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Abstract—Huge successes have been achieved through 

modeling the biological and natural systems to develop new 
algorithmic models to solve complex problems. Those 

systems are so-called "intelligent systems". Intelligent 

Systems include algorithms like artificial neural networks, 

evolutionary computing, swarm intelligence, and fuzzy 

systems. These intelligent algorithms, included with logic, 
deductive reasoning, expert systems, case-based reasoning 

and symbolic machine learning systems, form part of the 

field of Artificial Intelligence (AI). Artificial intelligence is 

the established name for the field that has defined as 

Computational Intelligence (CI). This paper presents an 
introduction to some of these intelligent algorithms, under 

the umbrella of computational intelligence. 

 

I. EXPERT SYSTEMS 

Expert systems [1-2] encode human expertise in 
limited domains by representing it using if-then rules. 
Imagine a piece of software that runs on your PC which 
provides the same sort of interaction and advice as a 
career counselor helping you decide what education field 
to go  into and perhaps what course to pursue. It can be a 

piece of software which asks you questions about your 
defective TV and provides a diagnosis about what is 
wrong with it. Actually such software exists and called 
expert systems. Expert systems are a part of the larger 
area of Artificial Intelligence. 

One of the goals of Artificial Intelligence is to develop 

systems which exhib it “intelligent” human-like behavior. 
Expert systems are systems which encode human 
expertise in limited domains. One way of representing 
this human knowledge is using If-then rules. 

A. Components o f a  Expert  System 

A typical expert system consists of five components: 

1) The user interface. 

2) The working memory. 

3) The knowledge base. 

4) The inference engine. 

5) The explanation system. 

The knowledge base and the working memory (WM) 
are the data structures which the system uses  and the 
inference engine is the basic program which is used. The 
explanation system answers questions the user has and 
provides an explanation of its reasoning. Each of these 

components are briefly described below.  

B. Working Memory  

The working memory represents the set of facts known 
about the domain. The elements of the WM reflect the 
current state of the world. In an expert system, the WM 
typically contains information about the particular 
instance of the problem being addressed. For example, in  
a TV t roubleshooting expert system, the WM could 

contain the details of the particular TV being looked at.  

The actual data represented in the WM depends on the 
type of application. The initial WM, for instance, can 
contain a priori informat ion known to the system. The 
inference engine uses this information in conjunction 
with the rules in the knowledge base to derive additional 

informat ion about the problem being solved. 

C. Knowledge Base  

The knowledge base (also called rule base when If-
then rules are used) is a set of rules which represents the 
knowledge about each domain. The general form of a rule 
is: 

If cond1 and cond2 and cond3 ... 
then action1, action2, ... 

The conditions cond1, cond2, cond3, etc., (also known 
as antecedents) are evaluated based on what is currently 

known about the problem being solved (i.e., the contents 
of the working memory). 

Each antecedent of a rule typically checks if the 
particular problem instance satisfies some condition. For 
example, an antecedent of a rule in a TV troubleshooting 

expert system could be: the picture on the TV display 
flickers. 

The consequents of a rule typically alter the WM, to 
incorporate the informat ion obtained by application of the 
rule. Th is could mean adding more elements to the WM, 
modifying an existing WM element or even deleting WM 

elements. They could also include actions such as reading 
input from a user, printing messages, accessing files, etc. 
When the consequents of a rule are executed, the rule is 
said to have been fired. 

D. In ference Engine  

The inference engine is the program part of an expert 
system. It represents a problem solving model which uses 

the rules in the knowledge base and the situation-specific 
knowledge in the WM to solve a problem.  

Given the contents of the WM, the inference engine 
determines the set of rules which should be considered. 
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These are the rules for which the consequents match the 
current goal of the system. The set of rules which can be 
fired is called the conflict set. Out of the ru les in the 
conflict set, the inference engine selects one rule based on 
some predefined criteria. This process is called conflict 
resolution. For example, a simple conflict resolution 
criterion could be to select the first rule in the conflict set. 

