artificial Intelligence.

One of the goals of Artificial Intelligence is to develop

systems which exhib it “intelligent” human-like behavior.
Expert systems are systems which encode human
expertise in limited domains. One way of representing
this human knowledge is using If-then rules.

A. Components o f a Expert System

A typical expert system consists of five components:

1) The user interface.

2) The working memory.

3) The knowledge base.

4) The inference engine.

5) The explanation system.

The knowledge base and the working memory (WM)
are the data structures which the system uses and the
inference engine is the basic program which is used. The
explanation system answers questions the user has and
provides an explanation of its reasoning. Each of these

components are briefly described below.

B. Working Memory

The working memory represents the set of facts known
about the domain. The elements of the WM reflect the
current state of the world. In an expert system, the WM
typically contains information about the particular
instance of the problem being addressed. For example, in
a TV t roubleshooting expert system, the WM could

contain the details of the particular TV being looked at.

The actual data represented in the WM depends on the
type of application. The initial WM, for instance, can
contain a priori informat ion known to the system. The
inference engine uses this information in conjunction
with the rules in the knowledge base to derive additional

informat ion about the problem being solved.

C. Knowledge Base

The knowledge base (also called rule base when If-
then rules are used) is a set of rules which represents the
knowledge about each domain. The general form of a rule
is:

If cond1 and cond2 and cond3 ...
then action1, action2, ...

The conditions cond1, cond2, cond3, etc., (also known
as antecedents) are evaluated based on what is currently

known about the problem being solved (i.e., the contents
of the working memory).

Each antecedent of a rule typically checks if the
particular problem instance satisfies some condition. For
example, an antecedent of a rule in a TV troubleshooting

expert system could be: the picture on the TV display
flickers.

The consequents of a rule typically alter the WM, to
incorporate the informat ion obtained by application of the
rule. Th is could mean adding more elements to the WM,
modifying an existing WM element or even deleting WM

elements. They could also include actions such as reading
input from a user, printing messages, accessing files, etc.
When the consequents of a rule are executed, the rule is
said to have been fired.

D. In ference Engine

The inference engine is the program part of an expert
system. It represents a problem solving model which uses

the rules in the knowledge base and the situation-specific
knowledge in the WM to solve a problem.

Given the contents of the WM, the inference engine
determines the set of rules which should be considered.

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

11

mailto:papadour@cs.teicrete.gr
mailto:kyriakidis@teicrete.gr

These are the rules for which the consequents match the
current goal of the system. The set of rules which can be
fired is called the conflict set. Out of the ru les in the
conflict set, the inference engine selects one rule based on
some predefined criteria. This process is called conflict
resolution. For example, a simple conflict resolution
criterion could be to select the first rule in the conflict set.

A rule can be fired if all its antecedents are satisfied. If
the value of an antecedent is not known (in the WM) the
system checks if there are any other rules with that as a
consequent; thus setting up a sub-goal. If there are no
rules for that antecedent, the user is prompted for the
value and the value is added to the WM.

If a new sub-goal has been set up, a new set of rules
will be considered in the next cycle. This process is
repeated till, in a given cycle, there are no sub-goals or
alternatively, the goal of the problem-solving has been
derived.

This inferencing strategy is called backward chaining
(since it reasons backward from the goal to be derived).
There is another strategy, called forward chaining where
the system works forward from the information it has in
the working memory. In forward chaining, the conflict set
will be created by rules which have all their antecedents
true in a given cycle. The system continues till the
conflict set becomes empty.

E. Explanation System

Expert systems typically need to be able to provide
explanations regarding the conclusions they make. Most
expert systems provide a mechanism whereby the user
can ask questions about:

 Why a particular question is being asked.

 How the system came to a particular conclusion.

Providing exp lanations is essential in all non-triv ial
domains for the user to understand how the system works
and determine whether its reasoning is correct or not.
Typically the system will keep track of what rules
(knowledge) it is using and provide explanations based
on a translation of these rules into English.

