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Abstract

The application of biostatistical tools is indispensable in many current medical research;
so is informatics, which makes the use of many of these tools feasible.

As medicine became more and more empirically oriented in the last centuries, and as
it became more and more model-oriented in the last decades, the mathematical and –
specifically – biostatistical methods received special attention. The application of such
apparatus is necessary to the precise investigation of many questions, and can also help
to raise new ones.

The present dissertation shows two examples for this. The first thesis group deals with
the topic of obesity, more specifically, pediatric obesity. Nowadays this issue – due to
the worrisome epidemiological data – gets emphasized public health focus. The concrete
question I investigated was how obesity affects laboratory parameters – which, in some
sense, gives insight into how obesity affects the human body. Within this thesis group, I
have developed a biostatistical framework, which makes the comprehensive analysis of
this question possible, both in uni- and in multivariate sense.

The second thesis group also considers a problem of an intensively researched topic: it
deals with the objective evaluation and examination of the so-called tight glycemic control
protocols that are used in critical care. One of the key tasks of such protocols is the
prediction of the patients’ insulin sensitivity. Within this thesis group, I have developed
a biostatistical method, which makes it possible to model the evolution of a patient’s
insulin sensitivity in the context of the predictions provided by the protocol. The method
explicitly incorporates the patient’s diagnosis and the length-of-stay in the intensive care
unit, which can fundamentally influence the evolution of the insulin sensitivity. The
method thus makes it possible to quantitatively assess the protocol, furthermore it can
also provide (even clinical) suggestions on how to improve the protocol, considering
different goals.



Absztrakt

A biostatisztikai módszerek alkalmazása manapság megkerülhetetlen része számos orvosi
kutatásnak, hasonlóan az informatikához, mely számos ilyen módszer használatát teszi
gyakorlatban is kivitelezhetővé.

Azáltal, hogy az orvostudomány egyre inkább empirikusan orientálttá vált az elmúlt
néhány évszázadban, illetve azáltal, hogy egyre inkább modell-alapúvá fejlődött az elmúlt
néhány évtizedben, jelentősen felértékelődtek a matematikai, illetve – ezen belül – a
biostatisztikai módszerek. Az ilyen eszköztár alkalmazása elengedhetetlen számos kérdés
prećız vizsgálatához, illetve sok esetben új kérdések felvetését is nagyban seǵıti.

A jelen disszertáció erre mutat két példát. Az első téziscsoport az elh́ızás, ezen
belül a gyermekkori elh́ızás problémakörével foglalkozik. Ez manapság – az aggasztó
epidemiológiai adatok miatt – egyre nagyobb népegészségügyi jelentőséget kap. A
kérdésfelvetés azt vizsgálja, hogy az elh́ızás milyen hatással van a rutinszerűen vizsgált
laborparaméterekre – ez egyfajta betekintést ad abba, hogy az elh́ızás hogyan hat az emberi
szervezetre. A téziscsoport keretében kidolgoztam egy biostatisztikai keretrendszert, mely
lehetővé teszi e kérdés átfogó vizsgálatát, mind egy- mind többváltozós értelemben.

A második téziscsoport egy szintén intenźıven kutatott terület egy problémáját vizsgálja:
az intenźıv ellátásban használatos ún. szoros vércukorszint-kontroll protokollok objekt́ıv
minőśıtésével és vizsgálatával foglalkozik. E protokollok egy kulcsfontosságú feladata
a betegek inzulin-szenzitivitásának előrejelzése. A téziscsoporton belül kidolgoztam
egy biostatisztikai módszert, mely lehetővé teszi az inzulin-szenzitivitás alakulásának
modellezését, adott protokoll által szolgáltatott előrejelzések fényében. A módszer
explicite beéṕıti a beteg diagnózisát, és az intenźıv terápiás osztályon eltöltött időt,
melyek alapvetően befolyásolhatják az inzulin-szenzitivitás alakulását. Az eljárás ezáltal
lehetővé teszi, hogy a protokollt kvantitat́ıve minőśıtsük, sőt, akár klinikai javaslatokat is
tud adni lehetséges jav́ıtásokra, különböző célok figyelembevételével.



List of abbreviations

Abbreviation Meaning

AMISE Asymptotic mean integrated squared error

CA Cluster analysis

CDC Centers for Disease Control and Prevention

cdf Cumulative distribution function

ecdf Empirical cumulative distribution function

ICU Intensive Care Unit

iid Independent and identically distributed

KDE Kernel density estimation

MISE Mean integrated squared error

ML Maximum likelihood

NHANES National Health and Nutrition Examination Survey

PCA Principal components analysis

pdf Probability density function

SI Insulin sensitivity

SPRINT Specialized Relative Insulin and Nutrition Tables

TGC Tight glycemic control

xii



1. Introduction

Modern medical research can hardly be imagined without the active participation – or at
least support – of biostatistics.

This is not surprising if we consider a few tendencies of the development of medical
science. First, the empirical orientation became more and more pronounced during the
last centuries, and downright determinant during the 20th century. While anecdotal
recollections of empirically driven medical researches date back to Biblical times, we
can not speak of systematic, empirical thinking in the context of medicine before the
18th century. (It was in 1747 that James Lind performed his sometimes questioned, but
nevertheless celebrated clinical trial (Milne 2012), in which he demonstrated that scurvy
can be treated with citrus fruits.)

This is not independent of the fact that this was the time when tenable knowledge
started to accumulate about both the function of healthy body and its diseases. As for
the former, this is connected to progresses in anatomy, especially due to the results of
autopsies. (The only part that might be shocking is how long it took (relative to the
human history) to correctly describe even the most basic physiological functions; for
instance, the first essentially correct description of human blood circulation was given
only in 1628 (Sloan 1978) by William Harvey.) As far as the latter is concerned, it was
also the time when more modern, science-based theories started to replace those earlier
ideas that are rather ridiculous by today’s standards about the causes of diseases (bad
air, revenge of gods, imbalance of humors etc.).

From this point on, empirical orientation just grew stronger and stronger, and it is
perhaps no exaggeration to say that this empirical orientation ended in Evidence Based
Medicine (Sackett et al. 1996) in the second half of the 20th century. (Whose crucial idea
is to base clinical decision making on the collection and critical evaluation of the best
available scientific evidences – which are mostly the results of empirical investigations.)

It should be noted that not only the importance of empirical results increased (in
general), but within it, specifically the importance of quantitative results as well. This was
also reinforced by the fact that the last decades of the 20th century brought a previously
unthinkable computational capacity that can be employed to both data processing and
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storage.
The other factor we should consider is the medical science’s progress towards model-

based approach. Traditionally, medical diagnosis was distinguished from engineering
diagnosis in that the latter has an exact model of how the failing object is supposed to
operate, in contrast to medicine, where we do not have an arbitrarily detailed description
of the ”good” state. This is less and less so: due to the advancements in physiology, in
many fields of the medical science, models of such precision were developed that can be
applied clinically.

My dissertation shows two examples for these: two ”case studies” for the application of
biostatistical methods in medical research. The first thesis group investigates questions
related to obesity (Chapter 2) which is one the leading concerns of public health in
the developed countries nowadays. The second thesis group deals with a special aspect
of human blood glucose regulation and its abnormal states: tight glycemic control in
intensive care units (Chapter 3).

Both thesis groups (but especially the first) includes methodological development. In in-
troducing these, I will assume the usual preliminaries from mathematical statistics (Stuart
and Ord 2009) and biostatistics (Armitage, Berry, and Matthews 2008).

It should be emphasized how significant impact does informatics, applied informatics
has on modern biostatistics. It has at least three concrete aspects.

First, and perhaps the most ”mechanical” support that computers can give is the
automatic performing of routine numerical calculations (such as the calculation of a mean,
or the performing of a test). Although many statistics courses still educate students how
to perform these ”by hand” (primarily to facilitate the understanding of the details of
the calculations), in practice every mechanical calculation is carried out by computers
nowadays.

Computers can also support the work of the statisticians in a more general way. By
aiding the handling of large databases (filtering, ordering, searching etc.), transforming
the data (encoding variables, applying functions etc.), calculating statistics, visualizing
data and so on, they also help a more creative, more effective work. (Partly by reducing or
almost eliminating the time consumption of routine tasks, hence helping the statistician to
concentrate on the essence of the problem, and partly by giving such support that would
be impossible without computers, for example, by drawing interactive three-dimensional
graphics.)

Advances in artificial intelligence (Russell and Norvig 2010) made even the automatic
information extraction (learning) from data possible, termed machine learning (Witten,
Frank, and M. Hall 2011). When combined with large databases (Berman 2013), and
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the intention to discover new, previously hidden information (instead of learning known
properties), this leads to the concept of data mining (Han, Kamber, and Pei 2011; Hand,
Mannila, and Smyth 2001).

Finally, there are certain methods which would be not only hard, but downright impos-
sible without computers. These are the so-called computationally intensive procedures
(such as resampling methods and algorithmic models), which have enormous computa-
tional requirements, and hence they are as old as computers, because without computers,
their development and – especially – meaningful application is unthinkable (Good 2006;
Good 2000; Shao and Tu 2012).
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2. Effect of Obesity on Laboratory
Parameters

My first thesis group addresses problems related to obesity. Obesity is one of the leading
concerns of public health in many developed countries. The prevalence of obesity is sharply
rising, with serious comorbidities linked casually to obesity, including cardiovascular
diseases which are among the leading causes of death in many countries.

Obesity affects the human body in complex ways, impacting many aspects of home-
ostasis. The deeper understanding of these changes may help us to achieve a better
prevention and treatment of this disease.

One manifestation of the effect of obesity is the systematical change in many blood
chemistry parameters. Several such laboratory parameter was investigated in relation to
obesity, but not comprehensively and with different methodologies.

My aim in this thesis will be to provide a uniform framework which allows the
investigation of the effects of obesity on laboratory parameters, even for children, where
the growth seriously complicates the definition of overweight and obesity. I will provide a
methodology (and an associated computer program, which implements this methodology)
to fulfill this aim, and also present concrete results obtained by the application of this
methodology on a representative international survey and a non-representative Hungarian
survey (which is, however, the first to address this question on Hungarian population).

The rest of this thesis is organized as follows. In Section 2.1 I give a very concise
clinical introduction to obesity, focusing on those aspects that will bear relevance for
the further discussion. Section 2.2 introduces my first thesis: a new methodology to
investigate the effect of obesity on laboratory parameters. This thesis also involves the
actual implementation of this methodology as a computer program to provide informatics
support in applying this methodology to real-life databases. Finally, in Section 2.3 I
present my second thesis, which is essentially the application of this methodology to two
databases which will give rise to interesting novel observations about pediatric obesity.
This thesis group is summarized in Section 2.4.
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2.1. Clinical Introduction

In this Section, I first present results which underline the public health significance of
obesity. I will introduce the basic facts about its epidemiology, and the most important
clinical consequences that are linked to obesity.

After that, I start to narrow the focus to arrive to my direct aim: to investigate the
relationship between obesity and laboratory parameters. Here, I only state the most
basic observations on this topic, with the details elaborated later on.

Finally I will outline the directions and goals of the present research.

2.1.1. Epidemiology and Public Health Significance of Obesity

Obesity (Andersen 2003) is considered an epidemic in most parts of the developed world.
As an example: it has been long time since overweight and obese people became the
majority in the United States’ population; according to the latest data, the prevalence
of overweight is 34.2%, the prevalence of obesity and extreme obesity is 39.5% among
adults aged 20 and over (Ogden and Carrol 2010b). The speed of progress is even more
frightening, especially as far as obesity is concerned: the same prevalence was only 14.3%
in 1960 (Ogden and Carrol 2010b).

Situation is similar in Hungary: the prevalence of overweight is 34.1%, the prevalence
of obesity is 19.5% (Organization for Economic Co-operation and Development 2012).

The same applies to pediatric obesity as well, although the available information is less
detailed (Wang and Lobstein 2006; Ogden, Yanovski, et al. 2007). In the United States,
the prevalence of obesity among children and adolescents aged 2-19 is 16.9% (Ogden and
Carrol 2010a), in Hungary, the same prevalence is estimated to be about 5-10% (Kern
2007; Antal et al. 2009). Due to its public health importance, many review is available
on the epidemiology of obesity in children and adolescents (Moreno, Ahrens, and Pigeot
2011).

Obesity is in the focus of public health for decades, as – in addition to its continuously
increasing prevalence – it also increases all-cause morbidity and mortality (Flegal et al.
2013; Visscher and Seidell 2001; Pi-Sunyer 2009). Type 2 diabetes (formerly known as non-
insulin dependent diabetes, which is typically adult-onset), various cardiovascular diseases
(including ischaemic heart disease), asthma, gallbladder disease, various malignant tumors
are examples for diseases with increased occurrence casually linked to obesity(Guh et al.
2009). These have been described in children too (Burke 2006; Nyberg et al. 2011).
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2.1.2. Obesity and Laboratory Parameters

It is well-known that obesity, and even overweight, causes systematical changes in the
laboratory results. The reasons of these changes are complex. On one hand, many change
is a more or less direct consequence of the manifestly altered homeostatic equilibrium
induced by obesity, like elevated serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels found in obese adults (Ruhl and Everhart 2003), and in
children as well (Dubern, Girardet, and Tounian 2006).

However, in some cases, the change in the laboratory parameters can not be attributed to
a single physiological alteration, or even to any well-defined alteration that causes manifest
obesity-related finding at all at the moment the laboratory parameter is already changed.
A notable example is C-reactive protein (CRP) which is used even predicatively (Bo et al.
2009; Juonala et al. 2011; Ong et al. 2011) because of this reason.

2.1.3. Directions and Goals of my Research

Previous researches in this topic mostly focused on univariate questions (as exemplified by
the above citations). In other words, they were were rather association-oriented findings,
i.e. they described changes of a certain laboratory result in obese subjects (as opposed
to the healthy state). To my best knowledge, no investigation addressed the question
how obesity affects the laboratory results from a multivariate perspective (i.e. what is
the effect of obesity if not only individual changes, but also alterations in the correlation
structure of the laboratory results is considered), especially not in children.

Therefore, my primary aim was to investigate how pediatric obesity influences the uni-
and multivariate structure of common laboratory parameters in a precise, uniform way
for all parameters.

The principal novelty of my research lies in the fact that I present a methodology
that integrates the handling of different levels of overweight and obesity using advanced
statistical apparatus.

Detailed references to what is already known in the literature in this topic from previous
researches will be given in Section 2.3.
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2.2. Methodology to Assess the Effect of Obesity on
Laboratory Parameters

I have developed a biostatistical methodology (and an associated
computer program) to investigate the effect of obesity on laboratory
parameters. This methodology provides a way to analyze both the
uni- and the multivariate structure of the laboratory parameters,
making the effect of obesity explicit during the process.

The methodology is specifically designed to deal with the data of children and adoles-
cents, where the growth of the subjects is non-negligible (complicating the comparison of
individuals of different age).

As already noted, I actually implemented this methodology to provide informatics
support to its application. Full source code of the implementation is listed in Appendix A.

Relevant own publications pertaining to this thesis: [F-3; F-15; F-9; F-1; F-4; F-21;
F-2; F-11; F-5; F-12; F-8; F-7; F-6; F-13; F-18; F-19; F-20; F-17].

Figure 2.1. illustrates the whole workflow of my methodology. I will introduce each
step in detail in the followings.

First, some preliminary question will be discussed in Subsection 2.2.1, after which the
programming environment that was used in the implementation of the methodology will
be introduced in Subsection 2.2.2.

The methodology will be presented in two parts: first the univariate part is introduced
(Subsection 2.2.3), and then apparatus for the multivariate investigations is discussed
(Subsection 2.2.4).

2.2.1. Preliminaries

The developed methodology requires a database where both the investigated laboratory
parameters and some indicator that assess the degree of overweight and obesity is
measured on sufficient number of individuals (sampled representatively in optimal case).

The most popular choice as ”indicator of overweight/obesity” is the Body Mass Index
(BMI), that is, body mass (measured in kilograms) divided by the square of body height
(measured in centimeters) (Eknoyan 2008). Although drawbacks of BMI for that end are
well-known (Romero-Corral et al. 2008; Okorodudu et al. 2010), it is still the most widely
used simple indicator of the degree of overweight/obesity (World Health Organization
2013).
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Figure 2.1.: Workflow of the method I developed for the investigation of the effect of
obesity on laboratory parameters.
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Another factor that has to be specifically handled is the growth of the subjects.
In practice, one can only utilize databases that contain the data of differently aged
individuals. This poses no problem for adults where the same BMI represents same state
of obesity (save for the aforementioned limitations) irrespectively of actual age (due to
the lack of growth). However, in settings were the growth of the subjects can not be
neglected (that is, children and adolescents) BMI can not be used as an indicator of
overweight or obesity as even the same BMI can represent different degree of overweight
or obesity (in addition to the limitations of the BMI), as physiological growth has a
systematical impact on the distribution of BMI.

To account for this impact, the developed methodology employs a measure that takes
the children’s growth (i.e. age) into account. Standardized BMI (BMI z-score, or Z-
BMI (Cole et al. 2005)) was chosen, which is essentially the deviation of the child’s BMI
from the mean BMI of the child’s age and sex, measured in standard deviation units.
This can be calculated based on sex-specific growth charts; the one from Centers for
Disease Control and Prevention (CDC) was used in this research (Centers for Disease
Control and Prevention 2013). Figure 2.2. shows the 3rd, 10th, 50th, 90th and 97th
percentile both for boys and girls according to this growth chart.

50 100 150 200
Age @monthsD

15

20

25

30

35

BMI @kgêm2D

Figure 2.2.: The employed growth chart (Centers for Disease Control and Prevention
2013) depicted with the 3rd, 10th, 50th, 90th and 97th percentile both for
boys (blue) and girls (red).

This growth chart also includes the necessary L-M-S parameters (Cole 1990) to calculate
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Z-BMI. Namely, Z-BMI is (
BMI
M

)L
− 1

L · S
(2.1)

if L 6= 0, else Z-BMI is
ln
(
BMI
M

)
S

. (2.2)

Note that extreme percentiles (i.e. Z-BMI values lower than −2 or higher than +2)
should be handled with care (Kuczmarski et al. 2002) due to the extrapolation. (In the
research, the CDC Growth Chart was used because the Hungarian Growth Charts (Joubert
et al. 2006) unfortunately do not include the necessary L-M-S parameters.) Note that
the developed methodology employes no hard threshold to specify overweight or obesity,
instead, it relies on Z-BMI as a continuous (scale) indicator (proxy) of the degree of
overweight and obesity.

Another question is the issue of sexes. Sex has a profound impact on many laboratory
parameter (see (Kelly and Munan 1977; Rodger et al. 1987; Taylor et al. 1997) for
hematologic examples), and would introduce complex interactions that are hard to
interpret from the current point of view, so the most practical form of sex-matching
was simply the complete separation of the analysis according to sex. Hence, sexes were
separately analyzed in my methodology.

As far as missing values are considered, only subjects that have at most 5 missing
laboratory result, and no missing value in BMI, sex and age were reatined. A laboratory
parameter is retained only if missing values do not exceed 10% of the sample size. Missing
values for the retained subjects and laboratory parameters were univariately imputed
with sample median value from the same sex (Enders 2010).

2.2.2. Programming Environment

Statistical analysis was principally performed under the R statistical program package (R
Core Team 2013), version 3.0.0. The source code of the developed program is given in
Appendix A. Libraries ks (Duong 2013), psych (Revelle 2013) and weights (Pasek and
Tahk 2012) were used.

R is a programming environment specifically for statistical computing and visualization.
It is free and open source (available through the GNU General Public License), and is
one of the most widely used statistical environments in the academic sphere.

It was developed in the early 1990s as a variant of the – proprietary – S programming
language (also designed for statistical computing), influenced by the Scheme language.
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As a programming language, R – in which most of the R environment has been written
– supports the procedural programming paradigm and is object-oriented with dynamic
typing.

The support for statistical computing is mostly achieved through the extreme diversity
of the so-called packages, which extend the capabilities of R. As of early 2013, over 4 500
package is available (with typically dozens added weekly) from ’Accurate, Adaptable,
and Accessible Error Metrics for Predictive Models’ to ’ Zhang–Yue–Pilon trends’. These
cover almost every area of modern statistics, including many particular specialty as well.
Many novel statistical procedure is first implemented under R.

By default, R has effectively no graphical user interface or integrated development
environment, it instead relies on a command line interface.

2.2.3. Univariate Analysis

Univariate analysis will only consider one variable at a time, i.e. it neglects the connections
between different variables. In other words, the focus will now be on understanding each
laboratory parameter in itself (but including the relationship with obesity).

First, descriptive statistics will be provided. This is complicated by the fact that
the current aim to take the effect of obesity into account by calculating the statistics
for different levels of overweight and obesity. After this, an analysis that specifically
investigates the relationship between overweight/obesity and the laboratory parameter
under study will be performed.

Univariate Descriptive Statistics

Univariate reference values of the laboratory parameters for different degrees of overweight
and obesity, namely Z-BMI=+1, +2 and +3 are given in my methodology, segregated
according to sex. Classical descriptive statistics of mean and standard deviation, and more
robust alternatives of median and interquartile range (IQR) were used (Armitage, Berry,
and Matthews 2008). The usage of robust statistics is justified by the well-known fact that
the distribution of many laboratory parameters is skewed, sometimes highly (Armitage,
Berry, and Matthews 2008), for example CRP (Yamada et al. 2001; König et al. 1999)
which is known to follow log-normal distribution (Limpert, Stahel, and Abbt 2001).

The question arises how to define these descriptors for a given Z-BMI value (e.g. for Z-
BMI=+1). As Z-BMI is a continuous variable, there is no point in calculating an average
value (or any other statistic) for subjects that have exactly Z-BMI=+1 (possible there is
not even a single subject in the database with a Z-BMI of exactly +1). The problem is
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obviously that only a finite sample drawn from an otherwise continuous distribution is
available. One solution would be the binning of Z-BMI values, i.e. to give the average
value for subjects having 0.5<BMI<1.5 (instead of Z-BMI=1). While this method is quite
robust, the drawback is that information is lost (by grouping everyone from Z-BMI=0.5 to
Z-BMI=1.5 to the same category, regardless of the subject’s actual Z-BMI), hence losing
possible tendencies within the 0.5<Z-BMI<1.5 group. Therefore an other alternative
was chosen: we tried to reconstruct the – continuous – distribution based on the sample.
What is needed is the joint distribution of the Z-BMI and the investigated laboratory
parameter: from this, the (conditional) distribution of the laboratory parameter for any
given Z-BMI value can be obtained. Given this conditional distribution, any statistic
(mean, median, standard deviation etc.) of the investigated laboratory parameter for
the exact Z-BMI value on which we conditioned (like Z-BMI=+1) can be numerically
calculated, just as it was set forth.

This is essentially a joint probability density function (pdf) estimation task, which was
solved by employing kernel density estimation (KDE). To introduce KDE, first a few
results from the theory of distribution estimation is re-iterated.

It is well-known that the plug-in estimator of the cumulative distribution function (cdf),
the empirical cumulative distribution function (ecdf) has very advantageous statistical
properties. In fact, if the sample is an independent and identically distributed (iid)
sample X = (X1, X2, . . . , Xn) from a common background distribution with cdf FX (in
this iid case, the sample’s ecdf is often denoted with F̂n), the empirical cdf converges to
this cdf pointwise both in strong (and hence in weak) sense, by the Strong and Weak
Law of Large Numbers, respectively:

∀x : F̂n (x) as−→ FX (x) that is ∀x : P
(

lim
n→∞

F̂ sn (x) = FX (x)
)

= 1. (2.3)

(This is a simple consequence of the fact that for any given x (hence the pointwise
convergence), the distribution of I{xi<x} will be Bernoulli distribution with parameter
FX (x), and these indicators will be independent due to the iid sampling.) This establishes
F̂n (x) as an unbiased and consistent estimator of FX (x) (given the fact that the mean
of Bern (p) is p and its variance is p (1− p), hence EF̂n (x) = n·FX(x)

n = FX (x) and

D2F̂n (x) = n·FX(x)(FX(x))
n2 = FX(x)(FX(x))

n ).
In addition to that, it can be shown (Glivenko–Cantelli theorem or ”central theorem of

statistics”, 1933) that this convergence is not only pointwise, but also uniform. Specifically,
it asserts a convergence in sup-norm (although other reasonable norms can be used as
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well): ∥∥∥F̂n − FX∥∥∥∞ := sup
x

∣∣∣F̂n (x)− FX (x)
∣∣∣ −−−→
n→∞

0. (2.4)

(For the proof, see (Pestman 2009, pp. 306–310).)
In other words, it states that not only ∀x : P

(
limn→∞ F̂n (x) = FX (x)

)
= 1 but also

P
(
∀x : limn→∞ F̂n (x) = FX (x)

)
= 1 stands.

In addition to these, F̂n is not only unbiased but also efficient, given that it is a function
of a complete, sufficient statistic (the order statistics, namely) by the Lehmann-Scheffé
theorem (Lehmann and Casella 1998; Casella and Berger 2002).

Now a way to estimate a population cdf from a sample with comfortable statistical
properties is established. (Actually this results can be made even sharper, and the rate
of convergence can be characterized as well (Vaart 2000), but this will be sufficient for
this purpose.)

One, however, often wishes to estimate the underlying distribution’s probability density
function. (Mostly because many features of the distribution (such as multimodality) can
be better perceived with probability density function; especially in the multivariate case.)

One might be tempted to perform the same ”plug-in” estimation for pdf, but this is
not possible: ecdf is a jump function (regardless of the sample size), hence its derivative
is zero almost everywhere, with undefined derivatives at the points of jump. This makes
the estimation of a pdf (also called density estimation) a much more complicated issue.