A rule can be fired if all its antecedents are satisfied. If 
the value of an antecedent is not known (in the WM) the 
system checks if there are any other rules with that as a 
consequent; thus setting up a sub-goal. If there are no 
rules for that antecedent, the user is prompted for the 
value and the value is added to the WM. 

If a new sub-goal has been set up, a new set of rules 
will be considered in the next cycle. This process is 
repeated till, in a given cycle, there are no sub-goals or 
alternatively, the goal of the problem-solving has been 
derived. 

This inferencing strategy is called backward chaining 
(since it reasons backward from the goal to be derived). 
There is another strategy, called forward chaining where 
the system works forward from the information it has in 
the working memory. In forward chaining, the conflict set 
will be created by rules which have all their antecedents 
true in a given cycle. The system continues till the 
conflict set becomes empty. 

E. Explanation System 

Expert systems typically need to be able to provide 
explanations regarding the conclusions they make. Most 
expert systems provide a mechanism whereby the user 
can ask questions about: 

 Why a particular question is being asked. 

 How the system came to a particular conclusion. 

Providing exp lanations is essential in all non-triv ial 
domains for the user to understand how the system works 
and determine whether its reasoning is correct or not. 
Typically the system will keep track of what rules 
(knowledge) it is using and provide explanations based 
on a translation of these rules into English. 

F. Expert  system shells  

A shell is a complete development environment for 
building and maintain ing knowledge-based applications. 
It provides a step-by-step methodology and ideally a 
user-friendly interface such as a graphical interface, for a 
knowledge engineer. That allows the domain experts to 
be directly involved in structuring and encoding the 
knowledge. Examples of shells include: 

F.1Prolog  

Prolog (programming in logic) [3-6] is one of the most 
widely used programming languages in artificial 
intelligence research. As opposed to imperat ive languages 
such as C or Java (which also happens to be object-
oriented) it is a declarative programming language. That 
means, when implementing the solution to a problem, 
instead of specifying how to achieve a certain goal in a 

certain situation, we specify what the situation (rules and 
facts) and the goal (query) are and let the Prolog 
interpreter derive the solution for us. 

F.2CLIPS  

CLIPS (C Language Integrated Production System) [7] 
is an expert system tool consisting of a programming 
language and an interpreting environment. The 
programming language has a Lisp-like syntax, using 
prefix notation and parentheses to delimit commands and 
constructs. Commands are used the way LISP functions 

are and operate on constructs such as facts and rules etc. 
As in Lisp, it is essential to remember to balance the 
parentheses. The language is actually a multi-paradigm 
language, it provides rule–based, object–oriented and 
procedural programming all in one package. 

The interpreting environment contains an inference 

engine, a fact base and a rule base. The facts in the fact 
base can be thought of as data representing the state of 
the world. The rules are used to store knowledge about 
how to act in certain situations or knowledge about 
conclusions to draw from data. Rules have a condition 
part which describes some state of the world, and an 
action part which is to be executed when that state of the 
world is at hand. The action may either be internal (e.g. 

change the fact base) or external (e.g. printing something 
or reading information). When the inference engine is 
run, all the rules in the ru le base check the facts in the 
fact base and rules whose condition part is matched are 
executed until no more ru les can fire.  

II. NEURAL NETWORKS 

Work on artificial neural networks, commonly referred 

to as “neural networks”, has been motivated right from its 
inception by the recognition that the human brain 
computes in an entirely different way from the 
conventional digital computer. The brain is a highly 
complex, nonlinear and parallel computer (information-
processing system). It has the capability to organize its 
structural constituents, known as neurons, so as to 
perform certain computations (e.g. pattern recognition, 

perception and motor control) many times faster than the 
fastest digital computer in existence today. Consider, for 
example, human vision, which is an information-
processing task (Mark, 1982; Levine, 1985; Churchland 
and Sejnowski, 1992). [8] 

In brain theory, the complexit ies of real neurons are 

abstracted in many ways to aid in understanding different 
aspects or neural network development, learning or 
function. In neural computing (technology based on 
networks of “neuron-like” units), the artificial neurons 
are designed as variations on the abstractions of brain 
theory and are imp lemented in software or VLSI or other 
media [8-9]. 