F. Expert system shells

A shell is a complete development environment for
building and maintain ing knowledge-based applications.
It provides a step-by-step methodology and ideally a
user-friendly interface such as a graphical interface, for a
knowledge engineer. That allows the domain experts to
be directly involved in structuring and encoding the
knowledge. Examples of shells include:

F.1Prolog

Prolog (programming in logic) [3-6] is one of the most
widely used programming languages in artificial
intelligence research. As opposed to imperat ive languages
such as C or Java (which also happens to be object-
oriented) it is a declarative programming language. That
means, when implementing the solution to a problem,
instead of specifying how to achieve a certain goal in a

certain situation, we specify what the situation (rules and
facts) and the goal (query) are and let the Prolog
interpreter derive the solution for us.

F.2CLIPS

CLIPS (C Language Integrated Production System) [7]
is an expert system tool consisting of a programming
language and an interpreting environment. The
programming language has a Lisp-like syntax, using
prefix notation and parentheses to delimit commands and
constructs. Commands are used the way LISP functions

are and operate on constructs such as facts and rules etc.
As in Lisp, it is essential to remember to balance the
parentheses. The language is actually a multi-paradigm
language, it provides rule–based, object–oriented and
procedural programming all in one package.

The interpreting environment contains an inference

engine, a fact base and a rule base. The facts in the fact
base can be thought of as data representing the state of
the world. The rules are used to store knowledge about
how to act in certain situations or knowledge about
conclusions to draw from data. Rules have a condition
part which describes some state of the world, and an
action part which is to be executed when that state of the
world is at hand. The action may either be internal (e.g.

change the fact base) or external (e.g. printing something
or reading information). When the inference engine is
run, all the rules in the ru le base check the facts in the
fact base and rules whose condition part is matched are
executed until no more ru les can fire.

II. NEURAL NETWORKS

Work on artificial neural networks, commonly referred

to as “neural networks”, has been motivated right from its
inception by the recognition that the human brain
computes in an entirely different way from the
conventional digital computer. The brain is a highly
complex, nonlinear and parallel computer (information-
processing system). It has the capability to organize its
structural constituents, known as neurons, so as to
perform certain computations (e.g. pattern recognition,

perception and motor control) many times faster than the
fastest digital computer in existence today. Consider, for
example, human vision, which is an information-
processing task (Mark, 1982; Levine, 1985; Churchland
and Sejnowski, 1992). [8]

In brain theory, the complexit ies of real neurons are

abstracted in many ways to aid in understanding different
aspects or neural network development, learning or
function. In neural computing (technology based on
networks of “neuron-like” units), the artificial neurons
are designed as variations on the abstractions of brain
theory and are imp lemented in software or VLSI or other
media [8-9].

A. Neural Network Architectures

The manner in which the neurons of a neural network
are structured is intimately linked with the learning
algorithm used to train the network. In general, it can be
identified three fundamentally different classes of
network arch itectures:

A.1 Single-Layer Feedforward Networks

In a layered neural network the neurons are organized
in the form of layers. In the simplest form of a layered
network, we have as input layer of source nodes that
projects onto an output layer of neurons (computation
nodes), but not vice versa. In other words, this network is
strictly a feedforward or acyclic type. Such a network is

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

12

called a single-layer network, with the designation
“single-layer” referring to the output layer of computation
nodes (neurons). We do not count the input layer of
source nodes because no computation is performed there.

A.2 Multilayer Feed forward Networks

The second class of a feedforward neural network
distinguishes itself by the presence of one or more hidden

layers, whose computation nodes are correspondingly
called hidden neurons or hidden units. The function of
hidden neurons is to intervene between the external input
and the network output in some useful manner. By adding
one or more hidden layers, the network is enabled to
extract higher-order statistics. The ability of hidden
neurons to extract higher-order statistics is particularly
valuable when the size if the input layer is large.

Figure 1. Example of a multilayer feedforward network

Backpropagation is a family of methods for training a
multilayer perceptron. Perceptrons are neural nets that
use an error-correction rule to change the weights of each
unit that makes erroneous responses to stimuli that are

presented to the network [9-10]. Rumelhart, Hinton and
Williams (1986) in the most influential paper on the error
backpropagation method, providing a formula for
propagating back the gradient of error evaluation from a
unit to the units that provide its inputs. Since the formulas
involve derivatives, the input and output of each unit
must take continues values in some range, here taken to
be [0, 1]. The response is a sigmoidal function of the
weighted sum [9].