One possible way to treat this problem is the application of parametric density estima-
tion. When parametrically estimating a density, one a priori presumes a structure for the
pdf, that is, it assumes a functional form, where uncertainty in the function is reduced to
uncertainty in one or more parameters of the function. For example, one might presume
that the pdf has a functional form

1√
2πσ

e−
(x−µ)2

σ2 , (2.5)

where µ and σ are the unknown parameters. (Normal approximation.)
By imposing such restriction on the pdf, one reduces the density estimation task to a

parameter estimation task. (Which has well-known, long-studied solutions, such as the
maximum likelihood (ML) principle (Lehmann and Casella 1998; Millar 2011).)

This, however, comes at the price of commitment to a given functional form. To avoid
this, one might apply nonparametric density estimation, which has no such commit-
ment (Tapia and Thompson 2002; Devroye and Györfi 1985). The problem is that while
cdf can be very well (unbiased, efficiently) approximated with ecdf nonparametrically
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(while it was never explicitly mentioned, ecdf is, of course, a nonparametric estimator),
no such (uniformly minimum variance unbiased) estimator exists for pdf, as shown by
Rosenblatt back in 1956 (Rosenblatt 1956). (Although it was apparently Fix and Hodges
(1951) who gave the first treatment of this question.) Hence, nonparametric density
estimation will always involve compromises.

The most well-known nonparametric density estimator (which is, however, not called
by this name in many introductory texts), is perhaps the histogram.

Consider a (real-valued, scalar) statistical sample x = (x1, x2, . . . , xn), and a finite,
non-degenerate partition (P)ki=1 of the real line, or an [xmin, xmax] ⊆ R interval of it.
(That is, Pi ∩ Pj = ∅ if i 6= j and

⋃k
i=1 Pi = [xmin, xmax] with diamPi 6= 0.) Then, the

histogram of the sample, denoted with f̂n,hist is the function

f̂n,hist (x) = νi
nhi

, if x ∈ Pi, (2.6)

where νi :=
∑n
j=1 I{xj∈Pi} and hi := diamPi.

In plain words, one cuts the real line (or an interval of it) to subintervals, counts
the number of samples that fall to each subinterval, and plots this quantity (after a
normalization) above the interval.

By this ”binning”, the problem of discreteness is resolved and a practically useful estima-
tor – at least asymptotically – of the underlying distribution’s pdf can be obtained (under
very mild conditions for the choice of partitioning). Namely, if X = (X1, X2, . . . , Xn) is
an iid sample with histogram estimate f̂n,hist from an absolutely continuous distribution
with pdf fX , then f̂n,hist is a valid pdf, and if suphi −−−→

n→∞
0 with n · inf hi −−−→

n→∞
∞ at

the same time for a sequence of partitions, then the histogram is a consistent estimator
of fX , that is

f̂n,hist (x) P−→ fX (x) , (2.7)

but it is not unbiased. (The validity of f̂n,hist as a pdf is trivial by its definition. For the
second part, see (Pestman 2009, pp. 403–404), for the third part see (Hardle 2004).)

Many result is available on how the bias and the variance of a histogram is con-
nected (Hardle 2004). Without technical details, note that there is a trade-off between
the two, governed by the bin widths: the smaller the bin widths are, the smaller the bias
is, but with higher variance.

However, histogram is still a step function, and is heavily dependent on the choice of
the bins. (The choice of bin widths, and also on their actual location. This is of high
importance in practice (Hardle 2004), but will not be discuss in detail now.)

An alternative to histogram is the so-called kernel density estimator (KDE). To
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motivate this, note that ecdf is simply a rescaled sum of cdfs for indicator variables, which
are Heaviside step functions (located at the sample points). The root of the problem why
ecdf can not be used to define an empirical pdf is that the Heaviside step function can
not be derived. A straightforward solution is to replace this step function with a function
that has a derivative everywhere – in other words, replace the cdf of the indicator variable
with the cdf of a variable that is continuous, such as the cdf of a normal distribution
(with µ = 0 and an appropriate σ2). These can be similarly summed and scaled to
obtain an estimated (but continuous) cdf, from which an estimated pdf an be obtained
by differentiation.

This is illustrated on Figure 2.3, which directly compares the two methods.
By the linearity of derivative, it can immediately be seen that the pdf estimated this

way will be nothing else than the sum of the pdfs of the normal distributions. The
application of normal distribution’s is not necessary here, any symmetric function with
unit integral on the real line is suitable. Such function is called a kernel. (Kernel
is not equivalent with pdf as there is no restriction on non-negativity. However, the
application of a not everywhere non-negative kernel might result in an estimated pdf
that can be negative. While there are certain theoretical consideriations which justify
these (Silverman 1986, pp. 66-70), no widely used kernel can be negative for this reason,
hence they are in fact pdfs of – symmetric – probability distributions.)

In addition to the choice of the kernel function, there is another free parameter: σ2

(for normal kernel). The choice of this has a profound impact on the outcome of the
estimation as evidenced by Figure 2.4. This also shows each kernel (which are summed
to obtain the estimated pdf).

One typically wants to adjust the ”steepness” of the kernel function in general, which
might be not always possible so simply with a parameter of the kernel function. Hence
kernel functions are usually defined for a single ”steepness” (or variance, in terms of
distribution theory) and are then simply linearly scaled. For the example with the normal
distribution it means that the kernel is defined as

K (x) = 1√
2π
e−

x2
2 , (2.8)

and then K
(
x
h

)
is used as the actual kernel (which is equivalent with the above example

for h = σ).
Usually the same kernel is used for every observation with the same h parameter. (This

latter might not be rational if the density of the samples shows dramatic differences
depending on the value of the sample itself, which gives rise to the so-called adaptive

15



-3 -2 -1 0 1 2 3

(a) Raw data
-3 -2 -1 0 1 2 3

(b) Raw data

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

(c) True (degenerate) cdfs
for each sample

-3 -2 -1 1 2 3

0.02

0.04

0.06

0.08

0.10

(d) Approximating (non-degenerate) cdfs
for each sample

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

(e) Estimated cdf with true cdfs
-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

(f) Estimated cdf with approximating cdfs

(g) Estimated cdf can not be
differentiated

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

(h) Estimated pdf as the derivative of the
estimated cdf

Figure 2.3.: Kernel density estimation with normal kernels (σ2 = 1/
√

2) for a sample
from N (0, 1), sample size n = 10. Dashed line shows the true value of the
respective curves.

or variable bandwidth KDE, but it will not be discussed here in detail (Terrell and
David W. Scott 1992; Sain 1994).)
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Figure 2.4.: Effect of σ2 (i.e. bandwidth) on the KDE. Dashed line is the true pdf, thin
lines show the (scaled) kernel functions.

The (univariate) KDE can now be precisely defined. Consider a (real-valued, scalar)
statistical sample x = (x1, x2, . . . , xn). Then, the kernel density estimator from that
sample, denoted with f̂n,kernel is the function

f̂n,h,K,kernel (x) = 1
nh

n∑
i=1

K

(
x− xi
h

)
(2.9)

where K (x) is an arbitrary symmetric function for which
∫∞
−∞K (x) dx = 1 and h > 0.

Kernel density estimation was first suggested – independently – by Rosenblatt in
1956 (Rosenblatt 1956) and Parzen in 1962 (Parzen 1962).

The h parameter is usually called the bandwidth, it governs the smoothness of the
estimate. (It is analogous to the bin width in histogram estimate.) As Figure 2.4.
demonstrates, too small bandwidth results in too much ”anchoring” to the concrete
sample (low bias – high variance, ”undersmoothing”), while too high bandwidth causes
the estimate to get almost ”independent” of the sample (high bias – small variance,
”oversmoothing”).

The choice of kernel function does not have such profound effect on the result of KDE.
There are many kernel functions that have been investigated in the literature in addition
to the standard normal, for example the Epanechnikov kernel (K (x) = 3

√
5

4

(
1− 1

5u
2
)

for |u| <
√

5, zero otherwise), the triangular kernel (K (x) = 1 − |u| for |u| < 1, zero
otherwise), the rectangular kernel (K (x) = 1/2 for |u| < 1, zero otherwise) and so
on (Silverman 1986). A few of them are demonstrated on Figure 2.5.

Theoretically, the Epanechnikov kernel can be shown to be optimal in terms of
asymptotic efficiency (Silverman 1986, pp. 41-42), but the differences are rather small, so
– especially given the asymptotic nature of this efficiency – one often chooses kernel based
on other considerations, such as computational tractability.

The choice of bandwidth is, however, much more challenging. One natural way to
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Figure 2.5.: Estimated pdfs with different kernel function, all for h = 1/2.

measure the error of an estimation is the application of the L2 risk, also termed Mean
integrated squared error (MISE) in this context:

MISE (h) = E
∫ ∞
−∞

[
f̂n,h,K,kernel (x)− fX (x)

]2
dx. (2.10)

The notation MISE (h) was used to emphasize that now everything will be considered
fixed, except the bandwidth.

To demonstrate how this depends on h, one can show by Taylor-expansion and
rearranging of terms that under mild assumptions, the following holds (M. Wand and
C. Jones 1995):

MISE (h) = AMISE (h) + o

( 1
nh4 + h4

)
, (2.11)

where AMISE (h) is

AMISE (h) = 1
nh
R (K) + 1

4h
4µ2 (K)2R

(
f ′′
)

(2.12)

standing for ”asymptotic MISE”. Here R (K) =
∫∞
−∞K (z)2 dz (which is 1

2
√
π

for the
normal kernel) and µ2 (K) =

∫∞
−∞ x

2K (x) dx (which is 1 for the normal kernel). The
meaning of ”asymptotic” is now clear: AMISE (h) can be used instead of MISE (h) if
the sample size is sufficiently large (and, hence, small h can be chosen). Not only is it
possible, but it is also worthy to use AMISE (h) as it is dramatically easier to handle
analytically. In fact, after derivation it turns out that the optimal value of h (i.e. the
one that minimizes AMISE (h)) is

h∗AMISE =
[

R (K)
µ2 (K)2R (f ′′)n

]1/5

. (2.13)

The problem is that while R (K) and µ2 (K)2 only depends on the kernel used (indeed,
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they were explicitly given above for the normal kernel), R
(
f ′′
)

also depends on the –
unknown – true pdf, so this criterion cannot be directly used to estimate optimal h.
Instead, other, data-driven methods are employed.

Before proceeding, let us note that the convergence rate of AMISE (h) is of order
O
(
n−4/5

)
, which is better than that of histogram (O

(
n−2/3

)
), furthermore, it can

be shown that no nonparametric method can outperform KDE under mild assump-
tions (Wahba 1975). (Parametric methods can, of course, provide better (for example
O
(
n−1

)
) convergence, but this comes at the price of a priori commitment to a certain

function form, as already discussed.)
The investigated problem consisted of estimating the joint distribution of a laboratory

result and Z-BMI, i.e. to estimate a multivariate pdf. The theory introduced above can
be directly extended to accommodate this case as well (D. W. Scott 1992). Consider
a (real-valued, d-dimensional) statistical sample X = (x1,x2, . . . ,xn). Then, the kernel
density estimator from that sample, denoted with f̂n,kernel is the function

f̂n,h,K,kernel (x) = 1
n

n∑
i=1

K
[
H−1/2 (x− xi)

]
|H|1/2 , (2.14)

where K (x) is an arbitrary symmetric function for which
∫
Rd K (x) dx = 1 and H is

symmetric and positive definite matrix.
Multivariate extension of KDE was first suggested by Cacoullos in 1964 (Cacoullos

1966).
Similarly to the one-dimensional case, the K kernel is typically chosen to be strictly

non-negative (i.e. valid pdf).
The extension is straightforward: the kernel is now a multivariate function, and the

parameter is not a scalar, but rather a d× d matrix. The logic, however, is unchanged:
”small distributions” are placed around each observation, and these are summed to obtain
the final estimate (visually: the surfaces are added and normalized).

The (multivariate) kernel function is often constructed of univariate kernel functions
either by taking the product of d one-dimensional kernel functions (so-called product
kernel) or applying the one-dimensional kernel function to xTx (so-called spherically or
radially symmetric kernel) and then normalizing (M. Wand and C. Jones 1995). However,
the choice of kernel function does not have a profound effect on the estimation, and as
computational aspects are of even greater importance in multivariate case, K is often
chosen to be (multivariate) standard normal density.

The problem of estimating a single bandwidth parameter h is now replaced by estimating
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1
2d (d− 1) free parameters of the matrix H. This is increasingly problematic in higher
dimensions, hence the space of the bandwidth matrices is sometimes reduced from
symmetric, positive definite to positive definite, diagonal or positive definite, scalar.
Now only two- and (later) three-dimensional estimates will be needed, hence the search
space will not be restricted. (Especially because while this restriction indeed makes
estimation more feasible (for instance, using scalar matrix reduces the dimensionality to 1,
irrespectively of the actual d), but can be shown to significantly degrade the performance
of KDE (Chacón 2009; M. P. Wand and M. C. Jones 1993).)

Obtaining a reasonable estimate for H again starts with expressingMISE and AMISE.
It can be shown that under weak assumptions (Chacón, Duon, and M. P. Wand 2009)

MISE (H) = AMISE (H) + o

 trH−1

n |H|1/2 + tr2H

 (2.15)

and
AMISE (H) = R (K)

n |H|1/2 + 1
4µ2 (K)2

(
vecTH

)
Ψ4 (vecH) , (2.16)

where R (K) =
∫
Rd K (z)2 dz (which is (4π)−d/2 for the normal kernel), µ2 (K) =∫

Rd z
2
iK (z) dz (for any i, in other words

∫
Rd zzTK (z) dz = µ2 (K) I; this is I for the

normal kernel), Ψ4 =
∫
Rd
[
vecD2fX (x)

] [
vecTD2fX (x)

]
dx with D2fX (x) being the

d × d Hessian of the second order partial derivatives of fX (x), and vec meaning the
vectorization of a matrix by stacking its columns.

Similarly to the univariate case, R (K) and µ2 (K) depend only on the kernel used,
but Ψ4 also depends on the – unknown – density that is to be estimated. This likewise
makes the direct minimization useless, for instance, even if the search is restricted to
scalar bandwidth matrices H = hI the optimum will be

h∗AMISE =

 d ·R (K)
µ2 (K)

∫
Rd n

(
∇2fX (x)

)2 dx

 1
d+4

(2.17)

again depending on the unknown density that is to be estimated. (Should we express
optimal AMISE, we would obtain that its convergence rate is O

(
n

4
d+4

)
which is just a

manifestation of the well-known curse of dimensionality.)
Like it was mentioned at the univariate case, data-driven methods are needed to

estimate the bandwidth matrix. The approach that was now used is the so-called
smoothed cross-validation (SCV) that was introduced in 1992 (P. Hall, Marron, and Park
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1992). SCV is demonstrated to be amongst the most reliable methods for estimating a
full bandwidth matrix (Duong and Hazelton 2005).

To demonstrate the whole procedure, an example will be considered that is based on
one of the datasets that is to be introduced in Subsection 2.3.1. For the moment, it is
only important to know that we have n = 240 samples of boys with their Z-BMI and HDL
cholesterol levels. To illustrate these parameters, Figure 2.6. shows their scattergram.
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Figure 2.6.: Scattergram of the Z-BMI and HDL cholesterol of the boys from the NHANES
study (see Subsection 2.3.1).

It is immediately obvious that the relationship is negative, i.e. increasing Z-BMI is
associated with decreasing HDL cholesterol. (Which, of course, does not imply causation
in any direction.) One can observe the difficulties induced by the fact that both variable
is continuous: there is no simple way to define any statistics for a given Z-BMI (in order
to, for example, characterize the typical HDL for a given Z-BMI level).

Hence the KDE that was extensively described above for d = 2 was performed with
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normal kernel. The optimal bandwidth matrix, estimated with SCV, was

HSCV =

 0.29056218 −0.03589191

−0.03589191 0.01781749

 . (2.18)

The density estimate that was obtained using these is shown on Figure 2.7 with 3-
dimensional perspective plot and – more perspicuously – contour plot.
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(a) Perspective plot
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(b) Contour plot

Figure 2.7.: Estimated joint pdf of Z-BMI and HDL cholesterol for the boys from the
NHANES study.

Once the two-dimensional (BMI vs. investigated variable) joint pdf is estimated, the
distribution of the investigated parameter for any given BMI can be obtained by ”slicing”
the two-dimensional surface perpendicular to the BMI axis at the point of interest (e.g.
Z-BMI=+1). The ”slice” should be then normalized so that the area under its curve
equals to 1; that is, a conditional (one-dimensional) distribution from the two-dimensional
joint pdf is obtained, conditioning on Z-BMI. These are illustrated on Figure 2.8.

The required statistic can be then directly computed from the obtained pdf of the
conditional distribution (for example by numeric integration in case of mean).

Univariate Association Analysis

The next issue that was addressed was the quantifying of the relationship between Z-BMI
and the investigated laboratory parameter. The above examination only calculated
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Figure 2.8.: Conditional distribution of HDL cholesterol level for different Z-BMI levels (as
conditions). The position of conditions is illustrated on the joint distribution
with dashed lines.

certain statistics separately for some notable Z-BMI values, but has not dealt with
analyzing the statistical relationship between the two variables. To that end, a classical
(univariate) analysis on the association of obesity with systematical alteration of different
laboratory parameters was performed, parameter-by-parameter.

We had a continuous indicator of the degree of obesity (Z-BMI), therefore, instead of
binning the Z-BMI values (i.e. discretizing that variable) and then using either a t-test or
an ANOVA-type statistical test, we retained every value of the Z-BMI variable unchanged
and calculated its correlation coefficient with the investigated laboratory result. (See
the scattergram of Figure 2.6 to have an overall impression on this correlation.) The
advantage of binning would have been its ability to detect non-linear relationships as well;
to compensate this, Spearman-ρ (Maritz 1995) correlation coefficient was used (instead
of the more classical Pearson (product-moment) coefficient), which detects monotone
connections in general, and not only linear connections. (At the price of slightly smaller
power (Clark-Carter 2009).) This is also justified by the already mentioned non-normality
of some of the laboratory parameters, and the possible presence of outliers (Chok 2010).

Spearman-ρ is a rank correlation coefficient, that is, it is based on the ranks of
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the observations not their actual value. Spearman-ρ is simply the Pearson correlation
coefficient of the ranks of the two samples. In fact, if {xi}ni=1 and {yi}ni=1 denotes the
two samples, then

ρ =
∑n
i=1

(
x∗i − x

) (
y∗i − y

)√∑n
i=1

(
x∗i − x

)2√∑n
i=1

(
x∗i − x

)2 , (2.19)

where x∗i and y∗i denotes the i-th observation in ascending order within the x and y

sample, respectively.
The only question that arises is the definition if ties are present. However, for continuous

data (as ours) this usually poses no problem. Also, in this case the above statistic can be

simply calculated as ρ = 6
∑n

i=1(x∗i−x)
2

n(n2−1) .
By the properties of the Pearson correlation coefficient, it is immediately obtain that
−1 ≤ ρ ≤ +1, with |ρ| = 1 if and only if there is a perfectly monotonic map between
the observations of the two samples. Note that the function form itself does not matter
(that’s why Spearman-ρ is sometimes called non-parametric correlation coefficient), only
monotonicity counts. The sign of the correlation coefficient measures the direction of the
association, identically to the Pearsonian case.

Significance (for the null hypothesis H0 : ρ = 0) can be calculated either by asymptotic
t-approximation using the test statistic t = r

√
n−2
1−r2 (Press 2007) or exactly, using

permutation test (for very small samples) and Edgeworth expansion (David, Kendall,
and Stuart 1951). Now the latter approach was used, utilizing the algorithm AS89 (Best
and Roberts 1975).

For selecting the significant differences, the effects of the multiple comparisons situa-
tion (Miller 1981) also have to be taken into account. As several hypothesis testing is
run in parallel (and their results are considered disjunctively, i.e. we are looking for any
difference) the usage of the pre-specified significance level (e.g. 5%) for every test would
result in an experimentwise α far above the significance level. In particular, if k tests are
run in parallel, with H0 being true (in the population) for every of them, the probability
of finding at least one significant test – despite that – is 1 − (1− α)k. For k = 2 this
is 9.75%, for k = 30 (which is close to the realistic cases when laboratory results are
considered) this is 78.5%, i.e. it is far more likely that we find a – false – significance
than not finding such. (Also, consider that the number of expected false positives is αk
which is above 1 for k > 20 when α = 0.05.) This is the phenomenon of α-inflation.

To protect against this, a correction has to be applied. The most straightforward
approach is to utilize the so-called Bonferroni- (or Boole-) inequality, which results in
that 1− (1− α)k ≤ αk. Hence, using corrected significance level α′ = α

k guarantees that
the probability of finding a false significance (i.e. experimentwise α) can not exceed α,
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even if k tests are run in parallel.
This is the so-called Bonferroni-correction (Shaffer 1995). The major drawback of this

correction is that it is overly conservative and also makes the detection of true effects
extremely hard. (In other words, it will provide a very weak overall test.)

However, there is a way to improve this without requiring further assumptions: this
is the so-called Holm–Bonferroni-correction (Holm 1979). (Improvement is understood
such that Holm–Bonferroni-method dominates Bonferroni: under no circumstances is
it specifically better to use Bonferroni-correction, but in many cases it is better to use
Holm–Bonferroni, i.e. Holm–Bonferroni is uniformly more powerful.)

Holm–Bonferroni-correction starts by ordering the p-values and calculating the usual
Bonferroni-corrected significance level: α′ = α

k . If there is no p-value that smaller
than that, every hypothesis testing is considered insignificant. However, if there is at
least one, than the smallest is considered significant (evidently), but after that, this
procedure is repeated with significance level α′′ = α

k−1 (instead of using again α′ = α
k as

in Bonferroni-correction). And so on, until a point is reached where no p-value is below
the actual significance level. Remaining tests are considered insignificant. It can be
demonstrated that this method provides the same strong control on the experimentwise
α as the Bonferroni-correction, despite the fact the higher significance levels are used.

This was the correction that was used to judge whether the association of a laboratory
parameter with Z-BMI is significant or not.

Other, even more powerful correction methods are available as well, but they either have
certain assumptions only under which they are valid (such as Hommel-correction (Hommel
1988)) or do not provide a strong control on the experimentwise α (such as the False
Discovery Rate (Benjamini and Hochberg 1995)). Therefore these methods were not used
now.

2.2.4. Investigation of the Multivariate Structure

The investigation of the multivariate structure poses a greater challenge, even leaving the
problem of varying Z-BMI aside. To practically grab the issue, it is customary to confine
ourselves to linear connections, therefore reducing the problem to the investigation of the
usual correlation matrix. This, however, is still problematic with the traditional tools of
multivariate statistics. This problem will be exposed first.

After that, I will introduce my methodology, which is based on defining correlation
matrices for given Z-BMI levels. I will call these ”conditional correlation matrices” – I
am not aware of any application of this concept in such context.

Two methods of modern multivariate statistics will be then employed for the actual
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analysis: Principal Components Analysis (PCA) and Cluster Analysis (CA). I will also
introduce the logic of these methods.

Traditional Approaches’ Shortcomings, and their Alternatives

The correlation structure of a database is directly reflected in its correlation matrix (if we
confine ourselves to linear connections) and can be visualized by (matrix)scattergrams.
Both methods fail to facilitate to understanding of the correlation structure if the number
of variables is too high: matrix scattergrams and correlation matrices can be hardly
overseen for more than 10 variables (Venables and Ripley 2002). Even for typical
laboratory examinations, there are 30 (or even more) variables, so other approaches of
multivariate statistics had to be employed. This is demonstrated on Figure 2.9 which
shows the correlation matrix of the laboratory variables for boys in the NHANES database
(for the database see Subsection 2.3.1), visualized with heatmap.

It can be visually observed how difficult it is to reveal patterns, especially those that
involve several variables. Matrixscattergram is virtually impossible to be meaningfully
plot for this case.

I employed two modern methods to capture the multivariate structure of such, high-
dimensional data: Principal Component Analysis (PCA) and Cluster Analysis (CA).
Both methods can be used to ease the understanding and interpretation of the correlation
structure of large databases. Note that these methods do not require the database itself,
only its correlation matrix, so the first task is to define the correlation matrix, now taking
the effect of Z-BMI into account.

Conditional correlation matrices

The first task is therefore to define a correlation matrix between the laboratory parameters
for a given Z-BMI. The logic that will be followed will be the same as in the univariate
case: density estimation (KDE) will be used to obtain an estimate of the joint pdf,
condition on Z-BMI to obtain a conditional pdf and calculate the correlation matrix from
this conditional pdf. I will call this ”conditional correlation matrix”.

The direct attack of this problem is infeasible: the maximum dimensionality of a
joint pdf that can be sensibly estimated from realistic sample sizes is about 5 (due to
the curse of dimensionality). Having 30-40 or even more laboratory parameters, it is
downright impossible to estimate a joint pdf of all laboratory parameters and Z-BMI,
from which the correlation matrix (after conditioning) could be calculated. However,
a very simple observation helps: a correlation matrix does not need to be estimated
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Figure 2.9.: Correlation matrix of the laboratory results the boys from the NHANES
study (see Subsection 2.3.1) visualized with heatmap.

”in whole” (by matrix multiplication) – of course, we get to the very same matrix if
we estimate it element-by-element (i.e. we estimate the pairwise correlations). Thus,
for k laboratory parameter, it is not necessary to estimate a (k + 1)-dimensional pdf
(laboratory parameters and Z-BMI), rather, it is always sufficient to perform a three-
dimensional pdf estimation (irrespective of k!), from which one element of the conditional
correlation matrix can be calculated, and repeat this k(k+1)

2 times. With this logic, the
curse of dimensionality can be broken in this case.

The only problem with this approach is that this way the elements of the correlation
matrix are approximated from different samples, hence, the resulting matrix is not
necessarily positive semidefinite (as a correlation matrix should be). This would prevent
the performing of PCA (or any other method that expects a valid correlation matrix as
input), so smoothing (Wothke 1993; Jäckel 2002) was applied to reconstruct a closely
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approximating positive semidefinite matrix from the correlation matrix by eliminating
negative eigenvalues and rescaling positive ones. (This is acceptable in this case, because
in practice it will only have few negative eigenvalues, with very small absolute values.)