A. Neural Network Architectures  

The manner in  which the neurons of a neural network 
are structured is intimately linked with the learning 
algorithm used to train the network. In general, it can be 
identified three fundamentally different classes of 
network arch itectures: 

A.1  Single-Layer Feedforward  Networks 

In a layered neural network the neurons are organized 
in the form of layers.  In the simplest form of a layered 
network, we have as input layer of source nodes that 
projects onto an output layer of neurons (computation 
nodes), but not vice versa. In other words, this network is 
strictly a feedforward or acyclic type. Such a network is 
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called a single-layer network, with the designation 
“single-layer” referring to the output layer of computation 
nodes (neurons). We do not count the input layer of 
source nodes because no computation is performed there.  

A.2  Multilayer Feed forward  Networks 

The second class of a feedforward neural network 
distinguishes itself by the presence of one or more hidden 

layers, whose computation nodes are correspondingly 
called hidden neurons or hidden units. The function of 
hidden neurons is to intervene between the external input 
and the network output in some useful manner. By adding 
one or more hidden layers, the network is enabled to 
extract higher-order statistics. The ability of hidden 
neurons to extract higher-order statistics is particularly  
valuable when the size if the input layer is large.  

 
Figure 1. Example of a multilayer feedforward network 

Backpropagation is a family of methods for training a 
multilayer perceptron. Perceptrons are neural nets that 
use an error-correction rule to change the weights of each 
unit that makes erroneous responses to stimuli that are 

presented to the network [9-10]. Rumelhart, Hinton and 
Williams (1986) in the most influential paper on the error 
backpropagation method, providing a formula for 
propagating back the gradient of error evaluation from a 
unit to the units that provide its inputs. Since the formulas 
involve derivatives, the input and output of each unit 
must take continues values in some range, here taken to 
be [0, 1]. The response is a sigmoidal function of the 
weighted sum [9]. 

Consider a layered loop-free net with erro r E=Σk(tk-
ok)

2
, where k ranges over designated output units, and let 

the weights wij be changed according to the gradient rule: 

 
(1) 

A.3  Recurrent Networks 

A recurrent neural network distinguishes itself from a 
feedforward neural network in that it has at least one 

feedback loop.  For example, a recurrent network may  
consist of a single layer of neurons with each neuron 
feeding its output signal back to the inputs of all the other 
neurons. 

B. Radial Basis Functions  

The radial basis function (RBF) [11] network or the 
potential function network is conceptually a very simple 

yet intrinsically powerfu l network structure. The radial 
basis function network (RBFN) as an alternative to the 
multilayered feedfowrard  neural networks has been 
studied intensively. A RBFN is a multidimensional 
nonlinear function mapping that depends on the distance 
between the input vector and the center vector. A RBFN 

with n-dimensional input 
nx and a single output 

y can be represented, as shown in the next figure, 
by the weighted summation of a finite number of radial 

basis functions. 

 

Figure 2. Block diagram representation of the radial basis function 

network (RBFN) with input 
nx and output y . 

C. Self-Organizing  Map  (SOM) 

The Self-Organizing Map (SOM) is a type of artificial 
neural network for the visualizat ion of high-dimensional 
data. In its basic form it produces a similarity graph of 
input data. It converts the nonlinear statistical 
relationships between high-dimensional data into simple 
geometric relationships of their image points on a low-
dimensional display, usually a regular two-dimensional 
grid of nodes. As the SOM thereby compresses 

informat ion of the primary data elements on the display, 
it may also be thought to produce some kind of 
abstraction. These two aspects, visualization and 
abstraction, can be utilized in a number of ways in 
complex tasks such as process analysis, machine 
perception, control and communication [12]. 