Consider a layered loop-free net with erro r E=Σk(tk-
ok)

2
, where k ranges over designated output units, and let

the weights wij be changed according to the gradient rule:

(1)

A.3 Recurrent Networks

A recurrent neural network distinguishes itself from a
feedforward neural network in that it has at least one

feedback loop. For example, a recurrent network may
consist of a single layer of neurons with each neuron
feeding its output signal back to the inputs of all the other
neurons.

B. Radial Basis Functions

The radial basis function (RBF) [11] network or the
potential function network is conceptually a very simple

yet intrinsically powerfu l network structure. The radial
basis function network (RBFN) as an alternative to the
multilayered feedfowrard neural networks has been
studied intensively. A RBFN is a multidimensional
nonlinear function mapping that depends on the distance
between the input vector and the center vector. A RBFN

with n-dimensional input
nx and a single output

y can be represented, as shown in the next figure,
by the weighted summation of a finite number of radial

basis functions.

Figure 2. Block diagram representation of the radial basis function

network (RBFN) with input
nx and output y .

C. Self-Organizing Map (SOM)

The Self-Organizing Map (SOM) is a type of artificial
neural network for the visualizat ion of high-dimensional
data. In its basic form it produces a similarity graph of
input data. It converts the nonlinear statistical
relationships between high-dimensional data into simple
geometric relationships of their image points on a low-
dimensional display, usually a regular two-dimensional
grid of nodes. As the SOM thereby compresses

informat ion of the primary data elements on the display,
it may also be thought to produce some kind of
abstraction. These two aspects, visualization and
abstraction, can be utilized in a number of ways in
complex tasks such as process analysis, machine
perception, control and communication [12].

D. Support Vector Machines

The support vector machine (SVM) [13] is a
supervised learning method that generates input-output
mapping functions from a set of labeled training data.
The mapping function can be either a classification
function, i.e., the category of the input data, or a
regression function. For classification, nonlinear kernel
functions are often used to transform input data to a high-
dimensional feature space in which the input data

becomes more separable compared to the original input
space. Maximum-marg in hyper planes are then created.
The model thus produced depends on only a subset of the
training data near the class boundaries. Similarly, the
model p roduced by Support Vector Regression ignores
any training data that is sufficiently close to the model
prediction. SVMs are also said to belong to “kernel
methods”.

In addition to its solid mathemat ical foundation in
statistical learning theory, SVMs have demonstrated
highly competit ive performance in numerous real-world
applications, such as bioinformatics, text mining, face
recognition, and image processing, which has established
SVMs as one of the state-of the- art tools for machine

learning and data mining, along with other soft
computing techniques, e.g., neural networks and fuzzy
systems.

III. PATTERN RECOGNITION

A pattern is essentially an arrangement or an ordering
in which some organization of underly ing structure can
be said to exist. We can view the world as made up of

patterns. Watanabe (1985) defines a pattern as an entity,

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

13

vaguely defined, that could be given a name. A pattern
can be referred to as a quantitative or structural
description of an object or some other item of interest. A
set of patterns that share some common properties can be
regarded as a pattern class [8].

Pattern recognition as a field of study developed

significantly in the 1960s [9]. It is a process of
categorizing any sample of measured or observed data as
a member of one of the several classes or categories. Due
to the fact that pattern recognition is a basic attribute of
human beings and other living things, it has been taken
for granted for long time [10]. There are d ifferent ways to
design a chart of how a classifier is designed, depending
the details level [9-14]. Figure 3 shows the various stages

followed for the design of a classification system.

Figure 3. The basic stages involved in the design of a classification
system.

The large numbers of applications, ranging from the
classical ones such as automatic character recognition and
medical diagnosis to the more recent ones in data mining,
have attracted considerable research effort, with many
methods developed and advances made. Other
researchers were motivated by the development of
machines with “brain-like” performance that in some way

could emulate human performance. There were many
over-optimistic and unrealistic claims made, and to some
extent there exist strong parallels with the growth of
research on knowledge-based systems in the 1970s and
neural networks in the 1980s.