In more detail, we take the approximated correlation matrix of l variables Cl×l and
calculate its spectral decomposition (Poole 2010). (It surely exists as C is a real and
symmetric matrix, even if the above approach is to construct it – these two properties are
surely preserved, even under element-by-element reconstruction). The factorization is

C = QΛQT . (2.20)

This form incorporates the fact that the eigenvectors of a real symmetric matrix are
orthogonal.

Now, let us detail the eigenvalues:

Λ =



λn+ 0 · · · 0 0 0 · · · 0 0

0 λn+−1 · · · 0 0 0 · · · 0 0
...

... . . . ...
...

... . . . ...
...

0 0 · · · λ2 0 0 · · · 0 0

0 0 · · · 0 λ1 0 · · · 0 0

0 0 · · · 0 0 λ−1 · · · 0 0
...

... . . . ...
...

... . . . ...
...

0 0 · · · 0 0 0 · · · λ−n−+1 0

0 0 · · · 0 0 0 · · · 0 λ−n−



, (2.21)

where λi denotes a nonnegative eigenvalue if i > 0, a negative if i < 0, and n+ + n− = l.
We now try to eliminate the negative eigenvalues. A logical solution is to simply

replace every λi with 0 for i < 0, but this alters the sum of the eigenvalues. (Which is
the trace of the original matrix, hence – as it is a correlation matrix – should be fixed,
namely the number of variables, l.) To prevent this, we will simply linearly rescale every
eigenvalue so that their sum becomes l.

More precisely, the negative eigenvalues are replaced with a very small positive number
(instead of zero), so that the matrix will be positive definite and not only positive
semidefinite. By denoting this number with ε, a scaling factor of l

εn−+
∑n+

i=1 λi
is obtained.

Using this, and the transformation defined above, we get the following modified eigenvalue-
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matrix:

Λ̃ =



l

εn−+
∑n+

i=1
λi

λn+ · · · 0 0 0 · · · 0

...
. . .

...
...

...
. . .

...
0 · · · l

εn−+
∑n+

i=1
λi

λ2 0 0 · · · 0

0 · · · 0 l

εn−+
∑n+

i=1
λi

λ1 0 · · · 0

0 · · · 0 0 l

εn−+
∑n+

i=1
λi

ε · · · 0

...
. . .

...
...

...
. . .

...
0 · · · 0 0 0 · · · l

εn−+
∑n+

i=1
λi

ε


,

(2.22)

This will be in turn used to reconstruct an approximating matrix – which, however,
will be positive definite. Namely, we will use the matrix:

C̃ = QΛ̃QT . (2.23)

in the further analyses.
It can be shown (Gill, Murray, and Wright 1981) that the quality of the approximation

defined above can be limited in sense of matrix distance, namely∥∥∥C̃−C
∥∥∥
F
≤ 2

∣∣∣λ−n−∣∣∣ ,
where ‖·‖F is the usual Frobenius norm of a matrix (Poole 2010). In the light of the
remark that for our case, negative eigenvalues tended to be very small in magnitude, this
statement justifies the application of this simple procedure. Note however, that several
other, more sophisticated procedure is available for the same end (Higham 2002; Higham
1989; Higham 1988; Knol and Berge 1989; Cheng and Higham 1998).

Finally, let us note that we actually used correlation (and not covariance) matrices
because laboratory parameters have different measurement scales. Using correlation
matrices is equivalent to standardizing the dataset, which removes their scale-dependence.

Principal Components Analysis

Principal Components Analysis (PCA) is one the most classical tools of multivariate data
analysis (Flury 1997). It can be employed (and interpreted) in many different ways; now
I will use it as a tool to ease the understanding the structure of a correlation matrix. It
should be again emphasized that for our purpose, the whole procedure will be introduced
as a method to analyze the correlation (and not the covariance) matrix of the dataset,
which is – as it will be shown – equivalent to using the standardized database. This is
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necessary as the variables of our database are scale-dependent (with different units of
measurement) which should not have an effect on the result.

To have an overall picture of how this is possible, let us first introduce some details of
PCA (Jolliffe 2002).

Essentially, PCA forms linear combinations of the original variables so that the
resulting variables will be more optimal than the original ones (in some, defined sense of
”optimality”). That is: if Xn×p denotes the data matrix (with n observations each being
a p dimensional real vector) a principal component is simply a new vector (variable) Xv.
So indeed, a principal component is a (linear) mixture of the original variables.

Those more inclined toward the geometrical interpretations of linear transformations
immediately notice that if we prescribe that v is of unit norm than this is nothing else
than projecting the observations from a p-dimensional space to a line in that space
(defined by the unit vector v), i.e. we perform a coordinate change. (Every element of
Xv will be a dot product of the observation’s p dimensional vector and v.)

As usual, we can make it a complete change of basis by introducing further axes of
projection, denote them v1,v2, . . . ,vp, which are the column vectors of the matrix V.
We get to a usual Cartesian coordinate system if the axes are orthogonal, i.e. every vector
is orthogonal, in other words, V is orthogonal (and also orthonormal). An orthogonal
matrix is invertible, so we can change between the coordinate systems in both directions.

Sticking to the graphical interpretation of the above transformation, we can illustrate
the rationale of this change of coordinate system. Consider a two-dimensional case
where the observations are distributed as shown on Figure 2.10. The original, and the
transformed Cartesian coordinate systems are shown in black and red.

When both coordinates are used, the two representations are equivalent. (As evidenced
by the invertible transformation matrix.) However, if we are to perform a dimension
reduction (in this case: represent the data in one dimension) this is no longer the case!
If the observations are projected to the first axis of the original coordinate system, the
loss in information will be much greater than by the projection to the first axis of the
transformed coordinate system. (I will later precisely define what ”loss in information”
means, in the meantime, consider its intuitive interpretation.) This is the sense in
which the transformed representation is better: it has rearranged the axes so that when
dimension reduction is performed, the loss in information can be minimized (as opposed
to the original representation).

Note that this transformation implies that the new coordinate system’s origin is the
same as the original’s (i.e. only a rotation of the coordinate system is performed), hence
this transformation only makes sense, and the aforementioned optimality can only be
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Figure 2.10.: Visual illustration of the logic of Principal Components Analysis.

reached for dimension reduction if the database is centered. (Otherwise, the direction of
the principal component might simply depend on the mean of the variables.) Therefore,
to perform PCA, the database has to be first centered, i.e. the mean should be subtracted
from each variable (so that every variable’s mean will be zero).

Now let us more precisely elaborate what is meant by ”loss in information”. Consider
our situation where the database is not only centered, but also standardized (i.e. the
mean is subtracted from each variable and divide by the standard deviation), denote
this with Xz. By this, variables will be not only of zero mean, but of unit variance
– for every axis. However, this only stands for the original axes: we might still find
axes for which the projection is not of unit variance, see Figure 2.10. Finding an axis
for which the projection has a variance higher than 1 means that the information of
the original database is better represented on that axis, because after standardization,
variance measures information conveyed by the axis in some sense. (I will shortly make
this more precise.) In fact, the first principal component will be the solution of the
following optimization problem:

max
‖v1‖=1

D2 (Xzv1) . (2.24)

The solution of this is not especially complicated. As 1
n1T (Xzv1) = 1

n

(
1TXz

)
v1 =
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0Tv1 = 0 (i.e. the variable is of zero mean), we have

D2 (Xzv1) = 1
n

(Xzv1)T (Xzv1) = 1
n

vT1 XT
z Xzv1 = vT1 Cv1, (2.25)

where C denotes the correlation matrix of the original data.
We solve the optimization problem by the method of Lagrange multipliers (Bertsekas

1996). Define
Λ (v1, λ) = vT1 Cv1 − λ

(
vT1 v1 − 1

)
, (2.26)

and then calculate its partial derivatives (Petersen and Pedersen 2006):

∂Λ (v1, λ)
∂v1

= 2Cv1 − 2λv1 (2.27)

and
∂Λ (v1, λ)

∂λ
= vT1 v1 − 1 (2.28)

Setting the first to zero, we obtain

(C− λI) v1 = 0 (2.29)

which is simply the eigenvalue/eigenvector problem (Poole 2010) for the matrix C. Thus,
λ has to be an eigenvalue of the correlation matrix, while v1 is an eigenvector.

The only question remains is to decide which eigenvalue/eigenvector to use. For this,
note that if v1 is an eigenvector of C, then the objective function is

vT1 Cv1 = vT1 λv1 = λ, (2.30)

by the constraint (partial derivative with respect to λ) with λ being the corresponding
eigenvalue.

Therefore the first principal component can be formed by using the (normalized)
eigenvector of the correlation matrix corresponding to the largest eigenvalue as a weighting
vector. It was also deduced that the variance of this principal component will be just the
largest eigenvalue.

Further principal components can be calculated by imposing the additional condition
of orthogonality to the previous principal components. (Which is equivalent to saying
that the weighting vectors are orthogonal as vTAv = 0 ⇔ v = 0 if A is not singular,
which might be presumed for a correlation matrix, by assuming linearly independent
variables.) Namely, for the kth principal component, we have to solve the optimization
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task
vk = max

‖vk‖=1
∀j<k:vTj ·vk=0

D2 (Xvk) . (2.31)

The solution essentially goes along the same lines with slightly more complicated
algebra. The details will not be discussed here; the results will be analogous: the kth
principal component can be formed by the (normalized) eigenvector of the correlation
matrix corresponding to the kth largest eigenvalue, and the variance of the principal
component will be that eigenvalue.

This procedure can be effectively executed on computer in practice using for example
singular value decomposition (Trefethen and Bau 1997).

Accepting that the variance is some way measuring the information, it can be seen
that the overall information in the original database is n. Consistently with what was
said about the transformed database being equivalent, it is also the information in the
transformed variables, as the sum of the eigenvalues in a matrix equals it trace, in this
case

∑p
i=1 λp = trC = p. But, a variable with eigenvalue (variance) larger than 1 carries

more information than an original variable; for example, for the first component it is λ1
n .

This is also called the explained variance of that component. The explained variance of
the first two principal components is λ1+λ2

n and so on.
Now, let us return to the more precise definition of information loss in the context of

dimension reduction. As already discussed, using the original p-dimensional database and
using p principal components is essentially equivalent, as it simply represents a change of
basis. Hence, there is no information loss associated with this transform (no matter how
it is defined), as exactly the same points are represented by both. Dimension reduction
means that we represent the database using p′ < p coordinates, with minimizing the
”information loss” that is induced by using fewer axes. Now it is time to introduce the
precise definition of this ”information loss”: we will measure this by the average squared
Euclidean distance between the original points and the points that were reconstructed
using the fewer coordinates. This latter is understood as projecting the observations to
the p′ < p axes used in dimension reduction, and then expressing their coordinates in the
original coordinate system. That is, if we use the notion Vp′ for the matrix formed from
the first p′ columns of V, then the coordinates in the original coordinate system of the
database reduced to p′ dimensions using PCA is obviously

XzVp′VT
p′ . (2.32)
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Thus, the error using the criterion defined above for p′ < p dimensions is

C
(
p′
)

=
∥∥∥Xz −XzVp′VT

p′

∥∥∥2
. (2.33)

And now comes the interesting theorem: it can be shown that PCA is the method
that minimizes this criterion for every p′ < p dimension reduction among all linear
transformation of the database! In other words, by transforming the database with PCA,
we get an optimal representation in a sense that no matter how large dimension reduction
we want to achieve the best will be (among linear transformations of the database) to
use the first few principal components.

Let us close this discussion with two concluding remarks. First, basing PCA on the
correlation matrix and using the standardized database are essentially synonymous. We
might perform this spectral decomposition on the covariance matrix, this would be
equivalent to using a centered (but not standardized) database. As already mentioned,
this only makes sense if the data are measured on the same scale. If not (as in this case)
we should use the correlation matrix (i.e. standardize the database) to eliminate the
scale-dependence of the variables. Second, let us note that PCA could be introduced on
purely probability theory grounds (as opposed to the ”sample approach” that was used
above). That would mean the investigation of the random variable Xv, where X is a
p-dimensional vector random variable of some specified distribution (typically: p-variate
normal). The results are analogous to those in the above discussion, we will not elaborate
this in more detail.

At this point, it is natural to ask how this all is related to understanding a correlation
matrix, the task that set forth. The answer is simple: the coefficients of the weighting vec-
tors (i.e. the columns of the V matrix) shed light on the connections between the original
variables. (Precisely: usually not the V matrix is used, but Vdiag

(
〈λ1, λ2, . . . , λp〉

)−1/2,
which can be easily demonstrated to contain the correlations between the original vari-
ables and the principal components, and is sometimes called the loading matrix.) More
specifically: those variables that are highly correlated (in absolute value) with the same
principal component, are also correlated among themselves; hence, instead of searching
for high correlations within a p× p matrix (where p denotes the number of laboratory
parameters), it is sufficient to consider p values (a column of the loading matrix) at
a time and repeat this p times, even if all principal component is considered. This
essentially means that the problem can be decomposed into subtasks that are much easier
to solve. Furthermore, as principal components are in the order of decreasing importance
(based on the error that occurs when the last principal components are omitted in the
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reconstruction of the observed variables), it is usually enough to consider the first few
columns of the loading matrix in many practical case. This way, information may be
obtained even from large databases on what variables exhibit statistically connected
behavior, which might indicate causal (physiological, this time) connections between
them.

It is clear from the above description – as the medical ”meaning” of a principal
component is given by those original variables that are highly correlated with that
component – that for interpretation purposes, the best is if each column of the loading
matrix is the most ’polarized’, i.e. the coefficients in it are either close to ±1 or to 0, but
not in between. To achieve that end, a so-called rotation is usually applied. Rotation
means the transformation of the principal components with an orthogonal matrix – it
does not change the overall variance explained, but redistributes it among the principal
components. One of the most popular techniques is the varimax rotation (Kaiser 1958),
which has the variance of the squares of the coefficients in the columns of the loading
matrix as objective function, and maximizes it by rotation.

Now PCA was used purely to transform the correlation matrix, i.e. it was applied in
descriptive sense, with no inductive statistics performed. Because of this, neither the
calculation of the KMO measure, nor any hypothesis testing was performed.

PCA was performed for the conditional correlation matrices for Z-BMI=+1, +2 and +3
(obtained as described above), consistently with what was done in case of the univariate
descriptors.

To ease the interpretation of the loading matrices, varimax rotation was applied after
performing PCA to achieve a well-interpretable component structure. The number of
extracted components was set to 13, this was selected to support interpretability and
also to ensure that those components are extracted that have an eigenvalue larger than 1
(Kaiser’s criterion (Kaiser 1960)).

Cluster Analysis

Cluster Analysis (CA) aims (Tan, Kumar, and Steinbach 2007) to form groups of data
objects such that objects within a group are similar to each other, while objects in
different groups are dissimilar (according to some prespecified metric of similarity). Such
groups are called clusters in the context of CA. Obviously, there is a trade-off between
the two considerations: we can maximize the within-group similarity if we consider every
object a cluster itself, but this is usually a very poor solution in terms of between-group
dissimilarity. On the other hand, between-group dissimilarity is the best if every objects
belongs to the very same cluster, but this is usually a very poor solution in terms of
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within-group similarity. Thus, a compromise has to be found between the two extrema.
The choice of metrics that define similarity between objects is limited by the information

that is available about the objects. For example, if objects are described by real vectors,
Euclidean distance or Lp distances in general might be used, for count data (i.e. integer
vectors), χ-squared metric is a popular choice, while for binary data, there is plenty of
widely used metrics, such as the Jaccard index.

Either way, after applying the similarity metric, we end up with a similarity (or
dissimilarity) matrix D, which will we the input of CA. dij is similarity (or dissimilarity)
of the data objects i and j. This matrix can be arbitrary (except, of course, that it has to
be a valid distance matrix). The application of similarity or dissimilarity does not mean
a profound difference, they can be converted to each other, albeit not unambiguously.

There are several philosophically different approaches to CA, the two classical (and most
important) being hierarchical clustering and k-means clustering. Additional modern meth-
ods include density-based clustering (Kriegel et al. 2011) and spectral clustering (Luxburg
2007).

Now hierarchical clustering will be used, which is based on the stepwise forming of
clusters, with no need to a priori define the number of clusters to be formed.

More specifically, the so-called agglomerative hierarchical clustering will be used, where
every data object is considered a cluster in itself at the beginning, then they are merged
according to a logic we will immediately describe, until every data object belongs to
the same cluster. Hence, we ”iterate through” every possible compromise between the
two considerations of CA. There is no need to an a priori commitment, the results will
include the whole spectrum.

To elaborate the details (B. Everitt and Hothorn 2011; B. S. Everitt et al. 2011): in
every step, the algorithm merges the two closest clusters. (A cluster can be either a data
object or a group of objects.) At the beginning, every data object is a cluster in itself.
The only open question that has to be addressed before the mechanics of the algorithm is
fully specified and can be run, is the definition of the ”closest” clusters, i.e. the definition
of the distance of two clusters (because so far we only defined distances between objects,
but not between clusters). This is a trivial problem only in the first step, but after that,
the question of defining distance between an object and a true cluster (i.e. several objects)
or between two true clusters arises.

Several strategies (called linkage criteria) are used in practice. Two cluster’s distance
might be called the maximum distance between the objects in the clusters (complete
linkage), the minimum distance (single linkage), the average distance (mean linkage),
but other, more sophisticated solutions are also possible.
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I have already shown [F-8] that the results in this task are not sensitive to the distance
metric and the cluster definition that is used, hence, I employed the popular Ward’s
method as cluster-distance definition and 1 minus the absolute value of correlation (Glynn
2005) as a distance (dissimilarity) measure. (This distance measure is equivalent to the
well-known Euclidean distance if standardized variables are used, save for a constant
factor depending only on the number of coordinates.) At this point, it worth noting that
the only data-specific input that agglomerative hierarchical CA with Ward’s method and
the above distance metric needs is the D matrix, i.e. it does not use the original data
itself, conforming to what was already said about currently employed algorithms only
requiring a correlation matrix.

While the distance metric is clear from the above definition, the linkage criterion worth
describing in more detail. Ward’s method was first described in 1963 (Ward 1963). It
aims to minimize the within-group variance, or – as it is usually stated – the within-group
error sum of squares. This is defined as the sum of the error sum of squares in each
cluster, where the latter is understood as the sum for each coordinate:

ESS =
∑
c

ESSc =
∑
c

 nc∑
i=1

p∑
j=1

(
xc,i,j − xc,j

)2 . (2.34)

In other words, the error sum of squares in a cluster is the trace of the covariance matrix
of that cluster.

It is obvious that ESS can only increase when clusters are merged (as the new cluster
centroid will not be minimizing the sum of squares for the merged clusters). Hence, the
precise objective function of Ward’s method is to choose that merging which minimizes
the increase in ESS.

More importantly, it can be demonstrated that the aforementioned increase is propor-
tional to the squared Euclidean distance between the centroids of the merged clusters.
Nevertheless, the method is not equivalent to merging the clusters with the closest
centroids (so-called centroid clustering), because Ward’s method also implies a weighting
of the centroids based on the number of samples in the clusters.

Ward’s method can be implemented within the framework of the Lance–Williams-
algorithm (Lance and W. T. Williams 1967), which was the approach that was applied
in the developed methodology.

Using this apparatus, CA was performed for the conditional correlation matrices for
Z-BMI=+1, +2 and +3 (obtained as described above), consistently with what was done
in case of the univariate descriptors.
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The ”data objects” that were clustered were not the cases (as it is typical in clustering),
but the variables, i.e. the laboratory parameters. Hence ”similarity” means statistically
connected behavior (based on the correlation matrix). That is: we are aiming to identify
groups of laboratory parameters that exhibit similar behavior. (This task is essentially
the same as the one we set forth with PCA, but the approach to solve it is completely
different.)

For the current purpose, the most useful representation of the results of an agglomerative
hierarchical CA is the dendrogram. Variables are connected with lines on a dendrogram,
each connection having a so-called ”height” that is measured on the vertical axis. One
makes a compromise between within-group similarity and between-group dissimilarity by
choosing a ”threshold” on the vertical axis: for a given threshold, those variables will be
in the same cluster that are connected below the threshold. This reflects what was said
about hierarchical clustering not requiring an a priori commitment in the compromise.

This also means that the smaller the height is, the variables are more similar. Thus,
the variables or clusters of variables that are more ”deeply” connected are more similar.
This way, groups of similar variables can be formed for any minimum of similarity (that
is reflected as a height at which connections are ”cut off”, as already described). This
way, the dendrogram can be considered as a graphical interpretation of the correlation
matrix.

2.3. Clinical Interpretations for the Effects of Obesity on
Laboratory Parameters

I have provided clinical interpretations for the effects of obesity on
laboratory parameters based on a representative international sur-
vey and a non-representative survey that was performed on Hungar-
ian adolescents specifically for the aims of the present investigation.
I have discussed results pertaining to both the uni- and the multi-
variate structure of the investigated variables.

Using the methodology and program developed for this purpose (and described in
Section 2.2), real-life data of adolescents were analyzed to investigate the connection
between overweight/obesity and laboratory parameters. Findings were then interpreted
from physiological and pathophysiological perspective and evaluted clinically.

Relevant own publications pertaining to this thesis: [F-3; F-15; F-9; F-1; F-4; F-21;
F-2; F-11; F-5; F-12; F-8; F-7; F-6; F-13; F-18; F-19; F-20; F-17].
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To improve the robustness, two datasets were used. One is from a non-representative
Hungarian study we performed specifically for this purpose, the other is the appropriate
part of the large representative US survey called NHANES. These will be introduced in
Subsection 2.3.1.

After the databases are introduced, I present the results first for the univariate analyses
of them (Subsection 2.3.2), and then for the analysis of their multivariate structure
(Subsection 2.3.3).

The source code presented in Section 2.2 (listed in Appendix, Chapter A) also includes
the necessary parts to perform the concrete calculations on the above two databases.
Details on the program are given in the referenced Section, it will not be discussed here.

2.3.1. Databases Used

Two independent datasets of adolescents were used, based on which the effect of obesity
on laboratory results was investigated using the methodology I developed for this purpose,
described in Subsection 2.3.1. Both datasets consist of laboratory results, age, body mass
and body height of children aged between 12 and 18 years, as my aim was specifically to
address pediatric obesity due to its high public health significance (Ebbeling, Pawlak, and
Ludwig 2002; Deckelbaum and C. L. Williams 2001; Must, Strauss, et al. 1999), which I
have already discussed in Subsection 2.1.1. The content of the databases conforms the
specification prescribed in Subsection 2.2.1.

Two datasets were used to ensure robustness. The first database is part of the
representative US survey called NHANES. This was used due to its large sample size,
carefully designed sampling plan, and representative nature, which provides us the
opportunity to perform an investigation with reliable external validity. I, however, also
aimed to investigate Hungarian population as well. Unfortunately, no survey was available
which contained the necessary data, so we organized an own survey for this purpose.
Due to its non-representative nature, we should be careful when drawing conclusions
from this database, nevertheless, I included it here as a pilot study, so that Hungarian
population is also addressed.

NHANES

The National Health and Nutrition Examination Survey (NHANES) is a nation-wide
survey (Centers for Disease Control and Prevention, National Center for Health Statistics
2013a) performed annually in the United States by the National Center for Health
Statistics (NCHS), division of the Centers for Disease Control and Prevention (CDC).
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NHANES has a complex survey design to ensure its representativeness for the civilian non-
institutionalized US population (Centers for Disease Control and Prevention, National
Center for Health Statistics 2006). The amount of collected data is tremendous, including
demographic data, physical examination, collection of laboratory parameters, and an
extremely thorough questionnaire concentrating on anamnesis and lifestyle.

Results are published on a biannual basis and are publicly available. For the current
analysis, data from the 2009-2010 Continuous NHANES cycle’s database (Centers for
Disease Control and Prevention, National Center for Health Statistics 2013b) was used
being in accordance with the time period of the Hungarian measurements. (These are
also the latest available NHANES data, as datasets for the 2011-2012 cycle have not yet
been published (Centers for Disease Control and Prevention, National Center for Health
Statistics 2013c).)

For the purpose of the present investigation, the NHANES dataset was filtered to
subjects aged between 12 and 18 years. The so-called ’Laboratory’ dataset was used
(consisting of the laboratory parameters). Concrete laboratory parameters were selected
to match those that were available in the Hungarian study, and included the following:
’Standard Biochemistry Profile’ (BIOPRO), ’Complete Blood Count with 5-Part Differ-
ential in Whole Blood’ (CBC), ’C-Reactive Protein’ (CRP), ’HDL-Cholesterol’ (HDL) and
’Triglycerides and LDL-Cholesterol’ (TRIGLY). Basic anthropometric data (for BMI) was
available from the ’Body Measures’ (BMX) dataset of the ’Examination data’, while basic
demographic data (for age) was available from the ’Demographic Variables and Sample
Weights’ (DEMO) dataset of the ’Demographics data’.

After the above filtering, the NHANES dataset had a sample size of n = 440 (with
200 females and 200 males). The distribution of their Z-BMI scores for both females and
males are shown in Figure 2.11.

The concrete laboratory parameters that were used together with their units of
measurement and abbreviations are shown in Table 2.1.

To account for the complex survey design of the NHANES, sample weighting was
applied as per the Analytic and Reporting Guidelines of the NHANES (Centers for
Disease Control and Prevention, National Center for Health Statistics 2006).

Hungarian study

What I call the „Hungarian study” is a Hungarian cross-sectional, multicenter clinical
observation that we arranged specifically for this investigation.

We collected data from subjects aged between 12 and 18 years, including both healthy
volunteers and clinically obese ones. Sampling was done independently in the two groups
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Figure 2.11.: Distribution of the Z-BMI scores in the NHANES database for both females
and males.

up to a pre-specified quota, so the sample sizes are not representative for the prevalence
of obesity. Clinically obese subjects were intentionally included to oversample the region
of severe obesity.