D. Support Vector Machines   

The support vector machine (SVM) [13] is a 
supervised learning method that generates input-output 
mapping functions from a set of labeled training data. 
The mapping function can be either a classification 
function, i.e., the category of the input data, or a 
regression function. For classification, nonlinear kernel 
functions are often used to transform input data to a high-
dimensional feature space in which the input data 

becomes more separable compared to the original input 
space. Maximum-marg in hyper planes are then created. 
The model thus produced depends on only a subset of the 
training data near the class boundaries. Similarly, the 
model p roduced by Support Vector Regression ignores 
any training data that is sufficiently close to the model 
prediction. SVMs are also said to belong to “kernel 
methods”. 

In addition to its solid mathemat ical foundation in 
statistical learning theory, SVMs have demonstrated 
highly competit ive performance in  numerous real-world  
applications, such as bioinformatics, text mining, face 
recognition, and image processing, which has established 
SVMs as one of the state-of the- art tools for machine 

learning and data mining, along with other soft 
computing techniques, e.g., neural networks and fuzzy  
systems. 

III. PATTERN RECOGNITION 

A pattern is essentially an arrangement or an ordering 
in which some organization of underly ing structure can 
be said to exist. We can view the world as made up of 

patterns. Watanabe (1985) defines a pattern as an entity, 
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vaguely defined, that could be given a name.  A pattern 
can be referred to as a quantitative or structural 
description of an object or some other item of interest. A 
set of patterns that share some common properties can be 
regarded as a pattern class [8]. 

Pattern recognition as a field of study developed 

significantly in the 1960s [9]. It is a process of 
categorizing any sample of measured or observed data as 
a member of one of the several classes or categories. Due 
to the fact that pattern recognition is a basic attribute of 
human beings and other living things, it has been taken 
for granted for long time [10]. There are d ifferent ways to 
design a chart of how a classifier is designed, depending 
the details level [9-14]. Figure 3 shows the various stages 

followed for the design of a classification system. 

 

Figure 3. The basic stages involved in the design of a classification 
system. 

The large numbers of applications, ranging from the 
classical ones such as automatic character recognition and 
medical diagnosis to the more recent ones in data mining, 
have attracted considerable research effort, with many 
methods developed and advances made. Other 
researchers were motivated by the development of 
machines with “brain-like” performance that in some way  

could emulate human performance. There were many 
over-optimistic and unrealistic claims made, and to some 
extent there exist strong parallels with the growth of 
research on knowledge-based systems in the 1970s and 
neural networks in the 1980s.  

Nevertheless, within these areas significant progress 
has been made, particularly where the domain overlaps 
with probability and statistics, and within recent years 
there have been many excit ing new developments, both in 
methodology and applications. These build on the solid 
foundations of earlier research and take advantage of 
increased computational resources readily available 
nowadays. These developments include, for example,  
kernel-based methods and Bayesian computational 

methods [9]. 

A. Bayesian  

The Bayes [15] likelihood ratio test has been shown to 
be optimal in the sense that it min imizes the cost or the 
probability of error. However, in order to construct the 
likelihood ratio, we must have the conditional probability 
density function for each class. In most applications, we 

must estimate these density functions using a finite 
number of sample observation vectors. However, they 
may be very complex or require a large number of 
samples to give accurate results. 

Even if we can obtain the densities, the likelihood ratio 

test may be difficult to implement; time and storage 
requirements for the classification process may be 
excessive. Therefore, we are often led to consider a 
simpler procedure for designing a pattern classifier. In  
particular, we may specify the mathematical form of the 
classifier, leaving a finite set of parameters  to be 
determined. The most common choices are linear, 
quadratic or piecewise classifiers  [12] 

B. Supervised  learning  

Supervised learning requires a training set which 
consists of input vectors and a target vector associated 
with each input vector. The supervised learning process 
also requires a trainer that submits both the input and the 
target patterns for the objects to get recognized. The 
trainer uses the target vector to determine how well it has 

learned, and to guide adjustments to weight values to 
reduce its overall error. Among the supervised learning 
algorithms, most common are the back-propagation 
training and Widrow-Hoff's MADALINEs [14]. 