Nevertheless, within these areas significant progress
has been made, particularly where the domain overlaps
with probability and statistics, and within recent years
there have been many excit ing new developments, both in
methodology and applications. These build on the solid
foundations of earlier research and take advantage of
increased computational resources readily available
nowadays. These developments include, for example,
kernel-based methods and Bayesian computational

methods [9].

A. Bayesian

The Bayes [15] likelihood ratio test has been shown to
be optimal in the sense that it min imizes the cost or the
probability of error. However, in order to construct the
likelihood ratio, we must have the conditional probability
density function for each class. In most applications, we

must estimate these density functions using a finite
number of sample observation vectors. However, they
may be very complex or require a large number of
samples to give accurate results.

Even if we can obtain the densities, the likelihood ratio

test may be difficult to implement; time and storage
requirements for the classification process may be
excessive. Therefore, we are often led to consider a
simpler procedure for designing a pattern classifier. In
particular, we may specify the mathematical form of the
classifier, leaving a finite set of parameters to be
determined. The most common choices are linear,
quadratic or piecewise classifiers [12]

B. Supervised learning

Supervised learning requires a training set which
consists of input vectors and a target vector associated
with each input vector. The supervised learning process
also requires a trainer that submits both the input and the
target patterns for the objects to get recognized. The
trainer uses the target vector to determine how well it has

learned, and to guide adjustments to weight values to
reduce its overall error. Among the supervised learning
algorithms, most common are the back-propagation
training and Widrow-Hoff's MADALINEs [14].

The advantage of using a supervised learning system to
perform pattern classificat ion is that it can construct a

linear or a nonlinear decision boundary between different
classes in a nonparametric fashion, and therefore offer a
practical method for solving highly complex pattern
classification problems.

C. Unsupervised learning

The process of unsupervised learning is required in

many recognition problems, where the target pattern is
unknown. The unsupervised learning process attempts to
generate a unique set of weights for one particular class
of patterns. The objective of unsupervised learning is to
discover patterns or features in the input data with no
help from a “teacher”, basically performing a clustering
of input space.

Among the typical class of unsupervised learning,
neural nets, Hopfield nets [16], associative memory, and
cognitive neural nets need special mention. One form of
unsupervised learning is clustering. Another example is
blind source separation based on Independent Component
Analysis (ICA). Among neural network models, the Self-
organizing map (SOM) [17] and Adaptive resonance

theory (ART) are commonly used unsupervised learning
algorithms.

IV. EVOLUTIONARY SYSTEMS

One of the strongest challenges facing the current
computer is in the difficulty of maintaining updated
informat ion systems. It is common when the build of a
new system is fin ished the requirements in the

organization have suffered changes (in its structure) that
are not reflected in the system. On the other hand, even if
the system is updated, it is difficult to include changes or
necessary modificat ions to maintain an image of the
organization, since the outside is changing dynamically.

Within these mechanisms have been designed to

develop a system based on artificial intelligence tools,
able to capture changes in the environment and
reconfigured internally to represent these changes, this
mechanis m may fall into one of the following levels:

 Static: Able to stay in medium changes or with
litt le change (ecological n iche).

 Adaptive Static: They are capable of adapting to
the environment stable.

 Transformers: Capable of in fluence to change

the means.

 Adaptive Dynamic: Capable of staying in half
being transformed.

 Evolutionary: Capable of becoming a medium
that is being transformed.

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

14

A. Characteristics o f an evolutionary system

The construction of an evolutionary system has many
interesting problems, since it comes finding a
mechanis m, develop "grow" the user independently and
among other observed the following problems:

The system must have a mechanism to grasp the reality
that surrounds it, because you need to know and studying
the environment in order to detect differences and
required changes to adapt and evolve in that medium.

The system must be able to store and display the

knowledge, to build its own representation of reality and
explore it.

The system must be able to "generate" new knowledge
from stored knowledge and capture the outside
knowledge, in order to propose changes or amendments

to his picture of reality including that new knowledge.

The system must be able to abstract general rules from
a set of knowledge that represents them in a synthetic
form.

The system must be capable of establishing a dialogue
with the outside so that it can transmit its knowledge and
through feedback promote change on the outside.