The healthy control group consisted of volunteers from four Hungarian secondary
schools, three of them being located in the capital city (Budapest), one in a rural
town (Mátészalka). Subjects were selected as a convenience sample, so results are not
necessarily representative at national level. Each child participated with full written
informed consent from their parents and the study was pre-authorized by the Hungarian
Regional Bioethical Commission. The data was collected between April 2008 and May
2009. Examinations of healthy volunteers included anthropometric measurements, body
composition analysis (with InBody 3.0 multi-frequency bioelectric impedance analyzer),
fasting blood sample drawing for standard laboratory parameters and anamnestic data
recording. Measurements were carried out by physicians of the Heim Pál Children’s
Hospital (Budapest) and results were manually recorded in electronic format [F-4]. From
these data, the anthropometric, demographic and laboratory parts will be used now.

The obese group consisted of children treated in the Heim Pál Children’s Hospital,
with their main diagnosis being E66.9 (according to ICD-10) ”Obesity, unspecified” with
no significant comorbidity. Data (including laboratory parameters) of the obese children
were extracted from the hospital’s electronic records with a custom application developed
by the authors as discussed in [F-4].

From these data, we again used the laboratory parameters, age, body mass and body
height. The concrete laboratory parameters that were used together with their units of
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measurement and abbreviations are shown in Table 2.1.
The Hungarian database consists of n = 183 subjects (113 males, 70 females). The dis-

tribution of the BMI z-scores of these subjects is shown in Figure 2.12. (The oversampling
of obese population is obvious.)
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Figure 2.12.: Distribution of the Z-BMI scores in the Hungarian study for both females
and males.

2.3.2. Univariate analysis

Most important univariate descriptors of the laboratory results for different levels of
obesity (Z-BMI=+1, +2 and +3) and the results of the univariate association analysis,
both segregated according to sex are given in Table 2.2 for the NHANES and in Table 2.3
for the Hungarian database.
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Table 2.1.: Investigated laboratory parameters with name, abbreviation and unit of
measurement.

Laboratory parameter Abbr. Unit of measurement

White blood cell count WBC G/l
Relative neutrophil count RNC %
Relative lymphocyte count RLC %
Relative monocyte count RMC %
Relative eosinophil count REC %
Absolute neutrophil count ANC G/l
Absolute lymphocyte count ALC G/l
Absolute monocyte count AMC G/l
Absolute eosinophil count AEC G/l
Red blood cell count RBC T/l
Hemoglobin HGB g/l
Hematocrit HCT %
Mean corpuscular volume MCV fl
Mean corpuscular hemoglobin MCH pg
Mean corpuscular hemoglobin concentration MCHC g/l
Red blood cell distribution width RDW %
Platelet count PLT G/l
Mean platelet volume MPV fl
C-reactive protein CRP mg/l
se Sodium SNA mmol/l
se Potassium SK mmol/l
se Chloride SCL mmol/l
se Total protein STP g/l
se Albumin SAL g/l
se Globulin SGL g/l
Blood urea nitrogen BUN mmol/l
se Creatinine SCR µmol/l
se Triglycerides STG mmol/l
se Total cholesterol STC mmol/l
se HDL cholesterol HDL mmol/l
Aspartate transaminase AST IU/l
Alanine transaminase ALT IU/l
Gamma glutamyl transpeptidase GGT IU/l
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Table 2.2.: Univariate descriptors of the laboratory parameters for different levels of obesity (Z-BMI=+1, +2 and +3),
segregated according to sex in Mean (Median) ± SD (IQR) format and the result of the univariate association
analysis (ρ Spearman correlation coefficient, and its p-value and Holm-corrected p-value; ’***’ marks association
that is significant at 0.1%, ’**’ marks association that is significant at 1%, ’*’ marks association that is significant
at 5% and ’.’ marks association that is significant at 10% for the Holm-correction in every case) for the NHANES.

Variable Sex Z-BMI=+1 Z-BMI=+2 Z-BMI=+3 ρ p Corrected p

WBC
Male 5.9 ( 5.7) ± 1.5 ( 1.9) 6.3 ( 6.2) ± 1.5 ( 1.9) 6.8 ( 6.7) ± 1.7 ( 1.8) 0.23 0.0007 0.0183 *

Female 6.5 ( 6.2) ± 1.9 ( 2.2) 7.0 ( 6.7) ± 2.2 ( 2.6) 7.8 ( 7.4) ± 2.1 ( 2.3) 0.18 0.0125 0.2998

RNC
Male 48.9 ( 49.7) ± 9.6 (12.2) 52.2 ( 52.7) ± 8.2 (10.7) 55.0 ( 55.4) ± 7.4 ( 9.6) 0.22 0.0009 0.0241 *

Female 54.9 ( 55.2) ± 10.6 (14.4) 54.6 ( 54.6) ± 9.5 (12.4) 57.3 ( 57.7) ± 7.8 (10.7) 0.22 0.0025 0.0660 .

RLC
Male 38.1 ( 37.5) ± 8.7 (11.8) 34.3 ( 33.7) ± 7.2 ( 8.6) 32.5 ( 32.3) ± 6.2 ( 7.4) −0.17 0.0118 0.2723

Female 34.2 ( 33.9) ± 9.2 (12.8) 34.6 ( 34.6) ± 7.9 (10.9) 33.9 ( 33.8) ± 6.5 ( 9.3) −0.14 0.0564 1.0000

RMC
Male 8.9 ( 8.7) ± 2.2 ( 3.0) 8.9 ( 8.6) ± 2.3 ( 2.8) 8.3 ( 8.1) ± 2.1 ( 2.6) −0.10 0.1571 1.0000

Female 7.6 ( 7.6) ± 2.0 ( 2.8) 7.4 ( 7.1) ± 2.1 ( 2.4) 6.8 ( 6.6) ± 1.8 ( 2.2) −0.30 0.0000 0.0007 ***

REC
Male 3.7 ( 3.1) ± 2.5 ( 2.7) 4.1 ( 3.5) ± 2.8 ( 2.6) 3.8 ( 3.4) ± 2.5 ( 2.1) 0.00 0.9831 1.0000

Female 2.9 ( 2.5) ± 1.9 ( 2.2) 3.0 ( 2.5) ± 2.1 ( 2.0) 2.3 ( 2.0) ± 1.6 ( 1.5) −0.04 0.5959 1.0000

ANC
Male 3.0 ( 2.8) ± 1.1 ( 1.4) 3.3 ( 3.3) ± 1.1 ( 1.5) 3.8 ( 3.7) ± 1.3 ( 1.3) 0.27 0.0001 0.0019 **

Female 3.7 ( 3.3) ± 1.7 ( 1.8) 3.9 ( 3.7) ± 1.7 ( 2.0) 4.4 ( 4.4) ± 1.5 ( 1.9) 0.26 0.0004 0.0109 *

ALC
Male 2.2 ( 2.1) ± 0.6 ( 0.7) 2.1 ( 2.0) ± 0.5 ( 0.6) 2.2 ( 2.2) ± 0.4 ( 0.5) 0.09 0.1893 1.0000

Female 2.1 ( 2.1) ± 0.5 ( 0.7) 2.3 ( 2.2) ± 0.6 ( 0.7) 2.6 ( 2.4) ± 0.6 ( 0.7) 0.05 0.4719 1.0000

AMC
Male 0.5 ( 0.5) ± 0.2 ( 0.2) 0.6 ( 0.5) ± 0.2 ( 0.2) 0.5 ( 0.5) ± 0.2 ( 0.2) 0.10 0.1212 1.0000

Female 0.5 ( 0.5) ± 0.2 ( 0.2) 0.5 ( 0.5) ± 0.2 ( 0.2) 0.5 ( 0.5) ± 0.2 ( 0.2) −0.07 0.3176 1.0000

AEC
Male 0.2 ( 0.2) ± 0.2 ( 0.2) 0.2 ( 0.2) ± 0.2 ( 0.2) 0.2 ( 0.2) ± 0.2 ( 0.2) 0.10 0.1469 1.0000

Female 0.2 ( 0.2) ± 0.1 ( 0.1) 0.2 ( 0.2) ± 0.1 ( 0.1) 0.2 ( 0.2) ± 0.1 ( 0.1) 0.07 0.3440 1.0000

Table 2.2 – continued on next page
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Table 2.2 – continued from previous page

Variable Sex Z-BMI=+1 Z-BMI=+2 Z-BMI=+3 ρ p Corrected p

RBC
Male 5.0 ( 5.0) ± 0.4 ( 0.5) 5.1 ( 5.1) ± 0.3 ( 0.5) 5.2 ( 5.2) ± 0.4 ( 0.5) 0.18 0.0087 0.2081

Female 4.5 ( 4.5) ± 0.4 ( 0.6) 4.5 ( 4.4) ± 0.3 ( 0.4) 4.6 ( 4.5) ± 0.4 ( 0.5) −0.03 0.6688 1.0000

HGB
Male 148.0 (147.9) ± 11.4 (15.6) 147.0 (146.2) ± 11.4 (14.9) 146.6 (146.9) ± 11.4 (16.8) 0.05 0.4817 1.0000

Female 134.7 (135.3) ± 10.3 (12.7) 132.5 (133.0) ± 8.8 (11.4) 126.8 (127.1) ± 8.9 (12.7) −0.19 0.0105 0.2635

HCT
Male 0.4 ( 0.4) ± 0.0 ( 0.0) 0.4 ( 0.4) ± 0.0 ( 0.0) 0.4 ( 0.4) ± 0.0 ( 0.0) 0.03 0.6477 1.0000

Female 0.4 ( 0.4) ± 0.0 ( 0.0) 0.4 ( 0.4) ± 0.0 ( 0.0) 0.4 ( 0.4) ± 0.0 ( 0.0) −0.17 0.0213 0.4899

MCV
Male 86.8 ( 87.3) ± 4.5 ( 5.7) 84.4 ( 84.6) ± 5.0 ( 7.2) 83.1 ( 83.1) ± 5.1 ( 6.8) −0.16 0.0142 0.2982

Female 87.3 ( 87.4) ± 4.8 ( 5.9) 86.8 ( 87.1) ± 5.1 ( 6.5) 82.3 ( 84.6) ± 7.9 ( 8.7) −0.11 0.1432 1.0000

MCH
Male 29.7 ( 29.9) ± 1.7 ( 2.2) 29.0 ( 29.1) ± 2.0 ( 2.8) 28.5 ( 28.6) ± 2.0 ( 2.7) −0.11 0.0916 1.0000

Female 30.1 ( 30.2) ± 2.0 ( 2.6) 29.8 ( 29.9) ± 1.9 ( 2.4) 28.0 ( 29.0) ± 3.2 ( 3.2) −0.15 0.0411 0.9036

MCHC
Male 342.7 (342.7) ± 8.6 (11.6) 343.2 (342.9) ± 8.1 (10.3) 342.8 (342.6) ± 8.1 ( 9.6) 0.09 0.1608 1.0000

Female 344.3 (344.1) ± 10.0 (12.2) 343.0 (343.3) ± 9.3 (12.7) 338.5 (339.1) ± 11.4 (16.4) −0.09 0.2129 1.0000

RDW
Male 12.5 ( 12.4) ± 0.6 ( 0.6) 12.6 ( 12.5) ± 0.8 ( 0.8) 12.7 ( 12.6) ± 0.9 ( 1.1) −0.05 0.4542 1.0000

Female 12.4 ( 12.3) ± 0.8 ( 0.9) 12.6 ( 12.4) ± 0.9 ( 0.9) 13.6 ( 13.0) ± 1.8 ( 2.6) 0.09 0.2077 1.0000

PLT
Male 243.8 (240.5) ± 54.3 (75.3) 248.1 (248.1) ± 56.3 (81.8) 270.6 (272.4) ± 56.2 (82.5) 0.10 0.1351 1.0000

Female 251.2 (246.5) ± 59.6 (81.8) 267.6 (265.4) ± 65.3 (88.5) 282.8 (277.0) ± 64.8 (76.6) 0.11 0.1285 1.0000

MPV
Male 7.7 ( 7.7) ± 0.8 ( 1.1) 7.7 ( 7.7) ± 0.8 ( 0.9) 7.7 ( 7.7) ± 0.7 ( 0.8) −0.05 0.4952 1.0000

Female 7.8 ( 7.7) ± 0.9 ( 1.3) 8.0 ( 7.9) ± 0.9 ( 1.2) 8.2 ( 8.1) ± 0.9 ( 1.2) 0.09 0.2181 1.0000

CRP
Male 0.2 ( 0.1) ± 0.2 ( 0.1) 0.2 ( 0.1) ± 0.1 ( 0.2) 0.3 ( 0.2) ± 0.3 ( 0.2) 0.43 0.0000 0.0000 ***

Female 0.1 ( 0.1) ± 0.3 ( 0.1) 0.2 ( 0.1) ± 0.3 ( 0.2) 0.4 ( 0.4) ± 0.3 ( 0.4) 0.42 0.0000 0.0000 ***

SNA
Male 139.6 (139.5) ± 1.6 ( 2.0) 139.4 (139.3) ± 1.5 ( 1.8) 139.3 (139.2) ± 1.3 ( 1.5) −0.08 0.2311 1.0000

Female 139.3 (139.3) ± 1.6 ( 2.1) 139.5 (139.6) ± 1.7 ( 2.3) 139.3 (139.3) ± 1.4 ( 2.0) 0.01 0.8813 1.0000
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Variable Sex Z-BMI=+1 Z-BMI=+2 Z-BMI=+3 ρ p Corrected p

SK
Male 4.1 ( 4.1) ± 0.3 ( 0.4) 4.2 ( 4.1) ± 0.3 ( 0.3) 4.2 ( 4.2) ± 0.3 ( 0.3) 0.03 0.6378 1.0000

Female 4.0 ( 4.0) ± 0.3 ( 0.4) 4.0 ( 4.0) ± 0.3 ( 0.3) 4.0 ( 4.0) ± 0.2 ( 0.3) 0.12 0.0991 1.0000

SCL
Male 103.9 (103.7) ± 2.1 ( 2.9) 104.4 (104.3) ± 2.3 ( 2.8) 104.5 (104.6) ± 2.2 ( 2.9) 0.01 0.9293 1.0000

Female 105.3 (105.4) ± 2.0 ( 2.7) 105.6 (105.6) ± 2.0 ( 2.9) 106.0 (105.9) ± 1.6 ( 2.3) 0.13 0.0849 1.0000

STP
Male 72.1 ( 72.0) ± 4.8 ( 6.7) 72.2 ( 72.0) ± 4.0 ( 5.2) 71.5 ( 71.3) ± 3.3 ( 4.3) 0.00 0.9677 1.0000

Female 71.9 ( 71.8) ± 4.4 ( 6.3) 71.2 ( 71.1) ± 4.0 ( 5.4) 70.5 ( 70.5) ± 3.3 ( 4.6) −0.12 0.0971 1.0000

SAL
Male 45.1 ( 45.0) ± 3.0 ( 4.2) 44.3 ( 44.2) ± 3.0 ( 4.4) 42.9 ( 42.7) ± 2.8 ( 3.8) −0.16 0.0177 0.3543

Female 43.5 ( 43.6) ± 2.6 ( 3.5) 42.4 ( 42.6) ± 2.6 ( 3.4) 39.9 ( 39.5) ± 2.7 ( 4.0) −0.33 0.0000 0.0001 ***

SGL
Male 27.1 ( 26.8) ± 3.8 ( 5.1) 28.0 ( 28.0) ± 3.3 ( 4.4) 28.8 ( 28.7) ± 2.8 ( 3.5) 0.17 0.0126 0.2767

Female 28.2 ( 27.9) ± 3.8 ( 5.3) 28.8 ( 28.7) ± 3.8 ( 5.3) 30.8 ( 30.7) ± 3.7 ( 4.9) 0.09 0.2258 1.0000

BUN
Male 3.6 ( 3.6) ± 1.1 ( 1.7) 3.7 ( 3.7) ± 0.9 ( 1.3) 3.7 ( 3.7) ± 0.7 ( 1.0) −0.05 0.4955 1.0000

Female 3.4 ( 3.4) ± 1.2 ( 1.5) 3.2 ( 3.1) ± 1.1 ( 1.4) 3.2 ( 3.2) ± 1.1 ( 1.4) −0.10 0.1866 1.0000

SCR
Male 67.3 ( 66.2) ± 15.9 (19.6) 64.8 ( 64.3) ± 13.9 (18.5) 61.4 ( 60.1) ± 13.0 (18.6) 0.02 0.8081 1.0000

Female 60.8 ( 59.4) ± 13.4 (15.9) 56.3 ( 55.7) ± 11.2 (15.9) 57.2 ( 56.5) ± 10.0 (14.3) −0.03 0.6329 1.0000

STG
Male 0.9 ( 0.8) ± 0.5 ( 0.6) 1.1 ( 0.9) ± 0.6 ( 0.7) 1.3 ( 1.0) ± 0.7 ( 1.1) 0.21 0.0014 0.0369 *

Female 0.9 ( 0.8) ± 0.6 ( 0.5) 0.9 ( 0.7) ± 0.5 ( 0.5) 0.9 ( 0.8) ± 0.3 ( 0.4) 0.00 0.9930 1.0000

STC
Male 3.9 ( 3.8) ± 0.8 ( 0.9) 4.0 ( 3.9) ± 0.8 ( 1.1) 4.2 ( 4.1) ± 0.9 ( 1.2) 0.00 0.9836 1.0000

Female 4.2 ( 4.2) ± 0.8 ( 1.0) 4.2 ( 4.2) ± 0.6 ( 0.8) 4.1 ( 4.1) ± 0.6 ( 0.8) 0.05 0.4940 1.0000

HDL
Male 1.4 ( 1.3) ± 0.3 ( 0.4) 1.2 ( 1.2) ± 0.3 ( 0.4) 1.1 ( 1.1) ± 0.2 ( 0.3) −0.31 0.0000 0.0001 ***

Female 1.5 ( 1.4) ± 0.3 ( 0.4) 1.4 ( 1.3) ± 0.3 ( 0.4) 1.2 ( 1.1) ± 0.2 ( 0.3) −0.22 0.0019 0.0514 .

AST
Male 25.5 ( 23.8) ± 8.6 ( 6.9) 27.5 ( 26.6) ± 6.9 ( 7.6) 28.0 ( 27.3) ± 6.1 ( 7.0) 0.19 0.0041 0.1016

Female 23.3 ( 21.9) ± 7.2 ( 6.6) 22.0 ( 21.0) ± 5.6 ( 6.3) 22.4 ( 20.0) ± 8.0 ( 6.1) −0.09 0.2390 1.0000
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Variable Sex Z-BMI=+1 Z-BMI=+2 Z-BMI=+3 ρ p Corrected p

ALT
Male 20.1 ( 18.0) ± 10.9 ( 6.7) 28.0 ( 23.2) ± 15.8 (14.3) 34.9 ( 31.3) ± 19.0 (15.9) 0.48 0.0000 0.0000 ***

Female 16.6 ( 15.2) ± 7.3 ( 4.3) 19.0 ( 17.5) ± 7.3 ( 5.5) 21.7 ( 18.6) ± 12.3 ( 5.6) 0.30 0.0000 0.0010 ***

GGT
Male 14.7 ( 14.1) ± 5.1 ( 6.2) 17.3 ( 16.0) ± 6.5 ( 7.6) 20.7 ( 19.1) ± 7.6 (11.6) 0.39 0.0000 0.0000 ***

Female 12.0 ( 11.1) ± 4.9 ( 5.1) 15.8 ( 14.2) ± 6.6 ( 7.5) 20.0 ( 17.0) ± 8.9 (13.2) 0.40 0.0000 0.0000 ***

47



Table 2.3.: Univariate descriptors of the laboratory parameters for different levels of obesity (Z-BMI=+1, +2 and +3),
segregated according to sex in Mean (Median) ± SD (IQR) format and the result of the univariate association
analysis (ρ Spearman correlation coefficient, and its p-value and Holm-corrected p-value; ’***’ marks association
that is significant at 0.1%, ’**’ marks association that is significant at 1%, ’*’ marks association that is significant
at 5% and ’.’ marks association that is significant at 10% for the Holm-correction in every case) for the NHANES.

Variable Sex Z-BMI=+1 Z-BMI=+2 Z-BMI=+3 ρ p Corrected p

WBC
Male 6.8 ( 6.7) ± 1.4 ( 1.8) 7.5 ( 7.4) ± 1.5 ( 2.0) 8.0 ( 7.9) ± 1.5 ( 1.9) 0.53 0.0000 0.0000 ***

Female 7.4 ( 7.4) ± 1.3 ( 1.9) 7.9 ( 7.7) ± 1.7 ( 2.3) 8.5 ( 8.4) ± 1.9 ( 3.3) 0.24 0.0431 0.9041

RNC
Male 50.5 ( 50.7) ± 7.3 ( 9.0) 52.5 ( 53.2) ± 7.4 ( 9.1) 54.8 ( 55.9) ± 8.4 ( 9.8) 0.26 0.0061 0.1093

Female 52.9 ( 52.2) ± 9.1 (11.8) 54.7 ( 55.0) ± 9.6 (14.3) 57.1 ( 57.9) ± 9.5 (14.5) 0.11 0.3641 1.0000

RLC
Male 36.0 ( 35.5) ± 7.3 ( 9.0) 35.0 ( 34.6) ± 7.0 ( 9.3) 33.1 ( 32.5) ± 7.3 ( 9.2) −0.21 0.0272 0.3259

Female 34.5 ( 34.6) ± 8.2 (11.8) 34.5 ( 34.0) ± 8.4 (12.3) 32.8 ( 32.1) ± 8.0 (11.8) −0.06 0.6196 1.0000

RMC
Male 9.6 ( 9.2) ± 2.2 ( 2.5) 9.4 ( 8.7) ± 2.6 ( 2.8) 9.0 ( 8.4) ± 2.4 ( 2.5) −0.23 0.0123 0.1781

Female 8.3 ( 8.2) ± 1.7 ( 2.6) 8.2 ( 8.0) ± 1.6 ( 2.3) 7.9 ( 7.8) ± 1.5 ( 2.1) −0.22 0.0660 1.0000

REC
Male 3.2 ( 2.8) ± 1.8 ( 1.9) 2.9 ( 2.6) ± 1.6 ( 1.7) 3.1 ( 2.6) ± 2.1 ( 1.9) −0.08 0.4155 1.0000

Female 3.9 ( 2.7) ± 3.5 ( 3.1) 2.9 ( 2.3) ± 2.2 ( 2.3) 2.9 ( 2.4) ± 2.2 ( 2.4) −0.10 0.4125 1.0000

ANC
Male 3.5 ( 3.4) ± 1.1 ( 1.3) 4.1 ( 3.9) ± 1.2 ( 1.4) 4.4 ( 4.4) ± 1.2 ( 1.5) 0.48 0.0000 0.0000 ***

Female 4.1 ( 4.0) ± 1.2 ( 1.7) 4.4 ( 4.2) ± 1.4 ( 1.9) 5.0 ( 4.9) ± 1.5 ( 2.3) 0.23 0.0600 1.0000

ALC
Male 2.4 ( 2.3) ± 0.6 ( 0.8) 2.6 ( 2.6) ± 0.6 ( 0.9) 2.7 ( 2.7) ± 0.6 ( 0.9) 0.33 0.0004 0.0082 **

Female 2.5 ( 2.4) ± 0.6 ( 0.8) 2.7 ( 2.6) ± 0.7 ( 1.0) 2.7 ( 2.6) ± 0.8 ( 1.0) 0.16 0.1801 1.0000

AMC
Male 0.7 ( 0.6) ± 0.2 ( 0.2) 0.7 ( 0.7) ± 0.2 ( 0.3) 0.7 ( 0.7) ± 0.2 ( 0.3) 0.31 0.0009 0.0199 *

Female 0.6 ( 0.6) ± 0.1 ( 0.2) 0.6 ( 0.6) ± 0.2 ( 0.2) 0.7 ( 0.6) ± 0.2 ( 0.3) 0.07 0.5755 1.0000

AEC
Male 0.2 ( 0.2) ± 0.1 ( 0.1) 0.2 ( 0.2) ± 0.1 ( 0.1) 0.2 ( 0.2) ± 0.2 ( 0.1) 0.14 0.1495 1.0000

Female 0.3 ( 0.2) ± 0.3 ( 0.2) 0.2 ( 0.2) ± 0.2 ( 0.2) 0.2 ( 0.2) ± 0.2 ( 0.2) −0.02 0.8742 1.0000
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Variable Sex Z-BMI=+1 Z-BMI=+2 Z-BMI=+3 ρ p Corrected p

RBC
Male 5.2 ( 5.2) ± 0.3 ( 0.4) 5.3 ( 5.3) ± 0.3 ( 0.5) 5.3 ( 5.4) ± 0.4 ( 0.5) 0.13 0.1642 1.0000

Female 4.8 ( 4.7) ± 0.3 ( 0.4) 4.8 ( 4.8) ± 0.3 ( 0.4) 4.9 ( 4.9) ± 0.2 ( 0.3) 0.40 0.0006 0.0171 *

HGB
Male 150.6 (150.8) ± 11.5 (16.6) 146.9 (146.2) ± 13.3 (20.4) 146.7 (146.8) ± 13.8 (21.4) −0.19 0.0422 0.4646

Female 135.6 (135.7) ± 8.8 (12.3) 135.0 (134.9) ± 9.8 (14.3) 133.8 (134.4) ± 9.1 (13.5) −0.07 0.5656 1.0000

HCT
Male 0.4 ( 0.4) ± 0.0 ( 0.0) 0.4 ( 0.4) ± 0.0 ( 0.1) 0.4 ( 0.4) ± 0.0 ( 0.1) −0.23 0.0129 0.1781