The advantage of using a supervised learning system to 
perform pattern classificat ion is that it can construct a 

linear or a nonlinear decision boundary between different 
classes in a nonparametric fashion, and therefore offer a 
practical method for solving highly complex pattern 
classification problems. 

C. Unsupervised learning 

The process of unsupervised learning is required in 

many recognition problems, where the target pattern is 
unknown. The unsupervised learning process attempts to 
generate a unique set of weights for one particular class 
of patterns. The objective of unsupervised learning is to 
discover patterns or features in the input data with no 
help from a “teacher”, basically performing a clustering 
of input space.  

Among the typical class of unsupervised learning, 
neural nets, Hopfield nets [16], associative memory, and 
cognitive neural nets need special mention. One form of 
unsupervised learning is clustering. Another example is 
blind source separation based on Independent Component 
Analysis (ICA). Among neural network models, the Self-
organizing map (SOM) [17] and Adaptive resonance 

theory (ART) are commonly used unsupervised learning 
algorithms. 

IV. EVOLUTIONARY SYSTEMS 

One of the strongest challenges facing the current 
computer is in the difficulty of maintaining updated 
informat ion systems. It is common when the build of a  
new system is fin ished the requirements in the 

organization  have suffered changes (in its structure) that 
are not reflected in the system. On the other hand, even if 
the system is updated, it is difficult to include changes or 
necessary modificat ions to maintain an image of the 
organization, since the outside is changing dynamically. 

Within these mechanisms have been designed to 

develop a system based on artificial intelligence tools, 
able to capture changes in the environment and 
reconfigured internally to represent these changes, this 
mechanis m may fall into one of the following levels: 

 Static: Able to stay in medium  changes or with 
litt le change (ecological n iche).  

 Adaptive Static: They are capable of adapting to 
the environment stable. 

 Transformers: Capable of in fluence to change 

the means. 

 Adaptive Dynamic: Capable of staying in half 
being transformed. 

 Evolutionary: Capable of becoming a medium 
that is being transformed. 
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A. Characteristics o f an  evolutionary system 

The construction of an evolutionary system has many 
interesting problems, since it comes  finding a 
mechanis m, develop "grow" the user independently  and 
among other observed the following problems: 

The system must have a mechanism to grasp the reality 
that surrounds it, because you need to know and studying 
the environment in order to detect differences and 
required changes to adapt and evolve in that medium.  

The system must be able to store and display the 

knowledge, to build  its own representation of reality and 
explore it. 

The system must be able to "generate" new knowledge 
from stored knowledge and capture the outside 
knowledge, in order to propose changes or amendments 

to his picture of reality including that new knowledge. 

The system must be able to abstract general rules from 
a set of knowledge that represents them in a synthetic 
form. 

 

The system must be capable of establishing a dialogue 
with the outside so that it can transmit its knowledge and 
through feedback promote change on the outside. 

B. Techniques involved  

Expert systems are capable to attack and solve 
problems in areas of knowledge specific grounds that are 
a representation of knowledge driven in that area and use 
a mechanism to infer new knowledge from stored 
knowledge. 

Other techniques are evolutionary algorithms 
(comprising genetic algorithms, evolutionary 
programming, evolution strategy and genetic 
programming) and swarm intelligence (comprising ant 
colony optimizat ion and particle swarm optimization)  

V. FUZZY LOGIC 

This fuzzy logic [18] theory allows us to handle and 
process certain types of information which are managed 
in terms of inaccurate, imprecise or subjective. In a 
similar way as does the human brain, it is possible to 
order a ru le-based reasoning imprecise and incomplete 
data. 

To do this we must expand the set theory and Boolean 
logic so that an individual may belong partially to a set 
and logic operations in addition to ones and zeros, can be 
0.01 or 0.75. We communicate and coordinate actions 
with data as “... you are too young to do that ...”; how 
much is “too”?; What is “young”?. 