B. Techniques involved

Expert systems are capable to attack and solve
problems in areas of knowledge specific grounds that are
a representation of knowledge driven in that area and use
a mechanism to infer new knowledge from stored
knowledge.

Other techniques are evolutionary algorithms
(comprising genetic algorithms, evolutionary
programming, evolution strategy and genetic
programming) and swarm intelligence (comprising ant
colony optimizat ion and particle swarm optimization)

V. FUZZY LOGIC

This fuzzy logic [18] theory allows us to handle and
process certain types of information which are managed
in terms of inaccurate, imprecise or subjective. In a
similar way as does the human brain, it is possible to
order a ru le-based reasoning imprecise and incomplete
data.

To do this we must expand the set theory and Boolean
logic so that an individual may belong partially to a set
and logic operations in addition to ones and zeros, can be
0.01 or 0.75. We communicate and coordinate actions
with data as “... you are too young to do that ...”; how
much is “too”?; What is “young”?.

With fuzzy sets we can define sub-sets; in such a way
that anything they may belong to different degrees. Fuzzy
rules process the relations between the variables and
produce a fuzzy output. From those outputs, binary
quantities and continuous quantities can be provided, as
the state of a switch or a fee. The rules for the disposal of
the inference engine of a fuzzy system can be made by

experts or learned by the system itself, in this case is
making use of neural networks to strengthen future
decision making.

Some programming languages that have embedded
fuzzy log ic would be for example the different
implementations of Fuzzy Prolog or the language Frill.

The fuzzy mathematic involve the next operations:

A. Fuzzyfication

Fuzzyfication is the translation of real-world values to
Fuzzy environment by using membership functions. The
membership functions of the Figure 4 reflect a steady
rate = 55 in the fuzzy values (degrees of membership),
SLOW = 0.25, MEDIUM = 0.75 and FAST = 0.

Figure 4. Fuzzyfication process

B. Rule evaluation

The Rule evaluation is the determination of the strength

of the rules based on input values and rules.
For example:

If SPEED = MEDIUM and HIGHER =

SECURE

then GAS = INCREASE

Assume in this case, MEDIUM = 0.75 and S ECURE

= 0.5. Now the validity of the rule will be 0.5 (The
minimum value between the background) and then
become INCREASE fuzzy variable equal to 0.5.

Thus, we find two ru les involving the fuzzy variab le
INCREASE. A "OR" fuzzy between the results of the
two rules will be 0.5 (maximum value between two

operands). INCREAS E = 0.5

C. Defuzzyfication

Defuzzyficat ion is translating the results back diffuse
to real world values. After computing the fuzzy rules and
evaluate fuzzy variab les, the values must moved out into
the real world. Then we will require a membership
function (membership functions) for each of the output

variables, as shown in the next figure.

Figure 5. Deffuzyfication process

VI. AMBIENT INTELLIGENCE

Ambient Intelligence [19] is a model of interaction in
which people are surrounded by a digital environment
aware of our presence, context sensitive, which
adaptively responds to our needs and habits, to make life
easier daily at home, leisure and work. In addition,

Ambient Intelligence is a vision that places the human
being as a center for future development in society
knowledge and information and communicat ion
technologies. These technologies are embedded in
everyday objects and nearly invisible to those who use

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

15

and their interfaces will be simple and usable in a natural
way. For example, a Smart Object in AmI environment
could be a cup of coffee to take different colors
depending on the temperature of the beverage contained
or level of sugar according to one's diet.

But for this vision, somewhat futuristic, which should

increase our lives at home, work or during leisure time, a
reality is needed in a number of technologies, which
engineers will contribute in the coming years:

Hardware discrete miniaturized using nanotechnology,
smart devices and sensors that capture the environment.

A communication infrastructure based fixed and
mobile web, where networks wireless and wired
communicat ion interoperate and converge.

Networks of Dynamic and massively distributed
device, without central servers capable of cooperation.

User interfaces more natural and close to humans as
voice or gestures.

Sensitivity to the context where our position, identity,
or serve as activity Implicit input parameters to enable an
intelligent environment know our current situation and
act accordingly.

VII. DIMENSIONALITY REDUCTION

Dimensionality reduction can be achieved by two

different ways, feature selection and feature extraction
[14-17]. A ll systems that deal with datasets with large
dimensionality, feature selection and extract ion have
found wide applicability. Some of the main areas of
application are shown in Figure 6.