Female 0.4 ( 0.4) ± 0.0 ( 0.0) 0.4 ( 0.4) ± 0.0 ( 0.0) 0.4 ( 0.4) ± 0.0 ( 0.0) −0.07 0.5900 1.0000

MCV
Male 85.4 ( 85.5) ± 4.0 ( 5.6) 83.1 ( 83.2) ± 4.2 ( 5.8) 82.0 ( 82.0) ± 4.3 ( 5.7) −0.45 0.0000 0.0000 ***

Female 87.1 ( 87.3) ± 4.2 ( 6.2) 85.6 ( 85.8) ± 4.1 ( 6.0) 83.7 ( 83.8) ± 3.8 ( 5.4) −0.47 0.0000 0.0015 **

MCH
Male 28.7 ( 28.8) ± 1.4 ( 2.0) 28.0 ( 28.1) ± 1.7 ( 2.2) 27.7 ( 27.7) ± 1.8 ( 2.4) −0.36 0.0001 0.0021 **

Female 28.6 ( 28.7) ± 1.6 ( 2.4) 28.2 ( 28.2) ± 1.6 ( 2.2) 27.2 ( 27.3) ± 1.6 ( 2.2) −0.46 0.0001 0.0016 **

MCHC
Male 336.8 (335.9) ± 10.4 (13.1) 337.4 (337.3) ± 10.6 (14.3) 337.0 (337.5) ± 10.5 (14.7) 0.03 0.7375 1.0000

Female 328.9 (327.1) ± 11.1 (17.7) 329.7 (329.4) ± 10.4 (15.3) 326.2 (326.3) ± 8.8 (12.4) −0.10 0.4071 1.0000

RDW
Male 13.5 ( 13.4) ± 0.7 ( 0.9) 13.8 ( 13.7) ± 0.8 ( 1.1) 13.9 ( 13.9) ± 0.8 ( 1.1) 0.24 0.0104 0.1662

Female 13.6 ( 13.6) ± 0.8 ( 1.1) 13.6 ( 13.6) ± 0.9 ( 1.3) 13.9 ( 13.8) ± 0.9 ( 1.2) 0.26 0.0277 0.6654

PLT
Male 257.3 (253.7) ± 58.7 (80.5) 276.5 (277.0) ± 54.1 (70.9) 296.0 (296.2) ± 57.9 (77.0) 0.40 0.0000 0.0003 ***

Female 277.2 (273.8) ± 45.4 (67.4) 292.4 (288.2) ± 48.6 (68.1) 304.2 (299.0) ± 50.3 (71.1) 0.37 0.0018 0.0496 *

MPV
Male 10.7 ( 10.6) ± 0.8 ( 1.2) 10.6 ( 10.6) ± 0.8 ( 1.2) 10.7 ( 10.6) ± 0.8 ( 1.3) −0.13 0.1683 1.0000

Female 10.9 ( 11.0) ± 0.7 ( 1.0) 10.7 ( 10.7) ± 0.6 ( 0.8) 10.7 ( 10.7) ± 0.6 ( 0.9) −0.12 0.3092 1.0000

CRP
Male 3.9 ( 2.1) ± 7.6 ( 2.6) 5.6 ( 3.6) ± 9.7 ( 4.1) 7.0 ( 4.9) ± 7.1 ( 5.7) 0.64 0.0000 0.0000 ***

Female 2.2 ( 1.8) ± 2.4 ( 2.2) 4.6 ( 2.8) ± 6.1 ( 4.0) 5.8 ( 4.7) ± 4.8 ( 5.6) 0.61 0.0000 0.0000 ***

SNA
Male 138.6 (138.6) ± 1.8 ( 2.4) 138.3 (138.3) ± 2.1 ( 2.8) 138.6 (138.5) ± 2.0 ( 2.7) −0.08 0.3756 1.0000

Female 138.2 (138.3) ± 1.6 ( 2.0) 138.0 (138.0) ± 1.8 ( 2.7) 138.3 (138.3) ± 1.8 ( 2.6) 0.02 0.8765 1.0000
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Variable Sex Z-BMI=+1 Z-BMI=+2 Z-BMI=+3 ρ p Corrected p

SK
Male 4.2 ( 4.2) ± 0.3 ( 0.5) 4.3 ( 4.3) ± 0.4 ( 0.5) 4.4 ( 4.4) ± 0.3 ( 0.5) 0.25 0.0082 0.1393

Female 4.4 ( 4.4) ± 0.3 ( 0.5) 4.3 ( 4.3) ± 0.3 ( 0.4) 4.4 ( 4.4) ± 0.3 ( 0.4) 0.12 0.3204 1.0000

SCL
Male 102.1 (101.9) ± 2.1 ( 3.0) 102.5 (102.4) ± 2.1 ( 3.1) 102.7 (102.5) ± 2.2 ( 3.2) 0.07 0.4939 1.0000

Female 102.6 (102.6) ± 1.6 ( 2.1) 103.3 (103.2) ± 2.1 ( 2.8) 103.6 (103.6) ± 2.0 ( 2.8) 0.19 0.1073 1.0000

STP
Male 76.6 ( 76.5) ± 4.2 ( 5.9) 76.5 ( 76.5) ± 3.9 ( 5.5) 75.5 ( 75.1) ± 4.2 ( 6.1) −0.14 0.1432 1.0000

Female 76.4 ( 75.9) ± 4.4 ( 6.5) 76.5 ( 76.0) ± 4.8 ( 7.3) 76.4 ( 75.8) ± 4.5 ( 6.3) 0.09 0.4768 1.0000

SAL
Male 50.2 ( 50.1) ± 2.6 ( 3.5) 48.7 ( 48.5) ± 2.7 ( 3.8) 47.5 ( 47.1) ± 2.4 ( 3.6) −0.47 0.0000 0.0000 ***

Female 48.5 ( 48.6) ± 2.4 ( 3.4) 47.5 ( 47.6) ± 2.8 ( 4.0) 46.2 ( 46.0) ± 2.6 ( 3.5) −0.35 0.0028 0.0744 .

SGL
Male 26.6 ( 26.6) ± 3.7 ( 4.7) 27.7 ( 27.5) ± 3.7 ( 4.6) 28.0 ( 27.7) ± 3.7 ( 4.7) 0.19 0.0458 0.4646

Female 27.9 ( 27.3) ± 3.9 ( 6.3) 29.3 ( 29.0) ± 3.8 ( 6.1) 30.2 ( 30.1) ± 3.6 ( 5.2) 0.39 0.0009 0.0253 *

BUN
Male 4.6 ( 4.6) ± 1.2 ( 1.9) 4.5 ( 4.4) ± 1.1 ( 1.7) 4.4 ( 4.4) ± 1.0 ( 1.6) −0.11 0.2377 1.0000

Female 4.0 ( 4.0) ± 0.8 ( 1.2) 4.2 ( 4.0) ± 1.0 ( 1.4) 4.2 ( 4.0) ± 1.1 ( 1.7) −0.13 0.2739 1.0000

SCR
Male 73.2 ( 73.7) ± 9.5 (12.6) 68.2 ( 67.7) ± 9.6 (14.4) 65.1 ( 64.3) ± 8.7 (13.3) −0.43 0.0000 0.0001 ***

Female 58.6 ( 58.6) ± 5.9 ( 8.4) 60.6 ( 60.6) ± 7.0 (10.8) 61.1 ( 61.4) ± 6.4 ( 8.9) 0.05 0.6798 1.0000

STG
Male 1.0 ( 0.9) ± 0.5 ( 0.6) 1.2 ( 1.1) ± 0.5 ( 0.6) 1.2 ( 1.1) ± 0.6 ( 0.6) 0.43 0.0000 0.0000 ***

Female 1.2 ( 1.0) ± 0.6 ( 0.9) 1.3 ( 1.1) ± 0.7 ( 0.7) 1.3 ( 1.2) ± 0.5 ( 0.6) 0.34 0.0039 0.1020

STC
Male 3.9 ( 3.8) ± 1.0 ( 1.1) 4.2 ( 4.1) ± 0.9 ( 1.0) 4.2 ( 4.1) ± 0.8 ( 1.0) 0.29 0.0017 0.0340 *

Female 4.1 ( 4.0) ± 0.9 ( 0.9) 4.3 ( 4.2) ± 0.8 ( 1.1) 4.3 ( 4.2) ± 0.7 ( 1.0) 0.23 0.0515 1.0000

HDL
Male 1.3 ( 1.2) ± 0.2 ( 0.3) 1.2 ( 1.1) ± 0.2 ( 0.3) 1.1 ( 1.1) ± 0.2 ( 0.3) −0.27 0.0043 0.0811 .

Female 1.3 ( 1.3) ± 0.2 ( 0.3) 1.3 ( 1.3) ± 0.2 ( 0.3) 1.2 ( 1.2) ± 0.2 ( 0.3) −0.26 0.0327 0.7517

AST
Male 22.7 ( 22.2) ± 7.3 ( 9.3) 25.0 ( 23.9) ± 8.9 (10.6) 26.2 ( 24.6) ± 9.3 (10.3) 0.24 0.0119 0.1781

Female 21.0 ( 18.7) ± 7.9 ( 8.7) 20.4 ( 19.0) ± 7.4 ( 9.5) 19.1 ( 17.9) ± 6.5 ( 8.3) −0.16 0.1870 1.0000
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Variable Sex Z-BMI=+1 Z-BMI=+2 Z-BMI=+3 ρ p Corrected p

ALT
Male 22.0 ( 19.3) ± 12.8 (11.2) 30.4 ( 26.1) ± 18.5 (16.3) 36.4 ( 30.8) ± 20.6 (21.0) 0.56 0.0000 0.0000 ***

Female 17.4 ( 14.0) ± 10.1 ( 9.9) 19.5 ( 16.7) ± 9.5 (12.1) 22.2 ( 19.7) ± 9.8 (11.6) 0.32 0.0063 0.1567

GGT
Male 23.5 ( 21.4) ± 9.3 (14.0) 25.7 ( 22.8) ± 11.4 (12.0) 32.8 ( 29.2) ± 13.9 (18.4) 0.52 0.0000 0.0000 ***

Female 15.7 ( 14.2) ± 6.6 ( 8.0) 18.5 ( 16.6) ± 8.7 ( 8.7) 21.2 ( 19.4) ± 8.1 ( 9.0) 0.25 0.0335 0.7517
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These descriptive statistics are important as reference values, and to facilitate further
analyses and interpretation of the results.

According to the NHANES, the laboratory parameters that are significantly altered by
obesity in both sexes are RNC, ANC, CRP, HDL, ALT and GGT. In addition to that,
WBC and STG changes significantly only in males, RMC and SAL changes significantly
only in females.

According to the Hungarian study, the laboratory parameters that are significantly
altered by obesity in both sexes are MCV, MCH, PLT, CRP and SAL. In addition to
that, WBC (with ANC, ALC and AMC), SCR, STG, STC, HDL, ALT and GGT only
change significantly in males. RBC and SGL only change significantly in females. The
high number of parameters changing significantly only for males is likely attributable in
this case to the fact that the sample size was much larger for males in the Hungarian
study – it is quite possible that these changes would have been significant for females as
well, were we able to use larger female sample. It is also worth noting that results from
the Hungarian study should be handled with more caution due to its non-representative
nature.

These results can be interpreted together with the descriptors for different Z-BMI
values (and the value of the Spearman-ρ correlation coefficient), which shed light on the
medical content of differences by revealing the direction and the (clinical) size of the
difference.

Most obvious is the presence of inflammation-related changes: elevated levels of the
inflammation marker CRP, elevated PLT and elevated WBC and WBC fractions (for
males). These can be considered as an empirical confirmation that obesity is associated
with inflammation. This has been first noted decades ago, and now hypothesized to
be caused by the proinflammatory mediators released by the excessive white adipose
tissue (Bastard et al. 2006; Stienstra et al. 2007). These results are consistent with the
literature: the idea that obesity can be considered as a systematic, low-level, chronic
inflammation state is widely discussed (Ferroni et al. 2004) and was described specifically
in children, too (Sacheck 2008). In addition to theoretical results, the elevations of the
abovementioned inflammation markers were clinically also observed (Oda and Kawai
2010), specifically in children (Syrenicz et al. 2006; Gilbert-Diamond et al. 2012).

Another important finding is that MCV and MCH both have a significant decreasing
tendency as the degree of obesity increases in the Hungarian study. Obesity is known
to be associated with (some) features of anemia (Ausk and Ioannou 2008), which is
logical if we consider that chronic inflammation is often associated with anemia. However,
clinically, we can not speak of anemia as the hemoglobin levels are not decreasing with the
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degree of obesity in the Hungarian study. This is consistent with what (Ausk and Ioannou
2008) have found, but they have not reported results for MCV and MCH. Therefore,
these findings not only confirm theirs, but also extend it by pointing out that the nature
of this phenomenon is hypochromic microcytosis (which was to be expected for chronic
inflammation). This effect has already been described in the literature (Tungtrongchitr
et al. 2000), with some authors linking it iron deficiency (Solá et al. 2007) (which usually,
however, causes depressed HGB as well). Why this was only apparent in the Hungarian
study (but not in NHANES) is an open question, the most likely explanation is that
it manifests only for extreme levels of obesity – and such subjects were (intentionally)
oversampled in the Hungarian study (just detect such alterations).

The elevation of ALT and GGT (dramatically seen in every case, save for females
in the Hungarian study) can be considered as an indication of the effect of obesity,
especially central obesity on liver function that is relatable to non-alcoholic fatty liver
disease (Lam and Mobarhan 2004; Colicchio et al. 2005; Gholam et al. 2007). It is worth
noting that some even presume that this effect is mediating between obesity and type 2
diabetes (Lawlor et al. 2005).

Changes in STG (and slightly: STC and HDL) are almost trivial, as they are indicators
of fat metabolism state (Vliet et al. 2011).

Decreasing tendency of SAL with the degree of obesity seems to be contradicting to
what literature reported, at least with respect to metabolic syndrome (Cho et al. 2012;
Ishizaka et al. 2007). Note however that these results pertain to adult population.

2.3.3. Multivariate analysis

Results of PCA, i.e. the loading matrices (visualized with heatmaps) for different levels
of obesity (Z-BMI=+1, +2 and +3) segregated according to sex are shown in Figure 2.13
(NHANES) and Figure 2.14 (Hungarian study).

Dendrograms, obtained with CA are shown in Figure 2.15 (NHANES) and Figure 2.16,
again for different levels of obesity (Z-BMI=+1, +2 and +3) segregated according to sex.

It is immediately obvious from the results of the PCA that the structure of the
components was largely the same, irrespectively of the degree of obesity (Z-BMI) and
sex. (Save for the order of components, which is sometimes varied.)

The medical ”meaning” of a principal component can be given based on those variables
that highly correlate with the component (which can be read from the loading matrix).
Summing the information from the different loading matrices, the following common
components can be identified:
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Figure 2.13.: Results of the PCA (loading matrices visualized with heatmaps) for different
Z-BMI levels (Z-BMI=+1, +2 and +3), segregated according to sex for the
NHANES.
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Figure 2.14.: Results of the PCA (loading matrices visualized with heatmaps) for different
Z-BMI levels (Z-BMI=+1, +2 and +3), segregated according to sex for the
Hungarian study.
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(b) Females, Z-BMI=+1
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(c) Males, Z-BMI=+2
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(d) Females, Z-BMI=+2
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(e) Males, Z-BMI=+3
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(f) Females, Z-BMI=+3

Figure 2.15.: Results of the CA (visualized with dendrograms) for different Z-BMI levels
(Z-BMI=+1, +2 and +3), segregated according to sex for the NHANES.
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(b) Females, Z-BMI=+1
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(d) Females, Z-BMI=+2
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(e) Males, Z-BMI=+3
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(f) Females, Z-BMI=+3

Figure 2.16.: Results of the CA (visualized with dendrograms) for different Z-BMI levels
(Z-BMI=+1, +2 and +3), segregated according to sex for the Hungarian
study.

57



White blood cell components Relative and absolute counts of the same fraction usually
form separate components; WBC is typically in the neutrophil component.

Macroscopic red blood cell component Consists of RBC, HGB and HCT, all being
positively correlated with the component.

Microscopic red blood cell component Consists of MCV, MCH and MCHC (positively
correlated with the component) and RDW (negatively correlated).

Platelet component Consists of PLT (positively correlated) and MPV (negatively cor-
related).

Liver enzymes components Consists of ALT and AST (positively correlated). GGT’s
association is less pronounced, but sometimes observable.

Inorganic constituents of the serum component Consists of SNA and SCL (positively
correlated). SK forms separate component.

Organic constituents of the serum component Consists of STP and SGL (positively
correlated).

Blood lipids component Consists of STG (positively correlated) and HDL (negatively
correlated). STC usually forms separate component.

These findings are consistent with the dendrograms of the CA: variables that belong
to the same component are usually found to be closely connected on the dendrogram.
(For example, the deepest connection is between HGB and HCT (which is followed by
RBC) almost invariably.)

CA also confirms that the correlation structure is largely independent from both the
sex and the degree of obesity. Although dendrograms are varied, structural blocks (like
the already mentioned HGB-HCT-RBC trio) can be identified that are largely the same
in every case.

2.4. Conclusion

Univariate examination of laboratory results sheds light on the pathophysiological al-
terations that are associated with obesity. While these changes were mostly already
well-known for particular parameters, I now performed a comprehensive, uniform investi-
gation for 33 routinely measured blood tests.
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The analysis of the multivariate structure of the laboratory results reveals groups
of variables that exhibit similar stochastic behavior, pointing to shared physiological
background. On the other hand, this analysis also demonstrated that the correlation
structure of the laboratory parameters is largely unaffected by the degree of obesity and
sex.

The method I proposed for the analysis of the multivariate structure (obtaining
conditional correlation matrices through KDE element-by-element with smoothing being
applied afterwards, and the analysis of these matrices with PCA or CA) lived up to
expectations and was demonstrated to be a useful tool in similar tasks.

These results can be used to deepen our understanding of the pathophysiology of
overweight and obesity, and how these diseases affect the human body. Such understanding
can be then in turn used to optimize prevention and therapy, which has a direct significance
from the public health point of view.

Thesis group 1: Effects of obesity on laboratory parameters.
Thesis 1.1:

Thesis 1.1
I have developed a biostatistical methodology (and an associated
computer program) to investigate the effect of obesity on laboratory
parameters. This methodology provides a way to analyze both the
uni- and the multivariate structure of the laboratory parameters,
making the effect of obesity explicit during the process.

Thesis 1.2:

Thesis 1.2
I have provided clinical interpretations for the effects of obesity on
laboratory parameters based on a representative international sur-
vey and a non-representative survey that was performed on Hungar-
ian adolescents specifically for the aims of the present investigation.
I have discussed results pertaining to both the uni- and the multi-
variate structure of the investigated variables.

Relevant own publications pertaining to this thesis group: [F-3; F-15; F-9; F-1; F-4;
F-21; F-2; F-11; F-5; F-12; F-8; F-7; F-6; F-13; F-18; F-19; F-20; F-17].
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3. Modeling and Evaluating the
Performance of Tight Glycemic Control
Protocols

My second thesis investigates a particular question about human blood glucose regulation.
This system is one the most well-known and most deeply studied human regulatory
systems, especially because of its huge clinical significance due to diabetes.

However, it became recently clear that the blood glucose regulation has clinical
significance outside diabetology as well. One example arises in critical care: patients
admitted to intensive care units are known to exhibit stress-induced, non-physiological
glycemic excursions. Several studies linked this to adverse outcomes, hence, efforts were
made to control this.

Tight glycemic control (TGC) is an approach to address this. Numerous protocols
have been developed to realize TGC in the hope of improving outcome for the critically
ill. One crucial point is the handling of insulin sensitivity, which is dependent on the
diagnosis and also evolves over time.

In this thesis, I provide a biostatistical model to quantitatively evaluate TGC protocols
in terms of modeling insulin sensitivity. The model explicitly incorporates diagnosis and
length of stay.

The rest of this thesis is organized as follows. In Section 3.1 I introduce TGC in more
detail, and describe the state-of-the-art in the research question set forth above. In
Section 3.2 I summarize the concrete aims and directions of my research and in Section 3.3
I detail the biostatistical methodology that I used for the investigation. Section 3.4
presents the results, while 3.5 gives a discussion of them and also details their clinical
relevance and applicability. This thesis group is summarized in Section 3.6.
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3.1. Significance of Tight Glycemic Control in Critical Care:
Literature Review and Background of my Research

Stress induced hyperglycemia is a significant issue in critical care, affecting up to 30-50%
of patients and increasing morbidity and mortality (Krinsley 2003; McCowen, Malhotra,
and Bistrian 2001). Controlling glycemia has proved difficult due to the associated risk of
hypoglycemia when highly dynamic patients are treated with exogenous insulin (Griesdale
et al. 2009). Both extremes, as well as glycemic variability, have been independently
linked to increased morbidity and mortality (Bagshaw et al. 2009; Egi et al. 2006; Krinsley
2008), creating a difficult clinical problem.

More specifically, inter- and intra- patient metabolic variability drive outcome glycemic
variability and hypoglycemic risk (Chase, Compte, et al. 2011) making good control
difficult. In particular, sudden and large rises in insulin sensitivity can result in a
hypoglycemic event when exogenous insulin is given over a typical 3-4 hour measurement
interval. It is critical to determine the size and likelihood of these intra-patient variations,
to enable a more complete understanding of the inherent risks in glycemic control.

Very few studies have examined time-varying evolution of insulin sensitivity and its
variability in the critically ill. Langouche et al. (2007) noted that insulin sensitivity rose
between days 1 and 5 over their large cohorts, but provided no daily or diagnostic specific
evolution. Lin et al. (2008) showed that hour to hour changes for a clinically validated
model-based insulin sensitivity indicator could be quite large as a function of current
insulin sensitivity level for a medical Intensive Care Unit (ICU) cohort that covered all
diagnostic categories and days of ICU stay. However, no studies to date have explicitly
described the evolution of intra-patient insulin sensitivity and its variability on a daily
basis, or for different diagnostic categories.

Such information would provide insight into the risk of hypoglycemia by diagnostic
category and day of ICU stay. Additionally, insight into the likelihood of glycemic
variability resulting from greater or lesser intra-patient variability of insulin sensitivity
could be attained.

This thesis presents the first rigorous statistical analysis of inter- and intra- patient
insulin sensitivity variability as a function of diagnostic category and day of stay. It is
also the first to examine the long-term behavior of insulin sensitivity.

The significance of these can be understood in the light of glycemic control, especially
tight glycemic control (TGC). TGC protocols aim to address specifically this issue.
Glycemic control can reduce negative outcomes (Krinsley 2004; Chase, Shaw, et al. 2008;
Van den Berghe et al. 2001), but has proven difficult (Casaer et al. 2011; Brunkhorst
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et al. 2008; Finfer and The NICE-SUGAR Study Investigators 2009). Only Chase, Shaw,
et al. (2008) reduced both mortality and hypoglycemia.

3.2. Directions and Goals of my Research

I have developed a novel methodology to evaluate and model the
insulin sensitivity variability and its evolution over time for patients
in different diagnosis groups. This also makes the more thorough
investigation of the performance of tight glycemic control protocols
possible.

I actually implemented this methodology to provide informatics support to its applica-
tion. Full source code to perform this analysis is listed in Appendix B.

Relevant own publications pertaining to this thesis: [F-14; F-10; F-16].

3.3. Materials and Methods of Investigation

This Section introduces the methodology that was applied during the present investigation.
I first present the patient data in Subsection 3.3.1. After that, I discuss the questions

associated with defining appropriate indicators for measuring patient variability (Subsec-
tion 3.3.2) and analyzing this variability (Subsection 3.3.3). I then introduce the methods
used for the statistical evaluation and modeling (Subsection 3.3.4), and conclude this
Section by exposing the data processing methods that were applied (Subsection 3.3.5).

3.3.1. Patient Data

Clinical data from n = 390 patients (47 836 hours) in the SPRINT medical ICU
cohort (Chase, Shaw, et al. 2008) are used to identify hourly, model-based insulin
sensitivity (SI) values (SI (n)). SPRINT (Specialized Relative Insulin and Nutrition
Tables) is a model-based, clinically validated tight glycemic control (TGC) protocol that
provides explicit control for both nutrition intake and insulin input (Chase, Shaw, et al.
2008).

Hour-to-hour changes are evaluated for the cohort over all days of ICU stay using
a stochastic model (Lin et al. 2008) that provides kernel density estimation-based
distributions of SI (n+ 1) values (in terms of predicted distribution, i.e. F̂SIn+1) for each
current SI (n) value using all 47 836 data points.
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Table 3.1 shows the patient demographic details, including diagnostic categories. These
were created based on the APACHE III codes, and consist of operative and non-operative
groups for cardiac, gastric and all other patients (with abbreviations OpC, NOpC, OpG,
NOpG, OpO and NOpO, respectively). For the daily statistics, only patients who had at
least 24 hours of glycemic control and ICU stay were used.

Table 3.1.: The distribution (according to length-of-stay and diagnosis group) and the
most important demographic indicators of the patients. Data are shown in
an n, age, percentage of females format, with age statistics arranged in Mean
(Median) ± SD (IQR) manner. Columns indicate minimum (and not exact)
length-of stay, so the same patient may appear in several cells.