With fuzzy sets we can define sub-sets; in such a way 
that anything they may belong to different degrees. Fuzzy  
rules process the relations between the variables and 
produce a fuzzy output. From those outputs, binary 
quantities and continuous quantities  can be provided, as 
the state of a switch or a fee. The rules for the disposal of 
the inference engine of a fuzzy system can be made by 

experts or learned by the system itself, in this case is 
making use of neural networks to strengthen future 
decision making. 

Some programming languages that have embedded 
fuzzy log ic would be for example the different 
implementations of Fuzzy Prolog or the language Frill. 

The fuzzy mathematic involve the next operations: 

A. Fuzzyfication 

Fuzzyfication is the translation of real-world values to 
Fuzzy environment by using membership functions. The 
membership functions of the Figure 4 reflect a steady 
rate = 55 in the fuzzy values (degrees of membership), 
SLOW = 0.25, MEDIUM  = 0.75 and FAST = 0. 

 
Figure 4. Fuzzyfication process 

B. Rule evaluation  

The Rule evaluation is the determination of the strength 

of the rules based on input values and rules. 
For example:  

If   SPEED = MEDIUM   and     HIGHER = 

SECURE    

then   GAS = INCREASE 
 

Assume in this case, MEDIUM = 0.75 and S ECURE 

= 0.5. Now the validity of the rule will be 0.5 (The 
minimum value between the background) and then 
become INCREASE fuzzy variable equal to 0.5.  

Thus, we find two ru les involving the fuzzy  variab le 
INCREASE. A "OR" fuzzy between the results of the 
two rules will be 0.5 (maximum value between two 

operands). INCREAS E = 0.5  

C. Defuzzyfication  

Defuzzyficat ion is translating the results back diffuse 
to real world values. After computing the fuzzy rules and 
evaluate fuzzy variab les, the values must moved out into 
the real world. Then we will require a membership 
function (membership functions) for each of the output 

variables, as shown in the next figure.  

 

Figure 5.  Deffuzyfication process 

VI. AMBIENT INTELLIGENCE 

Ambient Intelligence [19] is a model of interaction in 
which people are surrounded by a digital environment 
aware of our presence, context sensitive, which 
adaptively responds to our needs and habits, to make life 
easier daily at home, leisure and work. In addition, 

Ambient Intelligence is a vision that places the human 
being as a center for future development in society 
knowledge and information and communicat ion 
technologies. These technologies are embedded in 
everyday objects and nearly invisible to those who use 
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and their interfaces will be simple and usable in a natural 
way. For example, a Smart Object in AmI environment 
could be a cup of coffee to take different colors 
depending on the temperature of the beverage contained 
or level of sugar according to one's diet. 

But for this vision, somewhat futuristic, which should 

increase our lives at home, work or during leisure time, a 
reality is needed in a number of technologies, which  
engineers will contribute in the coming years: 

Hardware discrete miniaturized using nanotechnology, 
smart devices and sensors that capture the environment.  

A communication infrastructure based fixed and 
mobile web, where networks wireless and wired 
communicat ion interoperate and converge. 

Networks of Dynamic and massively distributed 
device, without central servers capable of cooperation. 

User interfaces more natural and close to humans as 
voice or gestures. 

Sensitivity to the context where our position, identity, 
or serve as activity Implicit input parameters to enable an 
intelligent environment know our current situation and 
act accordingly. 

VII. DIMENSIONALITY REDUCTION 

Dimensionality reduction can be achieved by two 

different ways, feature selection and feature extraction 
[14-17]. A ll systems that deal with datasets with large 
dimensionality, feature selection and extract ion have 
found wide applicability. Some of the main areas of 
application are shown in Figure 6. 

Feature selection methods select a subset of the 
original features based on a subset evaluation function. 
Basically feature selection methods identify those 
variables that do not contribute to the classification task. 
In a discrimination problem, we would neglect those 
variables that do not contribute to class separability.  

Feature ext raction methods transform the underline 
meaning of the data. This transformation may be a linear 
or nonlinear combination of the original variables and 
may be supervised or unsupervised. In the supervised 
case, the task is to find the transformation for which a 
particular criterion of class separability is maximized.  

 
Figure 6. Typical feature selection and extraction application areas 
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