Feature selection methods select a subset of the
original features based on a subset evaluation function.
Basically feature selection methods identify those
variables that do not contribute to the classification task.
In a discrimination problem, we would neglect those
variables that do not contribute to class separability.

Feature ext raction methods transform the underline
meaning of the data. This transformation may be a linear
or nonlinear combination of the original variables and
may be supervised or unsupervised. In the supervised
case, the task is to find the transformation for which a
particular criterion of class separability is maximized.

Figure 6. Typical feature selection and extraction application areas

REFERENCES

[1]. C.S. Krishnamoorthy, S. Rajeev, “ Artificial Intelligence and
Expert Systems for Engineers”, CRC Press, CRC Press LLC 1996.

[2]. Jay Liebowitz, “The Handbook of Applied Expert Systems”, CRC
Press LLC 1997.

[3]. Dennis Merritt , “Building Expert Systems in Prolog”, Springer; 1
st

edition (1989)

[4]. Ivan Bratko, “Prolog Programming for Artificial Intelligence”,
Addison Wesley; 3rd edition (2000)

[5]. Neil C. Rowe, “Artificial Intelligence through Prolog”, Prentice-
Hall (1988)

[6]. M.M. Huntbach, G.A. Ringwood: Agent-Oriented Programming,
Springer (1999).

[7]. Joseph C. Giarratano, Gary D. Riley, “Expert Systems: Principles
and Programming”, Course Technology; 3

rd
 edition (1998)

[8]. [16] Simon Haykin, “Neural Networks, A Comprehensive
Foundation”, Second edition, © 1999 by Pearson Education, Inc.
ISBN: 81-7808-300-0.

[9]. [17] Michael A. Arbib, “The Handbook of Brain Theory and
Neural Networks”, Second Edition, ©2003 by Massachusetts
Institute of Technology, ISBN: 0-262-01197-2.

[10]. [18] Madan M. Gupta, Liang Jin, and Noriyasu Homma, “ Static
and Dynamic Neural Networks, From Fundamentals to Advanced
Theory”, © 2003 by John Wiley & Sons, Inc. ISBN: 0-471-21948-
7.

[11]. Martin D. Buhmann, “ Radial Basis Functions: Theory and
Implementations”, Cambridge University Press (2003)

[12]. [19] Teuvo Kohonen, “Self-Organizing Maps”, Information
Sciences, Third Edition, © 2001 by Springer-Verlag Berlin
Heidelberg New York. ISBN: 3-540-67921-9.

[13]. [20] Lipo Wang (Ed.), "Support Vector Machines: Theory and
Applications", © 2005 by Springer-Verlag Berlin Heidelberg,
ISBN: 3-540-24388-7.

[14]. [21] Richard Jensen, Qiang Shen, “Computational Intelligence and
Feature Selection, Rough and Fuzzy Approaches”, Aberystwyth
University, © 2008 by Institute of Electrical and Electronics
Engineers. Published by John Wiley & Sons, Inc., Hoboken, New
Jersey.

[15]. Richard E. Neapolitan, “Learning Bayesian Networks”, Prentice
Hall (2003)

[16]. [22] Andrew R. Webb, QinetiQ Ltd., Malvern, UK, “Statistical
Pattern Recognition”, Second Edition, © 2002 by John Wiley &
Sons Ltd, The Atrium, Southern Gate, Chichester.

[17]. [23] Juan R. Rabunal, Julian Dorado, “Artificial Neural Networks
in Real-Life Applications”, University of a Caruna, Spain. © 2006
by Idea Group Inc.

[18]. George J. Klir, Bo Yuan, “Fuzzy Sets and Fuzzy Logic: Theory
and Applications”, Prentice Hall; 1st edition (1995)

[19]. G. Riva, F. Vatalaro, F. Davide, M. Alcaniz, “The evolution of
technology, communication and cognition towards the future of
human-computer interaction”, IOS Press (2005)

AIS 2010 • 5th International Symposium on Applied Informatics and Related Areas • November 12, 2010 • Székesfehérvár, Hungary

16