Group Day 1 Day 2

n Age Sex n Age Sex

NOpC 28 59.5 (62) ± 16.5 (24) 35.7 18 58.4 (60) ± 16.1 (19) 38.9
OpC 35 72.9 (73) ± 7.12 (11) 22.9 21 72.9 (73) ± 6.54 (10) 23.8
NOpG 16 64.3 (67) ± 12.8 (15) 25.0 13 64.4 (71) ± 14.2 (19) 23.1
OpG 42 67.9 (72) ± 12.4 (13) 35.7 29 69.9 (72) ± 10.8 (11) 27.6
NOpO 119 54.7 (59) ± 18.0 (27) 46.2 101 54.5 (59) ± 18.0 (28) 42.6
OpO 21 50.8 (56) ± 19.2 (31) 38.1 16 54.9 (58) ± 18.5 (31) 43.8
Group Day 3 Day 4+

n Age Sex n Age Sex
NOpC 11 64.2 (63) ± 10.6 (16) 18.2 11 64.2 (63) ± 10.6 (16) 18.2
OpC 18 73.2 (74) ± 6.46 ( 9) 27.8 18 73.2 (74) ± 6.46 ( 9) 27.8
NOpG 13 64.4 (71) ± 14.2 (19) 23.1 13 64.4 (71) ± 14.2 (19) 23.1
OpG 23 69.2 (71) ± 9.46 (12) 26.1 23 69.2 (71) ± 9.46 (12) 26.1
NOpO 88 54.2 (58) ± 17.9 (27) 45.5 88 54.2 (58) ± 17.9 (27) 45.5
OpO 15 54.7 (57) ± 19.1 (34) 40.0 15 54.7 (57) ± 19.1 (34) 40.0

The Upper South Regional Ethics Committee, New Zealand, granted ethics approval
for the audit, analysis, and publication of these data. Data collection is described in
detail in (Chase, Shaw, et al. 2008).

3.3.2. Measuring Variability

Actual SI (n+ 1) values for each day of ICU stay and each diagnostic category (cardiac,
gastric, all other, both operative and non-operative in all three types) are compared
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to the distributions provided by the stochastic model of Lin et al. (2008) that covers
all diagnostic categories and all days of ICU stay. The results thus show the relative
and absolute evolution of SI variability (SI (n) → SI (n+ 1)) for a given diagnostic
category over time, relative to all patients and days of stay, which should highlight times
or diagnostic groups with greater or lesser than average risk.

The percentile of the actual SI (n+ 1) values on their predicted distribution will be
illustrated with histograms. If the prediction is perfect (that is, the distribution of
actual values is identical to the predicted distribution), every 10% wide interval of the
histogram contains 10% of the measurements. This ideal case therefore corresponds
to a flat distribution. Kurtic distributions are seen when the actual values were more
concentrated at the median than the predicted distribution, suggesting confidence bands
could have been tightened. In contrast, U-shaped distributions indicate cases where
confidence bands should be widened due to increased variability.

As already mentioned, the investigations for SI variability will be based on the accuracy
of these predictions, i.e. we will call a patient variable if the predictions are not accurate
(the actual values are not following the predicted distribution). First, the present insulin
sensitivity (SI (n)) is identified, then, the cohort model is used to predict the distribution
of insulin sensitivity at the next time-point (F̂SI(n+1)) for the given SI (n). The actual
(identified) SI (n+ 1) value might be away from the median of this distribution, and
this difference over time going forward is the variability in which we are interested. For
this end, predicted SI distribution (F̂SIn+1) will be confronted with actual SI of the
next hour (SIn+1). Thus, variability was defined by the position of the realized eventual
SI (n+ 1) value relative to its predicted distribution F̂SI(n+1).

More precisely, two indicators will be defined to assess variability for each patient over
a given day, and results are aggregated by diagnostic category.

First, a quadratic indicator is defined as the average of squared deviations of the
percentile of the actual SI (n+ 1) value on its predicted distribution (from the overall
cohort model) from the ideal 50th percentile:

QUAD (n+ 1) =
[
F̂SIn+1 (SIn+1)− 0.5

]2
. (3.1)

This value increases the more variable a given patient. The quadratic indicator thus
measures overall intra-patient variability.

Second, a one-sided threshold indicator counts the number of SI (n+ 1) values for a
given patient that exceed the 90th percentile of SI (n+ 1) in the whole-cohort model of
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Lin et al. (2008):
OST (n+ 1) = I{

F̂SIn+1 (SIn+1)>0.9
}. (3.2)

This indicator thus counts the number of large positive changes in SI (n+ 1) that would
induce large drops in glucose level on dosing exogenous insulin based on the SI (n) value.
A value greater than 10% for a given patient, day or diagnostic category indicates a
greater risk for these changes compared to the overall cohort on all days of ICU stay.
This indicator thus specifically assesses hypoglycemic risk due to intra-patient variability
in insulin sensitivity and its daily evolution.

Hence, these two indicators measure overall variability and hypoglycemic risk from
variability. Clinically, the quadratic measure is one of risk to glycemic control performance
and outcome arising due to variability in insulin sensitivity, and the one-sided threshold
assesses risk to patient safety in glycemic control.

These indicators are illustrated on Figure 3.1, which shows the evolution of the
insulin sensitivity of a 67 years old male patient (FT5002) with septic shock principal
diagnosis (all other, non-operative category) through 162 hours. Each patient has such a
trajectory. For every hour, the distribution of SI (n+ 1) was predicted based on SI (n)
using the model of Lin et al. (2008), which is illustrated with the underlying colormap
representing the cumulative distribution function of the predicted distribution. 50th
percentile (i.e. median) of this predicted distribution of SI (n+ 1) is explicitly shown.
The Figure also illustrates how these indicators are calculated, showing the predicted
distribution and the actual SI for a given hour.

3.3.3. Analysis of Variability

An overall variability score can be calculated for a given diagnosis group by averaging the
overall variability scores for patients belonging to that group. However, if the individual
length of stay differs, simple arithmetic averaging would assign unequal weights for each
patient’s measurements. To avoid the problems associated with unequal weighting due
to patient discharge, only series of equal length were averaged. In particular, results and
analysis were divided by the first 24 hours (”day 1”), second 24 hours (”day 2”), third 24
hours (”day 3”), and remaining time in ICU (”day 4+”). Thus only complete 24 hour
intervals were used (except for day 4+, of course) to avoid bias.

Per-patient average penalty score distributions by diagnosis group each day are shown
using violin plots (Hintze and Nelson 1998). Violin plots bear similarities to boxplots,
but use kernel density estimation to directly convey information on the shape of the
distribution for more accurate comparison.
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Figure 3.1.: Illustration of the evolution of SI for a given patient (FT5002). Background
colors represent the cumulative distribution function of the prediction for
SI (n+ 1) based on SI (n) using the whole cohort; its 25th, 50th (i.e. median)
and 75th percentile is explicitly shown. Lower part of the Figure highlights
the calculation of the two indicators using Hour #102 (Day #4.25, marked
on the upper part) as an example.

3.3.4. Statistical Methods

To have an overall impression on the effect of the time spent in ICU on the SI variability,
a LOWESS estimator (Cleveland 1979) was plotted for the scatterplot of quadratic
indicator and time spent (in minutes) per diagnosis group on Figure 3.2. (Plotting the
scattergrams itself would have been useless due to the high number of points.) Note
that this presentation neglects the dependence between the measurements for the same
patient, so it can only be used to give an overall picture of the tendencies.

It is immediately obvious that time has a complex effect on SI variability, which
exhibits a biphasic behavior in most of the cases: there is an initial phase with decreasing
variability, then a breakpoint comes, and the variability is either decreasing in a drastically
slower rate, or stagnates, or – in some cases – it even starts a pronounced elevation.
This is worthy of pursuit, despite the fact that the estimation at long length of stays is
unreliable due to relatively lower sample size.

I will return to this question in Subsection 3.3.6, but apart from that, let us confine
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Figure 3.2.: LOWESS estimators for the scatterplot between minute-precision length
of stay and quadratic indicator of SI variability, segregated according to
diagnosis group. Dashed vertical lines indicate the end of the first four days.
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our attention to investigate the early, seemingly mostly linear response of the first few
days. (To illustrate this, the first four day is marked on Figure 3.2.) The database was
restricted to observations having Time < 8 000 minutes (i.e. the first 5.5 days of stay) for
the estimation of the forthcoming models, hence limiting it to the ”linearity region” of
the SI variability vs. time function, as evidenced by Figure 3.2. The first few days are
the most relevant from the clinical management point of view. The linear functional form
is also more tractable and easier to estimate, so to perform this ”short-term” modeling,
linear functional form will be used

As a preliminary investigation, it was first examined whether the differences in SI

variability between diagnosis groups are significant, if the database is simply split according
to days, and perform separate analyses. For that end, Kruskal–Wallis-test was used, as
there was no a priori information on the normality of the data (Dalgaard 2008).

However, to account for the grouping of the data and to explicitly incorporate time,
linear mixed-effects modeling was used (J. C. Pinheiro and D. M. Bates 2000; Brown and
Prescott 2006). The aim was to find significant differences in SI variability indicators
between diagnosis groups and/or days. The (longitudinal) data were arranged in a
two-way classification, with time a within-subject factor and diagnosis group considered
a between-subject factor. In the developed model, the fixed effects were the Time (time
spent in ICU in minutes as a continuous variable) and the Diagnosis (as a nominal factor
with 6 levels) without intercept (”cell means coding”). Minute-precision length-of-stay
(Time) was used for measuring time to make the estimation of the mixed-effects model
possible. The random effect was added with per-patient grouping, with both random
intercept and random slope permitted with respect to time, both of which was deemed
necessary with LR-test (p < 0.001 for both quadratic and one-sided penalty) (Fox and
Weisberg 2011). The inclusion of an AR(1) autocorrelation of the within-subject errors
was not found to be necessary for the quadratic penalty (p = 0.9961) (Fox and Weisberg
2011). The fixed effects interaction terms between Time and Diagnosis were found to
be insignificant (p = 0.8227 for quadratic penalty, p = 0.2077 for one-sided penalty)
showing that that the slope with respect to the time spent in ICU does not depend
on the diagnosis group, and were thus eliminated. (Effect of Diagnosis was significant
(p < 0.0001 for both penalty), so the intercept does depend on the diagnosis group.) The
resulting statistical model for the quadratic penalty of SI variability was therefore the
following:

V ariabilityi,j =
(
β0,NOpC · Classi,NOpC + β0,NOpG · Classi,NOpG + . . .+

+ . . .+ β0,OpO · Classi,OpO + b0,i
)

+
(
β1 + b1,i

)
· Timei,j + εi,j ,

(3.3)
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where i identifies the patient, j identifies the measurement (i.e. Timei,j is the time of the
jth measurement on patient i), Classi,C is the indicator variable for Class C (i.e. takes
the value of 1 if patient i is in class C, 0 otherwise). For the one-sided threshold penalty –
as the response is essentially binary – generalized linear mixed effects (GLME) modeling
(Fritzmaurice, Laird, and Ware 2004) was used instead of the traditional linear mixed
effects (LME) modeling. The link function was chosen to be logistic, and the distribution
family was binomial. For the quadratic penalty, LME modeling was used, but the penalty
score was (monotonically) logit-transformed beforehand to map the skewed distribution
on [0, 0.25] to an approximately normal one on the real line (Fox and Weisberg 2011).
This sacrifies the interpretability of the coefficients for the correct specification of the
model, but the former was of little concern, as the numerical values of the coefficients
will not be used for further analysis. Linearity for the transformed data was still feasible.

The coefficients are denoted with β for the fixed, and with b for the random effects. The
fixed effects coefficient of Time characterizes – for the whole population – how variability
changes over time, with positive value implying increasing variability, negative implying
decreasing variability, and the absolute value showing the size of this effect. The fixed
effects coefficients of diagnosis groups show the estimated variability of a patient in the
given diagnosis group when admitted to the ICU.

Restricted maximum likelihood (REML) was used for the estimation of LME models
and Laplace-approximation for GLME. Residual variance was rather high in both cases,
indicating that the models were only able to capture a small part of the variation – but
this is to be expected, given that no information was available other than time spent in
ICU and diagnosis group.

After performing ANOVA to assess the significance of main effects, post-hoc testing
on significant effects was carried out using Tukey’s Honestly Significant Differences
(HSD) method (Hsu 1996), providing the correction that takes the multiple comparisons
situation into account.

3.3.5. Data Processing

Data processing was done using Mathworks Matlab (MATLAB 2009a) (version 2009a).
Statistical analysis was performed under the R statistical program package (R Core Team
2013), version 3.0.0 with nlme package for LME modeling (J. Pinheiro et al. 2013) and
lme4 package for GLME modeling (D. Bates, Maechler, and Bolker 2013). For the details,
see Subsection 2.2.2.

Full source code for performing the analysis is given in Appendix B.
Libraries multcomp (Hothorn, Bretz, and Westfall 2008), nlme (J. Pinheiro et al. 2013),
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lme4 (D. Bates, Maechler, and Bolker 2013) were used.

3.3.6. Long-term analysis

As already discussed, linear approximation is only adequate for ”short-term” analysis
(i.e. the investigation of the first few days). While this is the most important clinically, we
might be also interested in providing a ”long-term” model, which should be – therefore –
non-linear (Ritz and Streibig 2008).

However, the longer horizon we investigate, the less data we will have to estimate a
model. Hence, for the long-term analysis a classical, fixed-effects model was used, and
this approach was demonstrated only on the quadratic penalty.

To grasp the long-term evolution of SI variability, a simple piecewise linear regression
(with two linear segments and a break point at a random position) seems to be an
adequate approximation based on the inspection of Figure 3.2. This, however, has the
drawback the the log-likelihood of a regression model will not be differentiable at the
break point, which might induce complications for certain models (including ours (Gallop
et al. 2011)). To work-around this problem, we instead used a model which connects the
linear segments with a small, smooth section, thereby producing a log-likelihood function
that is differentiable everywhere. This function form was described by Bacon and Watts
(1971), and can be written as follows:

f (t) = α0 + α1 (t− t0) + α2 (t− t0) tanh
(
t− t0
γ

)
, (3.4)

where α0, α1, α2 are the parameters of the two segments (α0 is the function value at the
break point, t0 is the position of the break point, α1−α2 is the asymptotical slope before,
and α1 − α2 is the asymptotic slope after the break point) and γ adjusts the smoothness
of transition.

3.4. New Scientific Results

In this Section I present the results obtained with the methods described above. The vast
majority of the Section deals with the results of short-term modeling (Subsection 3.4.1),
but I also cover long-term modeling (Subsection 3.4.2).
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3.4.1. Short-term modeling

Figure 3.3 shows the distribution of the percentile of actual SI (n+ 1) on its predicted
distribution for different days and diagnosis groups.
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Figure 3.3.: Histograms of the percentile of actual SI (n+ 1) values on their predicted
distribution grouped according to day (rows) and diagnosis group (columns).
Dashed line indicates the ideal (uniform) case of perfect prediction. The
number of hourly measurements which was used to construct the histogram
is shown in the title.

The distributions in Figure 3.3 suggest poor coverage of the whole-cohort model on
day 1, almost ubiquitously across diagnosis groups. On day 2, every diagnosis group
”flattens”, except for Operative - Cardiac. On day 3, the predictions are acceptable in
every diagnosis group in that the actual distribution of SI (n+ 1) largely matches the
whole cohort-predicted distribution. Finally, on day 4 and onwards the coverage is very
over-conservative in the Operative - All other category.

71



Figure 3.4 shows the violin plot of the distributions of per-patient overall variability
indicators in different diagnosis groups, segregated according to ICU day and diagnosis
group.
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Figure 3.4.: Violin plots of per-patient overall variability scores segregated according
to day and diagnosis group. Upper row shows one-sided threshold penalty,
while lower row shows the quadratic penalty. Thick vertical lines indicate
the interquartile range, the crossing horizontal line is at the median. Dots
indicate the mean.

Figure 3.4 (top row) suggests that one-sided threshold penalties exhibit much larger,
typically positively-skewed variations. There is a slight trend in the central tendency,
as median variability in this indicator appears to decrease as time increases. A trend
towards reduced spread in this (one-sided) variability over time is more pronounced,
indicating decreasing risk of hypoglycemia over time when all else is equal.

In contrast, quadratic penalties are much more centrally concentrated, and have a
smaller coefficient of variation. The continuous lowering of variability over time in every
group is also seen, but a reduction in spread is not as pronounced. The two indicators
are consistent in assigning ”higher” and ”lower” variabilities similarly over time and
diagnostic group, albeit on different scales.

Significance of the between-diagnosis group differences per-day according to both
variability indicators is shown on Table 3.2.

It can be seen there are no significant differences in SI variability according to diagnosis
group on day 3 and after, no matter which indicator is used. There are no significant
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Table 3.2.: p-values of Kruskal–Wallis-test for the equality of average SI variability across
diagnosis groups segregated according to day.

Day One-sided threshold Quadratic

Day 1 0.1809 0.02234
Day 2 0.1814 0.02094
Day 3 0.9702 0.6884

Day 4 and onwards 0.1352 0.6499

differences at all (on either day) according to the one-sided threshold penalty, however,
there are significant differences on day 1 and on day 2 when the quadratic penalty is
employed. (The former observation can be explained by the higher spread of per-patient
variability indicators as seen on Figure 3.4.)

For the two cases, where significant difference was detected (day 1 and day 2 with
quadratic penalty) post hoc testing was employed. Results are shown on Table 3.3.

For day 1, no significant pairwise difference can be detected, on day 2, Non-operative
Gastro and Operative Cardio was significantly different (p = 0.00472), while Non-operative
All other and Operative Cardio was very close to significance (p = 0.06305).

Turning now to the more advanced modeling, parameters of the fitted GLME model
(for one-sided threshold penalty) and LME model (for quadratic penalty) are shown in
Table 3.4.

As can be seen from Table 3.4, time trend was significant (p < 0.0001) with a
coefficient of −0.1234/day for the one-sided threshold penalty, and −0.1810/day for the
(transformed) quadratic penalty, indicating the decreasing variability over time in both
cases. These results also imply a decreasing risk of hypoglycemia inducing variability in
insulin sensitivity over time, matching trends in Figure 3.4.

Post-hoc testing for diagnosis groups also revealed significant differences. Using
Tukey’s HSD method (see Table 3.5), Non-operative – Cardiac group had significantly
(p = 0.0175) higher variability than Non-operative – Gastric for the one-sided threshold
penalty. Non-operative – All other category also exhibited marginally significantly
(p = 0.0832) lower SI variability than Non-operative - Cardiac patients. The Operative –
Cardiac exhibited significantly (p = 0.0444) higher variability than Non-operative Gastric
for the (transformed) quadratic penalty. These results suggest that the Non-operative –
Gastric group is amongst the least variable groups, while the Cardiac groups exhibit the
highest variability irrespective of day. These results are consistent with Figure 4, though
it is worth noting that cardiac patients ”change place” from day 1 to day 2 irrespective
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Table 3.3.: p-values for the post-hoc testing of the significant differences (Day 1 and Day
2 with quadratic penalty).

Compared pair One-sided threshold Quadratic

Estimate p Estimate p

OpC - NOpC -0.000871 1.000 0.0167845 0.53874
NOpG - NOpC -0.022773 0.124 -0.0232665 0.30979
OpG - NOpC -0.015855 0.219 -0.0031855 0.99934

NOpO - NOpC -0.011849 0.371 -0.0040197 0.99571
OpO - NOpC -0.008392 0.914 -0.0081472 0.97213
NOpG - OpC -0.021902 0.125 -0.0400510 0.00472
OpG - OpC -0.014984 0.212 -0.0199700 0.22025

NOpO - OpC -0.010978 0.357 -0.0208042 0.06305
OpO - OpC -0.007521 0.933 -0.0249317 0.15341

OpG - NOpG 0.006918 0.964 0.0200809 0.37789
NOpO - NOpG 0.010924 0.711 0.0192468 0.28641
OpO - NOpG 0.014381 0.661 0.0151193 0.77735
NOpO - OpG 0.004006 0.971 -0.0008342 0.99999
OpO - OpG 0.007463 0.927 -0.0049617 0.99542

OpO - NOpO 0.003457 0.996 -0.0041275 0.99617

of penalty: Non-operative - Cardiac patients are more variable than Operative – Cardiac
group on day 1, but this order is reversed from day 2 onwards.

3.4.2. Long-term modeling

As already discussed, fixed effects modeling was only performed for the long-term analysis.
Fixed effects modeling is possible via non-linear least squares regression (Gallant

2009) using the Bacon–Watts function specified in (3.4). This was done separately for
diagnostic groups, with regressions fit for every patient. (Fitting was done through
Levenberg-Marquard (Gallant 2009) to optimize convergence.) Results (distribution of
the coefficients) are shown on Figure 3.5.

One can see that break points are estimated to be at a short length of stay compared
to Figure 3.2, but the direction of the slopes matches the expectations: before the
breakpoints, the slopes are typically negative, while after the breakpoints they are of
much smaller magnitude on the one hand, and are also closer to zero, or even positive. (For
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Table 3.4.: Summary of the estimated fixed effect coefficients of the LME model for
(logit-transformed) quadratic penalty and the GLME model for the one-sided
threshold penalty, and the p-value for the test of significance for Time. The
coefficient of Time is given both per minute and per day (24 · 60 = 1440 times
the former).

Variable One-sided pen. (Transformed) Quadratic pen.

Non-operative – Cardiac -1.5807 -0.5033
Operative – Cardiac -1.9092 -0.4427
Non-operative – Gastric -2.3532 -1.0480
Operative – Gastric -1.8791 -0.6922
Non-operative – All other -1.9903 -0.7350
Operative – All other -2.0911 -0.8467

Time (per minute) -0.00008571 -0.0001257
Time (per day) -0.1234224 -0.1810

p < 0.0001 p < 0.0001

example, in the Non-operative Gastric group which also completely matches Figure 3.2.)

3.5. Discussion and Practical Applicability of the Results

Clinically, those results indicate a decreasing likelihood of hypoglycemia induced by large
rises (variations) in insulin sensitivity over short measurement and intervention intervals
as days of ICU stay increase based on the one-sided threshold results. The overall risk of
increased variability of both forms (one-sided and quadratic indicators) by diagnostic
category is highest for Cardiac patient groups.

This latter observation is matching the increased hypoglycemia observed in glycemic
control studies in these cohorts (e.g. (Preiser et al. 2009)). The highest variability on
day 1 is consistent with the increased hypoglycemia and range observed in the first 24
hours in the study by Bagshaw et al. (2009), which was associated with increased risk of
death. The overall higher variability (quadratic measure) on day 1 in all groups is also
reflective of increased hypoglycemia and variability reported in most glycemic control
studies irrespective of cohort (Griesdale et al. 2009; Bagshaw et al. 2009).

The major strength of this approach is that it also provides a rigorous statistical
framework, which makes the quantification of these effects possible. It is, however,
limited in some sense because it is inherently linked to the SPRINT protocol (as it
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Table 3.5.: Estimates of differences and the p-values for the test of their significance
(using Tukey-HSD post hoc testing for the multiple comparisons situation)
for the pairwise comparison of diagnostic categories.

Comparison One-sided penalty (Transformed) Quadratic penalty

Estimate p Estimate p

OpC – NOpC -0.3285 0.4188 0.0606 0.9992
NOpG – NOpC -0.7724 0.0172 -0.5451 0.1505
OpG – NOpC -0.2984 0.5130 -0.1889 0.8637
NOpO – NOpC -0.4096 0.0835 -0.2317 0.6190
OpO – NOpC -0.5104 0.1438 -0.3434 0.5038
NOpG – OpC -0.4440 0.3607 -0.6057 0.0444
OpG – OpC 0.0300 1.0000 -0.2495 0.4946
NOpO – OpC -0.0811 0.9890 -0.2923 0.1525
OpO – OpC -0.1819 0.9335 -0.4040 0.2077
OpG – NOpG 0.4740 0.2765 0.3563 0.5179
NOpO – NOpG 0.3628 0.5024 0.3135 0.5799
OpO – NOpG 0.2621 0.9034 0.2017 0.9539
NOpO – OpG -0.1112 0.9503 -0.0428 0.9992
OpO – OpG -0.2120 0.8732 -0.1545 0.9518
OpO – NOpO -0.1008 0.9919 -0.1117 0.9817

interprets variability as the deviation of the actual SI from its prediction provided by
the particular algorithm in that protocol).

The physiological causes of this variability have links to the counter-regulatory and
oxidative stress responses, and inflammatory acute immune response typically seen in
hyperglycemic critically ill patients. That the variability declines over days 1-4 as the
acute phase passes also matches expectations and physiological observations. Drug
therapies, such as glucocorticoid or inotrope use (Pretty et al. 2011) among others, may
also be implicated as a causative factor. However, the high level of patient-specificity
observed within any group makes determining specific causes or magnitude of effect
difficult.

For glycemic control, high levels of variability combined with infrequent blood glucose
measurement are a major disincentive to higher insulin doses and/or low glycemic targets.
The only study to reduce both mortality and hypoglycemia (Chase, Shaw, et al. 2008)
was notable in modulating both insulin and nutrition inputs to achieve good control with
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Figure 3.5.: Distribution of the parameters for the per-patient non-linear regression by
diagnosis group.

lesser insulin and thus reduce hypoglycemic risk. Hence, either higher targets (Moghissi
et al. 2009) and/or adding nutritional intake into consideration in providing glycemic
control (Suhaimi et al. 2010) must be considered for at least some diagnostic groups (e.g
Cardiac patients) and days of ICU stay (day 1) based on these results.

While on the short-term, linear models seem to provide an adequate fit for the SI
variability, yielding the results discussed above, the long-term modeling can only be done
in a manner that incorporates the biphasic nature of the insulin sensitivity variability.
The results show a possible way: fixed-effects modeling using the non-linear Bacon–Watts
function form (which is closely piecewise linear, but with a differentiable log-likelihood
everywhere) provides a proper way to capture the nature of the evolution of SI.

This demonstrated that the long-term evolution is indeed biphasic in most of the cases.
The early phase response (decreasing variability) is analyzed in detail above, while in the
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long run, this variability stalls, or even starts to increase. The developed model permits
not only to qualitatively assess this, but also to quantify these tendencies.

3.6. Conclusion

Inter-patient variability in insulin sensitivity peaks on day 1 across diagnostic groups
and indicators. Operative – All other patients are more predictable after day 4 than an
all patients and days of stay model accounted for, shown by conservative coverage. The
distribution of overall intra-patient variability assessed per-patient and the mixed-effects
model shows there are distinctive differences between diagnosis groups, irrespective of
the time spent in the ICU. In particular, the Non-operative – Gastric group exhibits the
smallest variability, while Cardiac groups are amongst the most variable. Clinically, these
results show decreasing risk of hypoglycemia as length of stay increases, as well as some
reduction in glycemic variability when all else is equal. The overall results can be used
to guide the design and implementation of glycemic management specific to diagnosis
group and ICU day of stay to improve control and reduce risk.

Thesis 2. Modeling and Evaluating the Performance of Tight Glycemic Control Proto-
cols.

Thesis 2
I have developed a novel methodology to evaluate and model the
insulin sensitivity variability and its evolution over time for patients
in different diagnosis groups. This also makes the more thorough
investigation of the performance of tight glycemic control protocols
possible.

Relevant own publications pertaining to this thesis group: [F-14; F-10; F-16].
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4. Conclusion

This dissertation presented two applications of biostatistics in the analysis of pathophysi-
ological processes.

The first thesis group investigated questions about obesity, which is the in focus of
public health for decades. I now examined the effects of obesity on the human body
by analyzing how laboratory parameters are altered by overweight and obesity. To
my recent knowledge, this was the first investigation to comprehensively address every
routinely used laboratory parameters and to address their multivariate structure. For
that end, I developed a novel methodology that provides a complete framework for such
investigations. I implemented this methodology as well to provide informatics support
for the real-life application of my approach. This treatment also included the analysis of
a non-representative Hungarian study, which was performed specifically for this purpose,
and – to my best knowledge – is the first study to address this question on Hungarian
adolescents.

Nevertheless, there is still room for improvement. By using databases that include
adults as well, it is possible to base on larger sample size, on the one hand, and also
to make inference on the effect of age on the investigated questions. As far as the
Hungarian database is concerned, its convenience sample nature limits the inferences we
can draw from it. It would be greatly beneficial from the public health point of view to
perform a representative Hungarian study that includes demographic, anthropometric
and laboratory parameters (and, perhaps, other relevant indicators as well). Such study
would be useful outside our question as well.

The other thesis group described a problem about tight glycemic control protocols. I
developed a statistical method that provides objective, quantitative evaluation of how
well the protocol predicts the insulin sensitivity of a patient (which is one of the critical
steps for such protocols). The model considers both the patient’s diagnosis group, and
the evolution of his/her state over time. In addition to the objective assessment, my
model can formulate advices, down to the clinical level, on how to improve such protocols.

One of the main development possibilities here is the extending to other TGC protocols.
Here I only analyzed the SPRINT protocol, while many other is also available. Analyzing
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further protocols would be especially interesting as it would create a possibility to compare
different protocols to each other, and draw objective conclusions on their effectiveness.

A common possibility for improvement is the inclusion of, and application of biostatistics
on control engineering which is already extensively used in modeling (Mandal 2006; Ogata
2010), specifically in the problems of public health too (Kovács, Szalay, Tamás Ferenci,
Sápi, et al. 2012; Makroglou, Li, and Kuang 2006; Cobelli et al. 2009).

Both thesis groups involved the development of computer programs that implemented
the introduced methodologies and statistical models. I laid emphasis on this to show
how modern applied informatics supports the work of biostatisticians, as discussed in the
Introduction.
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Kriegel, Hans-Peter, Peer Kröger, Jörg Sander, and Arthur Zimek (2011). “Density-
based clustering”. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 1.3, pp. 231–240. issn: 1942-4795. doi: 10.1002/widm.30. url: http:

//dx.doi.org/10.1002/widm.30.
Krinsley, J S (2003). “Association between hyperglycemia and increased hospital mortality

in a heterogeneous population of critically ill patients”. In: Mayo Clin Proc 78,
pp. 1471–1478.

— (2004). “Effect of an Intensive Glucose Management Protocol on the Mortality of
Critically Ill Adult Patients”. In: Mayo Clinic Proceedings 79.8, pp. 992–1000. issn:

89

http://dx.doi.org/10.1007/BF02289233
http://dx.doi.org/10.1007/BF02289233
http://epm.sagepub.com/content/20/1/141.full.pdf+html
http://epm.sagepub.com/content/20/1/141.full.pdf+html
http://epm.sagepub.com/content/20/1/141.short
http://epm.sagepub.com/content/20/1/141.short
http://dx.doi.org/10.1111/j.1365-2141.1977.tb00570.x
http://dx.doi.org/10.1111/j.1365-2141.1977.tb00570.x
http://dx.doi.org/10.1111/j.1365-2141.1977.tb00570.x
http://dx.doi.org/10.1007/BF02294448
http://dx.doi.org/10.1007/BF02294448
http://dx.doi.org/10.1007/BF02294448
http://dx.doi.org/10.1161/01.CIR.99.2.237
http://dx.doi.org/10.1161/01.CIR.99.2.237
http://circ.ahajournals.org/content/99/2/237.full.pdf+html
http://circ.ahajournals.org/content/99/2/237.abstract
http://dx.doi.org/10.1002/widm.30
http://dx.doi.org/10.1002/widm.30
http://dx.doi.org/10.1002/widm.30


0025-6196. doi: 10.4065/79.8.992. url: http://www.sciencedirect.com/

science/article/pii/S002561961162572X.
Krinsley, J S (2008). “Glycemic variability: a strong independent predictor of mortality

in critically ill patients”. In: Crit Care Med 36, pp. 3008–3013.
Kuczmarski, Robert J., Cynthia L. Ogden, Shumei S. Guo, Laurence M. Grummer-

Strawn, Katherine M. Flegal, Zuguo Mei, Rong Wei, Lester R. Curtin, Alex F. Roche,
and Clifford L. Johnson (2002). “2000 CDC Growth Charts for the United States:
methods and development”. In: Vital Health Stat 11 246, pp. 1–190. issn: 0083-1980.

Lam, Gregory M. and Sohrab Mobarhan (2004). “Central Obesity and Elevated Liver
Enzymes”. In: Nutrition Reviews 62.10, pp. 394–399. issn: 1753-4887. doi: 10.1111/

j.1753-4887.2004.tb00010.x. url: http://dx.doi.org/10.1111/j.1753-

4887.2004.tb00010.x.
Lance, G. N. and W. T. Williams (1967). “A General Theory of Classificatory Sorting

Strategies: 1. Hierarchical Systems”. In: The Computer Journal 9.4, pp. 373–380. doi:
10.1093/comjnl/9.4.373. url: http://dx.doi.org/10.1093/comjnl/9.4.373.

Langouche, L, S Vander Perre, P J Wouters, A D’Hoore, T K Hansen, and G Van
den Berghe (2007). “Effect of intensive insulin therapy on insulin sensitivity in the
critically ill”. In: J Clin Endocrinol Metab 92, pp. 3890–3897.

Lawlor, Debbie A., Naveed Sattar, George Davey Smith, and Shah Ebrahim (2005).
“The Associations of Physical Activity and Adiposity with Alanine Aminotransferase
and Gamma-Glutamyltransferase”. In: American Journal of Epidemiology 161.11,
pp. 1081–1088. doi: 10.1093/aje/kwi125. eprint: http://aje.oxfordjournals.

org/content/161/11/1081.full.pdf+html. url: http://aje.oxfordjournals.

org/content/161/11/1081.abstract.
Lehmann, E.L. and G. Casella (1998). Theory of Point Estimation. Springer Texts in

Statistics. Springer. isbn: 9780387985022.
Limpert, E., W. A. Stahel, and M. Abbt (2001). “Log-normal Distributions across the

Sciences: Keys and Clues”. In: BioScience 51.5, pp. 341–352. issn: 0006-3568.
Lin, J, D Lee, J G Chase, G M Shaw, A Le Compte, T Lotz, J Wong, T Lonergan, and

C E Hann (2008). “Stochastic modelling of insulin sensitivity and adaptive glycemic
control for critical care”. In: Comput Methods Programs Biomed 89, pp. 141–152.

Luxburg, Ulrike (2007). “A tutorial on spectral clustering”. English. In: Statistics and
Computing 17.4, pp. 395–416. issn: 0960-3174. doi: 10.1007/s11222-007-9033-z.
url: http://dx.doi.org/10.1007/s11222-007-9033-z.

Makroglou, Athena, Jiaxu Li, and Yang Kuang (2006). “Mathematical models and
software tools for the glucose-insulin regulatory system and diabetes: an overview”.

90

http://dx.doi.org/10.4065/79.8.992
http://www.sciencedirect.com/science/article/pii/S002561961162572X
http://www.sciencedirect.com/science/article/pii/S002561961162572X
http://dx.doi.org/10.1111/j.1753-4887.2004.tb00010.x
http://dx.doi.org/10.1111/j.1753-4887.2004.tb00010.x
http://dx.doi.org/10.1111/j.1753-4887.2004.tb00010.x
http://dx.doi.org/10.1111/j.1753-4887.2004.tb00010.x
http://dx.doi.org/10.1093/comjnl/9.4.373
http://dx.doi.org/10.1093/comjnl/9.4.373
http://dx.doi.org/10.1093/aje/kwi125
http://aje.oxfordjournals.org/content/161/11/1081.full.pdf+html
http://aje.oxfordjournals.org/content/161/11/1081.full.pdf+html
http://aje.oxfordjournals.org/content/161/11/1081.abstract
http://aje.oxfordjournals.org/content/161/11/1081.abstract
http://dx.doi.org/10.1007/s11222-007-9033-z
http://dx.doi.org/10.1007/s11222-007-9033-z


In: Applied Numerical Mathematics 56.3-4, pp. 559–573. issn: 0168-9274. doi: 10.

1016/j.apnum.2005.04.023. url: http://www.sciencedirect.com/science/

article/pii/S0168927405000929.
Mandal, A.K. (2006). Introduction to Control Engineering: Modeling, Analysis and Design.

New Age International Pvt. Limited, Publishers. isbn: 9788122418217.
Maritz, J. S. (1995). Distribution-free Statistical Methods. Monographs on Statistics &

Applied Probability. Chapman & Hall. isbn: 9780412552601.
MATLAB (2009a). version 7.8 (R2009a). Natick, Massachusetts: The MathWorks Inc.
McCowen, K C, A Malhotra, and B R Bistrian (2001). “Stress-induced hyperglycemia”.

In: Crit Care Clin 17, pp. 107–124.
Millar, R.B. (2011). Maximum Likelihood Estimation and Inference: With Examples in

R, SAS and ADMB. Statistics in Practice. Wiley. isbn: 9781119977711.
Miller, R. G. (1981). Simultaneous statistical inference. Springer series in statistics.

Springer-Verlag. isbn: 9780387905488.
Milne, Iain (2012). “Who was James Lind, and what exactly did he achieve”. In: Journal of

the Royal Society of Medicine 105.12, pp. 503–508. doi: 10.1258/jrsm.2012.12k090.
eprint: http://jrs.sagepub.com/content/105/12/503.full.pdf+html. url:
http://jrs.sagepub.com/content/105/12/503.short.

Moghissi, E S, M T Korytkowski, M DiNardo, D Einhorn, R Hellman, I B Hirsch, S
E Inzucchi, F Ismail-Beigi, M S Kirkman, and G E Umpierrez (2009). “American
Association of Clinical Endocrinologists and American Diabetes Association consensus
statement on inpatient glycemic control”. In: Diab Care 32, pp. 1119–1131.

Moreno, L. A., W. Ahrens, and I. Pigeot (2011). Epidemiology of Obesity In Children and
Adolescents: Prevalence and Etiology. Springer Series on Epidemiology and Public
Health, 2. Springer New York. isbn: 9781441960399.

Must, Aviva, Richard S Strauss, et al. (1999). “Risks and consequences of childhood
and adolescent obesity”. In: International journal of obesity and related metabolic
disorders: journal of the International Association for the Study of Obesity 23, S2–11.
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F-3 Almássy, Zsuzsanna, Levente Kovács, Tamás Ferenci, Zsolt Vajda, and Adalbert
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Benyó, and Zoltán Benyó (2010). “Differences in the laboratory parameters of
obese and healthy Hungarian children and their use in automatic classification”. In:
Engineering in Medicine and Biology Society (EMBC), 2010 Annual International
Conference of the IEEE, pp. 3883–3886. doi: 10.1109/IEMBS.2010.5627672.

F-12 Ferenci, Tamás, Levente Kovács, Zsuzsanna Almássy, László Szilágyi, and Zoltán
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valósźınűségi változók”. In: Statisztikai Szemle 88.7–8, pp. 803–832.

Fx-5 — (2010b). Statisztikai tesztek robusztusságának vizsgálata GP-GPU számı́tási
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A. Program for Effect of Obesity on
Laboratory Parameters

1 l ibrary ( f o r e i g n )
2 l ibrary ( weights )
3 l ibrary ( ks )
4 l ibrary ( psych )
5

6 GrowthChart <− read . csv2 ( ” bmiagerev . csv ” )
7 source ( ” bmizscore .R” )
8

9 ###BEGIN −− Load NHANES #
10 #####
11 nhanes <− read . xport ( ” . /nhanes20092010/DEMO F .XPT” )
12 nhanes <− merge( nhanes , read . xport ( ” . /nhanes20092010/BIOPRO F .XPT” ) )
13 nhanes <− merge( nhanes , read . xport ( ” . /nhanes20092010/CBC F .XPT” ) )
14 nhanes <− merge( nhanes , read . xport ( ” . /nhanes20092010/CRP F .XPT” ) )
15 nhanes <− merge( nhanes , read . xport ( ” . /nhanes20092010/HDL F .XPT” ) )
16 nhanes <− merge( nhanes , read . xport ( ” . /nhanes20092010/TRIGLY F .XPT” ) )
17 nhanes <− merge( nhanes , read . xport ( ” . /nhanes20092010/BMX F .XPT” ) )
18

19 nhanes <− nhanes [ ! i s . na( nhanes$RIDAGEEX ) , ]
20 nhanes <− nhanes [ nhanes$RIDAGEEX / 12 >= 12 & nhanes$RIDAGEEX / 12 <= 18 , ]
21 nhanes <− nhanes [ ! i s . na( nhanes$BMXBMI ) , ]
22 nhanes <− nhanes [ ! i s . na( nhanes$RIAGENDR ) , ]
23

24 nhanes <− data . frame ( WBC = nhanes$LBXWBCSI, RNC = nhanes$LBXNEPCT,
25 RLC = nhanes$LBXLYPCT, RMC = nhanes$LBXMOPCT,
26 REC = nhanes$LBXEOPCT, ANC = nhanes$LBDNENO,
27 ALC = nhanes$LBDLYMNO, AMC = nhanes$LBDMONO,
28 AEC = nhanes$LBDEONO, RBC = nhanes$LBXRBCSI,
29 HGB = nhanes$LBXHGB ∗ 10 , HCT = nhanes$LBXHCT / 100 ,
30 MCV = nhanes$LBXMCVSI, MCH = nhanes$LBXMCHSI,
31 MCHC = nhanes$LBXMC ∗ 10 , RDW = nhanes$LBXRDW,
32 PLT = nhanes$LBXPLTSI , MPV = nhanes$LBXMPSI,
33 CRP = nhanes$LBXCRP, SNA = nhanes$LBXSNASI,
34 SK = nhanes$LBXSKSI , SCL = nhanes$LBXSCLSI ,
35 STP = nhanes$LBDSTPSI , SAL = nhanes$LBDSALSI ,
36 SGL = nhanes$LBDSGBSI, BUN = nhanes$LBDSBUSI ,
37 SCR = nhanes$LBDSCRSI, STG = nhanes$LBDTRSI,
38 STC = nhanes$LBDSCHSI, HDL = nhanes$LBDHDDSI,
39 AST = nhanes$LBXSASSI , ALT = nhanes$LBXSATSI ,
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40 GGT = nhanes$LBXSGTSI, BMI = nhanes$BMXBMI,
41 WEIGHT = nhanes$WTSAF2YR, GENDER = nhanes$RIAGENDR,
42 AGEMOS = nhanes$RIDAGEEX)
43 nhanes$ZBMI <− mapply ( BMIZScore , nhanes$BMI, nhanes$GENDER,
44 nhanes$AGEMOS, MoreArgs =
45 l i s t ( GrowthChart = GrowthChart ) )
46 nhanesMales <− nhanes [ nhanes$GENDER == 1 , ]
47 nhanesFemales <− nhanes [ nhanes$GENDER == 2 , ]
48

49 colnames ( nhanesMales )
50 apply ( nhanesMales , 2 , function ( x ) sum( i s . na( x ) ) ) /
51 dim( nhanesMales ) [ 1 ]
52 apply ( nhanesMales , 1 , function ( x ) sum( i s . na( x ) ) )
53 rowSel <− apply ( nhanesMales , 1 , function ( x ) sum( i s . na( x ) ) ) == 0
54 nhanesMales <− nhanesMales [ rowSel , ]
55 apply ( nhanesMales , 2 , function ( x ) sum( i s . na( x ) ) ) /
56 dim( nhanesMales ) [ 1 ]
57 apply ( nhanesMales , 1 , function ( x ) sum( i s . na( x ) ) )
58 dim( nhanesMales )
59

60 colnames ( nhanesFemales )
61 apply ( nhanesFemales , 2 , function ( x ) sum( i s . na( x ) ) ) /
62 dim( nhanesFemales ) [ 1 ]
63 apply ( nhanesFemales , 1 , function ( x ) sum( i s . na( x ) ) )
64 rowSel <− apply ( nhanesFemales , 1 , function ( x ) sum( i s . na( x ) ) ) == 0
65 nhanesFemales <− nhanesFemales [ rowSel , ]
66 apply ( nhanesFemales , 2 , function ( x ) sum( i s . na( x ) ) ) /
67 dim( nhanesFemales ) [ 1 ]
68 apply ( nhanesFemales , 1 , function ( x ) sum( i s . na( x ) ) )
69 dim( nhanesFemales )
70

71 nhanesMales$WEIGHT <− nhanesMales$WEIGHT /
72 sum( nhanesMales$WEIGHT ) ∗ dim( nhanesMales ) [ 1 ]
73 nhanesFemales$WEIGHT <− nhanesFemales$WEIGHT /
74 sum( nhanesFemales$WEIGHT ) ∗ dim( nhanesFemales ) [ 1 ]
75 #####
76 ### END −− Load NHANES #
77

78 ###BEGIN −− Load Hungarian study #
79 #####
80 hun <− read . csv2 ( ” beo7 . csv ” )
81 hun$BMI <− hun$BodyMass / ( hun$BodyHeight / 100 ) ˆ2
82 hun$ZBMI <− mapply ( BMIZScore , hun$BMI, hun$Sex , hun$AgeMos ,
83 MoreArgs = l i s t ( GrowthChart = GrowthChart ) )
84 hun <− hun [ hun$AgeMos / 12 <= 18 & hun$AgeMos / 12 >= 12 , ]
85 hunMales <− hun [ hun$Sex == 1 , ]
86 hunFemales <− hun [ hun$Sex == 2 , ]
87

88 colnames ( hunMales )
89 apply ( hunMales , 2 , function ( x ) sum( i s . na( x ) ) ) /
90 dim( hunMales ) [ 1 ]
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91 apply ( hunMales [ , 7 :42 ] , 1 , function ( x ) sum( i s . na( x ) ) )
92 rowSel <− apply ( hunMales [ , 7 :42 ] , 1 ,
93 function ( x ) sum( i s . na( x ) ) ) < 6
94 apply ( hunMales [ rowSel , ] , 2 , function ( x ) sum( i s . na( x ) ) ) /
95 dim( hunMales [ rowSel , ] ) [ 1 ]
96 c o l S e l <− apply ( hunMales [ rowSel , ] , 2 , function ( x )
97 sum( i s . na( x ) ) ) / dim( hunMales [ rowSel , ] ) [ 1 ] < 0 .2
98 hunMales <− hunMales [ rowSel , c o l S e l ]
99 apply ( hunMales , 2 , function ( x ) sum( i s . na( x ) ) ) /

100 dim( hunMales ) [ 1 ]
101 apply ( hunMales , 1 , function ( x ) sum( i s . na( x ) ) )
102 dim( hunMales )
103 colnames ( hunMales )
104 colnames ( hunMales ) [ 7 :39 ] <− c ( ”WBC” , ”RNC” , ”RLC” , ”RMC” , ”REC” ,
105 ”ANC” , ”ALC” , ”AMC” , ”AEC” , ”RBC” ,
106 ”HGB” , ”HCT” , ”MCV” , ”MCH” , ”MCHC” ,
107 ”RDW” , ”PLT” , ”MPV” , ”CRP” , ”SNA” ,
108 ”SK” , ”SCL” , ”STP” , ”SAL” , ”SGL” ,
109 ”BUN” , ”SCR” , ”STG” , ”STC” , ”HDL” ,
110 ”AST” , ”ALT” , ”GGT” )
111 colnames ( hunMales )
112

113 colnames ( hunFemales )
114 apply ( hunFemales , 2 , function ( x ) sum( i s . na( x ) ) ) /
115 dim( hunFemales ) [ 1 ]
116 apply ( hunFemales [ , 7 :42 ] , 1 , function ( x ) sum( i s . na( x ) ) )
117 rowSel <− apply ( hunFemales [ , 7 :42 ] , 1 ,
118 function ( x ) sum( i s . na( x ) ) ) < 6
119 apply ( hunFemales [ rowSel , ] , 2 , function ( x ) sum( i s . na( x ) ) ) /
120 dim( hunFemales [ rowSel , ] ) [ 1 ]
121 c o l S e l <− apply ( hunFemales [ rowSel , ] , 2 , function ( x )
122 sum( i s . na( x ) ) ) / dim( hunFemales [ rowSel , ] ) [ 1 ] < 0 .2
123 hunFemales <− hunFemales [ rowSel , c o l S e l ]
124 apply ( hunFemales , 2 , function ( x ) sum( i s . na( x ) ) ) /
125 dim( hunFemales ) [ 1 ]
126 apply ( hunFemales , 1 , function ( x ) sum( i s . na( x ) ) )
127 dim( hunFemales )
128 colnames ( hunFemales )
129 colnames ( hunFemales ) [ 7 :39 ] <− c ( ”WBC” , ”RNC” , ”RLC” , ”RMC” , ”REC” ,
130 ”ANC” , ”ALC” , ”AMC” , ”AEC” , ”RBC” ,
131 ”HGB” , ”HCT” , ”MCV” , ”MCH” , ”MCHC” ,
132 ”RDW” , ”PLT” , ”MPV” , ”CRP” , ”SNA” ,
133 ”SK” , ”SCL” , ”STP” , ”SAL” , ”SGL” ,
134 ”BUN” , ”SCR” , ”STG” , ”STC” , ”HDL” ,
135 ”AST” , ”ALT” , ”GGT” )
136 colnames ( hunFemales )
137

138 for ( i in 7 :39 ) {
139 hunMales [ , i ] <− replace ( hunMales [ , i ] , i s . na( hunMales [ , i ] ) ,
140 median( hunMales [ , i ] , na .rm = TRUE ) )
141 hunFemales [ , i ] <− replace ( hunFemales [ , i ] , i s . na( hunFemales [ , i ] ) ,

A-3



142 median( hunFemales [ , i ] , na .rm = TRUE ) )
143 }
144

145 apply ( hunMales , 2 , function ( x ) sum( i s . na( x ) ) ) /
146 dim( hunMales ) [ 1 ]
147 dim( hunMales )
148 apply ( hunFemales , 2 , function ( x ) sum( i s . na( x ) ) ) /
149 dim( hunFemales ) [ 1 ]
150 dim( hunFemales )
151

152 hunMales$WEIGHT <− rep ( 1 , dim( hunMales ) [ 1 ] )
153 hunFemales$WEIGHT <− rep ( 1 , dim( hunFemales ) [ 1 ] )
154 #####
155 ### END −− Load Hungarian study #
156

157 ###BEGIN −− D i s t r i b u t i o n o f Z−BMI scores #
158 #####
159 par ( mfrow = c ( 1 , 2 ) )
160 hist ( c ( hunMales$ZBMI, hunMales$ZBMI ) , xlab = ”Z−BMI” ,
161 main = ” Hungarian study ” , xl im = c ( −3 , 4 ) )
162 hist ( c ( nhanesMales$ZBMI, nhanesMales$ZBMI ) , xlab = ”Z−BMI” ,
163 main = ”NHANES” , xlim = c ( −3, 4 ) )
164

165 par ( mfrow = c ( 1 , 2 ) )
166 hist ( nhanesFemales$ZBMI, xlab = ”Z−BMI” , main = ” Females (n=200)” , xl im = c ( −4,

4 ) )
167 hist ( nhanesMales$ZBMI, xlab = ”Z−BMI” , main = ” Males (n=240)” , xl im = c ( −4, 4 )

)
168

169 par ( mfrow = c ( 1 , 2 ) )
170 hist ( hunFemales$ZBMI, xlab = ”Z−BMI” , main = ” Females (n=70)” , xl im = c ( −4, 4 )

)
171 hist ( hunMales$ZBMI, xlab = ”Z−BMI” , main = ” Males (n=113)” , xl im = c ( −4, 4 ) )
172 #####
173 ### END −− D i s t r i b u t i o n o f Z−BMI scores #
174

175 ###BEGIN −− I l l u s t r a t i o n o f u n i v a r i a t e d e s c r i p t i v e s t a t i s t i c s #
176 #####
177 DataMatrix <− as . matrix ( data . frame ( nhanesMales$ZBMI, nhanesMales$HDL ) )
178 HscvDM <− Hscv ( DataMatrix )
179 ResKde <− kde ( DataMatrix , HscvDM, w = nhanesMales$WEIGHT )
180 conts <− c ( 10 , 25 , 50 , 75 , 90 )
181 cuts <− c ( 0 , 1 , 2 , 3 )
182 ylm <− c ( −5, 10 )
183 n <− 500
184

185 layout ( matrix ( c ( 1 , 1 , 2 , 2 , 3 , 4 , 5 , 6 ) , 2 , 4 , byrow = TRUE) )
186 plot ( nhanesMales$ZBMI, nhanesMales$HDL, xlab = ”Z−BMI” , ylab = ”HDL” ,
187 sub = ”A” , main=” Scattergram ” )
188 plot ( ResKde , cont = conts , d i s p l a y = ” s l i c e ” , xlab = ”Z−BMI” ,
189 ylab = ”HDL” ,sub=”B” , main=” Kernel den s i ty e s t imat i on ” )
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190 abline ( v = c ( 0 , 1 , 2 , 3 ) , l t y = 2 )
191 ResEval0 <− kde ( DataMatrix , HscvDM, eval . points = matrix (
192 c ( rep ( 0 , n ) , seq ( ylm [ 1 ] , ylm [ 2 ] , ( ylm [ 2 ] −
193 ylm [ 1 ] ) / ( n − 1 ) ) ) , n , 2 ) , w = nhanesMales$WEIGHT )
194 ResEval1 <− kde ( DataMatrix , HscvDM, eval . points = matrix (
195 c ( rep ( 1 , n ) , seq ( ylm [ 1 ] , ylm [ 2 ] , ( ylm [ 2 ] −
196 ylm [ 1 ] ) / ( n − 1 ) ) ) , n , 2 ) , w = nhanesMales$WEIGHT )
197 ResEval2 <− kde ( DataMatrix , HscvDM, eval . points = matrix (
198 c ( rep ( 2 , n ) , seq ( ylm [ 1 ] , ylm [ 2 ] , ( ylm [ 2 ] −
199 ylm [ 1 ] ) / ( n − 1 ) ) ) , n , 2 ) , w = nhanesMales$WEIGHT )
200 ResEval3 <− kde ( DataMatrix , HscvDM, eval . points = matrix (
201 c ( rep ( 3 , n ) , seq ( ylm [ 1 ] , ylm [ 2 ] , ( ylm [ 2 ] −
202 ylm [ 1 ] ) / ( n − 1 ) ) ) , n , 2 ) , w = nhanesMales$WEIGHT )
203 plot ( ResEval0$eval . points [ , 2 ] , ResEval0$ es t imate /
204 ( sum( ResEval0$ es t imate ) ∗ ( ylm [ 2 ] − ylm [ 1 ] )/ ( n − 1 ) ) , ” l ” ,
205 xlim = c ( 0 , 2 . 5 ) , yl im = c ( 0 , 1 . 6 ) , x lab = ”HDL” , sub = ”C1” ,
206 ylab = ” f (HDL|Z−BMI=0)” ,
207 main = ” Condi t iona l d i s t r i b u t i o n o f HDL \n Condit ion : Z−BMI = 0” )
208 grid ( col = ” black ” )
209 plot ( ResEval1$eval . points [ , 2 ] , ResEval1$ es t imate /
210 ( sum( ResEval1$ es t imate ) ∗ ( ylm [ 2 ] − ylm [ 1 ] )/ ( n − 1 ) ) , ” l ” ,
211 xlim = c ( 0 , 2 . 5 ) , yl im = c ( 0 , 1 . 6 ) , x lab = ”HDL” , sub = ”C2” ,
212 ylab = ” f (HDL|Z−BMI=1)” ,
213 main = ” Condi t iona l d i s t r i b u t i o n o f HDL \n Condit ion : Z−BMI = 1” )
214 grid ( col = ” black ” )
215 plot ( ResEval2$eval . points [ , 2 ] , ResEval2$ es t imate /
216 ( sum( ResEval2$ es t imate ) ∗ ( ylm [ 2 ] − ylm [ 1 ] )/ ( n − 1 ) ) , ” l ” ,
217 xlim = c ( 0 , 2 . 5 ) , yl im = c ( 0 , 1 . 6 ) , x lab = ”HDL” , sub = ”C3” ,
218 ylab = ” f (HDL|Z−BMI=2)” ,
219 main = ” Condi t iona l d i s t r i b u t i o n o f HDL \n Condit ion : Z−BMI = 2” )
220 grid ( col = ” black ” )
221 plot ( ResEval3$eval . points [ , 2 ] , ResEval3$ es t imate /
222 ( sum( ResEval3$ es t imate ) ∗ ( ylm [ 2 ] − ylm [ 1 ] )/ ( n − 1 ) ) , ” l ” ,
223 xlim = c ( 0 , 2 . 5 ) , yl im = c ( 0 , 1 . 6 ) , x lab = ”HDL” , sub = ”C4” ,
224 ylab = ” f (HDL|Z−BMI=3)” ,
225 main = ” Condi t iona l d i s t r i b u t i o n o f HDL \n Condit ion : Z−BMI = 3” )
226 grid ( col = ” black ” )
227 #####
228 ### END −− I l l u s t r a t i o n o f u n i v a r i a t e d e s c r i p t i v e s t a t i s t i c s #
229

230 ###BEGIN −− Univar ia te d e s c r i p t i v e s t a t i s t i c s , f unc t i on de f #
231 #####
232 desc <− function ( data , bmi , weight , cut , n ) {
233 DataMatrix <− as . matrix ( data . frame ( bmi , data ) )
234 ResEval <− kde ( DataMatrix , Hscv ( DataMatrix ) , w = weight ,
235 eval . points = matrix (
236 c ( rep ( cut , n ) , seq ( min( data ) , max( data ) ,
237 ( max( data ) − min( data ) ) /
238 ( n − 1 ) ) ) , n , 2 ) )
239 m <− sum( ResEval$eval . points [ , 2 ] ∗ ResEval$ es t imate /
240 sum( ResEval$ es t imate ) )
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241 r e s<−data . frame (
242 Mean = m,
243 Median = t a i l (
244 ResEval$eval . points [ , 2 ] [ cumsum( ResEval$ es t imate ) /
245 sum( ResEval$ es t imate ) < 0 .5 ] , 1 ) ,
246 SD = sqrt ( sum( ( ResEval$eval . points [ , 2 ] − m ) ˆ2 ∗
247 ResEval$ es t imate / sum( ResEval$ es t imate ) ) ) ,
248 IQR = t a i l (
249 ResEval$eval . points [ , 2 ] [ cumsum( ResEval$ es t imate ) /
250 sum( ResEval$ es t imate ) < 0 .75 ] , 1 ) − t a i l (
251 ResEval$eval . points [ , 2 ] [ cumsum( ResEval$ es t imate ) /
252 sum( ResEval$ es t imate ) < 0 .25 ] , 1 )
253 )
254 return ( r e s )
255 }
256 # Example : desc ( nhanesMales$HDL, nhanesMales$ZBMI,
257 # nhanesMales$WEIGHT, 1 , 1000)
258 de scA l l <− function ( database , zbmi , weight , n , f i l e ) {
259 write . csv2 ( t ( matrix ( unlist ( apply ( database , 2 , function ( x ) {
260 data . frame ( ZBMI1 = desc ( x , zbmi , weight , 1 , n ) , ZBMI2 =
261 desc ( x , zbmi , weight , 2 , n ) , ZBMI3 =
262 desc ( x , zbmi , weight , 3 , n ) ) } ) ) , nr = 12 ) ) , f i l e = f i l e )
263 }
264 # Example : d e s c A l l ( nhanesMales [ , 1:33 ] , nhanesMales$ZBMI,
265 # nhanesMales$WEIGHT, 1000 , ”NHANES3DescMale . csv ” )
266 #####
267 ### END −− Univar ia te d e s c r i p t i v e s t a t i s t i c s , f unc t i on de f #
268

269 ###BEGIN −− Univar ia te d e s c r i p t i v e s t a t i s t i c s #
270 #####
271 de scA l l ( hunMales [ , 7 :39 ] , hunMales$ZBMI, hunMales$WEIGHT,
272 1000 , ”HUN3DescMale . csv ” )
273 de scA l l ( hunFemales [ , 7 :39 ] , hunFemales$ZBMI, hunFemales$WEIGHT,
274 1000 , ”HUN3DescFemale . csv ” )
275 de scA l l ( nhanesMales [ , 1 :33 ] , nhanesMales$ZBMI,
276 nhanesMales$WEIGHT, 1000 , ”NHANES3DescMale . csv ” )
277 de scA l l ( nhanesFemales [ , 1 :33 ] , nhanesFemales$ZBMI,
278 nhanesFemales$WEIGHT, 1000 , ”NHANES3DescFemale . csv ” )
279 #####
280 ### END −− Univar ia te d e s c r i p t i v e s t a t i s t i c s #
281

282 ###BEGIN −− Univar ia te a s s o c i a t i o n ana ly s i s , f unc t i on de f #
283 #####
284 a s s o c A l l <− function ( database , zbmi , weight , f i l e ) {
285 write . csv2 ( data . frame ( Rho =
286 apply ( database , 2 , function ( x ) {
287 wtd . cor ( rank ( zbmi ) , rank ( x ) , weight = weight ) [ 1 ]
288 } ) , P = apply ( database , 2 , function ( x ) { wtd . cor (
289 rank ( zbmi ) , rank ( x ) , weight = weight ) [ 4 ] } ) ,
290 Pcorr = p . ad jus t (
291 apply ( database , 2 , function ( x ) { wtd . cor (

A-6



292 rank ( zbmi ) , rank ( x ) , weight = weight ) [ 4 ] } ) ,
293 method = ”holm” ) ) , f i l e = f i l e )
294 }
295 # Example : a s s o c A l l ( nhanesMales [ , 1:33 ] , nhanesMales$ZBMI,
296 # nhanesMales$WEIGHT, ”NHANES3AssocMale . csv ”)
297 #####
298 ### END −− Univar ia te a s s o c i a t i o n ana ly s i s , f unc t i on de f #
299

300 ###BEGIN −− Univar ia te a s s o c i a t i o n a n a l y s i s #
301 #####
302 a s s o c A l l ( hunMales [ , 7 :39 ] , hunMales$ZBMI, hunMales$WEIGHT,
303 ”HUN3AssocMale . csv ” )
304 a s s o c A l l ( hunFemales [ , 7 :39 ] , hunFemales$ZBMI, hunFemales$WEIGHT,
305 ”HUN3AssocFemale . csv ” )
306 a s s o c A l l ( nhanesMales [ , 1 :33 ] , nhanesMales$ZBMI,
307 nhanesMales$WEIGHT, ”NHANES3AssocMale . csv ” )
308 a s s o c A l l ( nhanesFemales [ , 1 :33 ] , nhanesFemales$ZBMI,
309 nhanesFemales$WEIGHT, ”NHANES3AssocFemale . csv ” )
310 #####
311 ### END −− Univar ia te a s s o c i a t i o n a n a l y s i s #
312

313 ###BEGIN −− M u l t i v a r i a t e s t ruc tu re , func t ion de f #
314 #####
315 CondCov <− function ( x , y , zbmi , cond i t ion , weight , grd ) {
316 DataMatrix <− as . matrix ( data . frame ( zbmi , x , y ) )
317 xlm <− c ( min( x ) ∗ 0 .9 , max( x ) ∗ 1 .1 )
318 ylm <− c ( min( y ) ∗ 0 .9 , max( y ) ∗ 1 .1 )
319 ResEval <− kde ( DataMatrix , Hscv ( DataMatrix , p i l o t = ” d s c a l a r ” ) ,
320 w = weight , eval . points =
321 matrix ( c ( rep ( cond i t ion , grd ∗ grd ) , rep (
322 seq ( xlm [ 1 ] , xlm [ 2 ] , ( xlm [ 2 ] − xlm [ 1 ] ) /
323 ( grd − 1 ) ) , each = grd ) , rep ( seq (
324 ylm [ 1 ] , ylm [ 2 ] , ( ylm [ 2 ] − ylm [ 1 ] ) /
325 ( grd − 1 ) ) , grd ) ) , grd ∗ grd , 3 ) )
326 MeanX <− sum( ResEval$eval . points [ , 2 ] ∗ ResEval$ es t imate /
327 sum( ResEval$ es t imate ) )
328 MeanY <− sum( ResEval$eval . points [ , 3 ] ∗ ResEval$ es t imate /
329 sum( ResEval$ es t imate ) )
330 MeanXY <− sum( ResEval$eval . points [ , 2 ] ∗
331 ResEval$eval . points [ , 3 ] ∗ ResEval$ es t imate / sum( ResEval$ es t imate ) )
332 return (MeanXY−MeanX∗MeanY)
333 }
334 CondVar <− function ( x , zbmi , cond i t ion , weight , grd ) {
335 DataMatrix <− as . matrix ( data . frame ( zbmi , x ) )
336 xlm <− c ( min( x ) ∗ 0 . 9 , max( x ) ∗ 1 .1 )
337 ResEval <− kde ( DataMatrix , Hscv ( DataMatrix , p i l o t = ” d s c a l a r ” ) ,
338 w = weight , eval . points =
339 matrix ( c ( rep ( cond i t ion , grd ) , seq (
340 xlm [ 1 ] , xlm [ 2 ] , ( xlm [ 2 ] − xlm [ 1 ] ) /
341 ( grd − 1 ) ) ) , grd , 2 ) )
342 MeanX2 <− sum( ResEval$eval . points [ ,2 ] ˆ2 ∗ ResEval$ es t imate /

A-7



343 sum( ResEval$ es t imate ) )
344 MeanX <− sum( ResEval$eval . points [ , 2 ] ∗ ResEval$ es t imate /
345 sum( ResEval$ es t imate ) )
346 return (MeanX2−MeanXˆ2)
347 }
348 CondCovMat <− function ( database , zbmi , cond i t ion , weight , grd ) {
349 n <− dim( database ) [ 2 ]
350 r e s <− matrix ( rep ( 0 , n ∗ n ) , nc = n )
351 for ( i in 1 : ( n − 1 ) )
352 for ( j in ( i + 1 ) : n ) {
353 print ( c ( i , j ) )
354 r e s [ i , j ] <− CondCov( database [ , i ] , database [ , j ] ,
355 zbmi , cond i t ion , weight , grd )
356 }
357 for ( i in 1 : n )
358 r e s [ i , i ] <− CondVar ( database [ , i ] , zbmi , cond i t ion ,
359 weight , grd )
360 for ( i in 1 : ( n − 1 ) )
361 for ( j in ( i + 1 ) : n )
362 r e s [ j , i ] <− r e s [ i , j ]
363 return ( r e s )
364 }
365 #####
366 ### END −− M u l t i v a r i a t e s t ruc tu re , func t ion de f #
367

368 ###BEGIN −− M u l t i v a r i a t e s t ruc tu re , c o r r e l a t i o n matr ices #
369 #####
370 write . csv2 ( cov2cor ( CondCovMat( hunMales [ , 7 :39 ] , hunMales$ZBMI,
371 1 , hunMales$WEIGHT, 50 ) ) ,
372 ” hunMales1 . csv ” , row . names = FALSE )
373 write . csv2 ( cov2cor ( CondCovMat( hunMales [ , 7 :39 ] , hunMales$ZBMI,
374 2 , hunMales$WEIGHT, 50 ) ) ,
375 ” hunMales2 . csv ” , row . names = FALSE )
376 write . csv2 ( cov2cor ( CondCovMat( hunMales [ , 7 :39 ] , hunMales$ZBMI,
377 3 , hunMales$WEIGHT, 50 ) ) ,
378 ” hunMales3 . csv ” , row . names = FALSE )
379 write . csv2 ( cov2cor ( CondCovMat( hunFemales [ , 7 :39 ] , hunFemales$ZBMI,
380 1 , hunFemales$WEIGHT, 50 ) ) ,
381 ” hunFemales1 . csv ” , row . names = FALSE )
382 write . csv2 ( cov2cor ( CondCovMat( hunFemales [ , 7 :39 ] , hunFemales$ZBMI,
383 2 , hunFemales$WEIGHT, 50 ) ) ,
384 ” hunFemales2 . csv ” , row . names = FALSE )
385 write . csv2 ( cov2cor ( CondCovMat( hunFemales [ , 7 :39 ] , hunFemales$ZBMI,
386 3 , hunFemales$WEIGHT, 50 ) ) ,
387 ” hunFemales3 . csv ” , row . names = FALSE )
388 write . csv2 ( cov2cor ( CondCovMat( nhanesMales [ , 1 :33 ] , nhanesMales$ZBMI,
389 1 , nhanesMales$WEIGHT, 50 ) ) ,
390 ” nhanesMales1 . csv ” , row . names = FALSE )
391 write . csv2 ( cov2cor ( CondCovMat( nhanesMales [ , 1 :33 ] , nhanesMales$ZBMI,
392 2 , nhanesMales$WEIGHT, 50 ) ) ,
393 ” nhanesMales2 . csv ” , row . names = FALSE )
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394 write . csv2 ( cov2cor ( CondCovMat( nhanesMales [ , 1 :33 ] , nhanesMales$ZBMI,
395 3 , nhanesMales$WEIGHT, 50 ) ) ,
396 ” nhanesMales3 . csv ” , row . names = FALSE )
397 write . csv2 ( cov2cor ( CondCovMat( nhanesFemales [ , 1 :33 ] , nhanesFemales$ZBMI,
398 1 , nhanesFemales$WEIGHT, 50 ) ) ,
399 ” nhanesFemales1 . csv ” , row . names = FALSE )
400 write . csv2 ( cov2cor ( CondCovMat( nhanesFemales [ , 1 :33 ] , nhanesFemales$ZBMI,
401 2 , nhanesFemales$WEIGHT, 50 ) ) ,
402 ” nhanesFemales2 . csv ” , row . names = FALSE )
403 write . csv2 ( cov2cor ( CondCovMat( nhanesFemales [ , 1 :33 ] , nhanesFemales$ZBMI,
404 3 , nhanesFemales$WEIGHT, 50 ) ) ,
405 ” nhanesFemales3 . csv ” , row . names = FALSE )
406

407 hunMales1 <− read . csv2 ( ” hunMales1 . csv ” , row . names =
408 colnames ( hunMales ) [ 7 :39 ] , col . names =
409 colnames ( hunMales ) [ 7 :39 ] )
410 hunMales2 <− read . csv2 ( ” hunMales2 . csv ” , row . names =
411 colnames ( hunMales ) [ 7 :39 ] , col . names =
412 colnames ( hunMales ) [ 7 :39 ] )
413 hunMales3 <− read . csv2 ( ” hunMales3 . csv ” , row . names =
414 colnames ( hunMales ) [ 7 :39 ] , col . names =
415 colnames ( hunMales ) [ 7 :39 ] )
416 hunFemales1 <− read . csv2 ( ” hunFemales1 . csv ” , row . names =
417 colnames ( hunFemales ) [ 7 :39 ] , col . names =
418 colnames ( hunFemales ) [ 7 :39 ] )
419 hunFemales2 <− read . csv2 ( ” hunFemales2 . csv ” , row . names =
420 colnames ( hunFemales ) [ 7 :39 ] , col . names =
421 colnames ( hunFemales ) [ 7 :39 ] )
422 hunFemales3 <− read . csv2 ( ” hunFemales3 . csv ” , row . names =
423 colnames ( hunFemales ) [ 7 :39 ] , col . names =
424 colnames ( hunFemales ) [ 7 :39 ] )
425 nhanesMales1 <− read . csv2 ( ” nhanesMales1 . csv ” , row . names =
426 colnames ( nhanesMales ) [ 1 :33 ] , col . names =
427 colnames ( nhanesMales ) [ 1 :33 ] )
428 nhanesMales2 <− read . csv2 ( ” nhanesMales2 . csv ” , row . names =
429 colnames ( nhanesMales ) [ 1 :33 ] , col . names =
430 colnames ( nhanesMales ) [ 1 :33 ] )
431 nhanesMales3 <− read . csv2 ( ” nhanesMales3 . csv ” , row . names =
432 colnames ( nhanesMales ) [ 1 :33 ] , col . names =
433 colnames ( nhanesMales ) [ 1 :33 ] )
434 nhanesFemales1 <− read . csv2 ( ” nhanesFemales1 . csv ” , row . names =
435 colnames ( nhanesMales ) [ 1 :33 ] , col . names =
436 colnames ( nhanesMales ) [ 1 :33 ] )
437 nhanesFemales2 <− read . csv2 ( ” nhanesFemales2 . csv ” , row . names =
438 colnames ( nhanesMales ) [ 1 :33 ] , col . names =
439 colnames ( nhanesMales ) [ 1 :33 ] )
440 nhanesFemales3 <− read . csv2 ( ” nhanesFemales3 . csv ” , row . names =
441 colnames ( nhanesMales ) [ 1 :33 ] , col . names =
442 colnames ( nhanesMales ) [ 1 :33 ] )
443 #####
444 ### END −− M u l t i v a r i a t e s t ruc tu re , c o r r e l a t i o n matr ices #
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445

446 ###BEGIN −− P r i n c i p a l Components Analysis , f unc t i on de f #
447 #####
448 pcaScree <− function ( CorMat1 , CorMat2 , CorMat3 , main , yl im ) {
449 plot ( p r i n c i p a l ( CorMat1 )$values , x lab = ” Index ” , type = ” l ” ,
450 ylab = ” Eigenvalue ” , main = main , yl im = ylim ,
451 col = ” green ” )
452 l ines ( p r i n c i p a l ( CorMat2 )$values , col = ” orange ” )
453 l ines ( p r i n c i p a l ( CorMat3 )$values , col = ” red ” )
454 grid ( )
455 abline ( h = 1 , l t y = ” dashed ” )
456 }
457 # Example : pcaScree ( nhanesMales1 , nhanesMales2 , nhanesMales3 ,
458 # ”Males , NHANES” , c ( 0 , 7 ) )
459 pcaHm <− function ( CorMat , nf , main , colnames ) {
460 f i t <− p r i n c i p a l ( CorMat , n f a c t o r s = nf , r o t a t e = ” varimax ” )
461 aheatmap ( Colv = NA, Rowv = NA, f i t $ loading , revC = TRUE,
462 labRow = colnames , main = main , legend = FALSE )
463 return ( f i t )
464 }
465 # Example : pcaHm( nhanesMales1 , 15 , main = ”Z−BMI=1”,
466 # colnames ( nhanesMales ) [ 1:33 ] )
467 #####
468 ### END −− P r i n c i p a l Components Analysis , f unc t i on de f #
469

470 ###BEGIN −− P r i n c i p a l Components Analys i s #
471 #####
472 dev . of f ( )
473 pdf ( ”NEWfig3 . pdf ” )
474 par ( mfrow = c ( 2 , 2) , oma = c ( 3 , 0 , 0 , 0 ) , usr = c ( 0 , 1 , 0 , 1 ) )
475 pcaScree ( hunMales1 , hunMales2 , hunMales3 ,
476 ”Males , Hungarian study ” , c ( 0 , 7 ) )
477 pcaScree ( hunFemales1 , hunFemales2 , hunFemales3 ,
478 ” Females , Hungarian study ” , c ( 0 , 7 ) )
479 pcaScree ( nhanesMales1 , nhanesMales2 , nhanesMales3 ,
480 ”Males , NHANES” , c ( 0 , 7 ) )
481 pcaScree ( nhanesFemales1 , nhanesFemales2 , nhanesFemales3 ,
482 ” Females , NHANES” , c ( 0 , 7 ) )
483 par ( xpd = NA )
484 legend ( −25, −4, c ( ”Z−BMI=1” , ”Z−BMI=2” , ”Z−BMI=3” ) ,
485 f i l l = c ( ” green ” , ” orange ” , ” red ” ) , h o r i z=TRUE )
486 dev . of f ( )
487

488 dev . of f ( )
489 pdf ( ”NEWfig4b . pdf ” , he ight = 20 )
490 par ( mfrow = c ( 3 , 2) )
491 pcaHm( hunMales1 , 13 , main = ”Males , Z−BMI=1” ,
492 colnames ( hunMales ) [ 7 :39 ] )
493 pcaHm( hunFemales1 , 13 , main = ” Females , Z−BMI=1” ,
494 colnames ( hunMales ) [ 7 :39 ] )
495 pcaHm( hunMales2 , 13 , main = ”Males , Z−BMI=2” ,
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496 colnames ( hunMales ) [ 7 :39 ] )
497 pcaHm( hunFemales2 , 13 , main = ” Females , Z−BMI=2” ,
498 colnames ( hunMales ) [ 7 :39 ] )
499 pcaHm( hunMales3 , 13 , main = ”Males , Z−BMI=3” ,
500 colnames ( hunMales ) [ 7 :39 ] )
501 pcaHm( hunFemales3 , 13 , main = ” Females , Z−BMI=3” ,
502 colnames ( hunMales ) [ 7 :39 ] )
503 dev . of f ( )
504

505 dev . of f ( )
506 pdf ( ”NEWfig5b . pdf ” , he ight = 20 )
507 par ( mfrow = c ( 3 , 2) )
508 pcaHm( nhanesMales1 , 13 , main = ”Males , Z−BMI=1” ,
509 colnames ( nhanesMales ) [ 1 :33 ] )
510 pcaHm( nhanesFemales1 , 13 , main = ” Females , Z−BMI=1” ,
511 colnames ( nhanesMales ) [ 1 :33 ] )
512 pcaHm( nhanesMales2 , 13 , main = ”Males , Z−BMI=2” ,
513 colnames ( nhanesMales ) [ 1 :33 ] )
514 pcaHm( nhanesFemales2 , 13 , main = ” Females , Z−BMI=2” ,
515 colnames ( nhanesMales ) [ 1 :33 ] )
516 pcaHm( nhanesMales3 , 13 , main = ”Males , Z−BMI=3” ,
517 colnames ( nhanesMales ) [ 1 :33 ] )
518 pcaHm( nhanesFemales3 , 13 , main = ” Females , Z−BMI=3” ,
519 colnames ( nhanesMales ) [ 1 :33 ] )
520 dev . of f ( )
521 #####
522 ### END −− P r i n c i p a l Components Analys i s#
523

524 ###BEGIN −− Clus t e r Analys i s #
525 #####
526 par ( mfrow = c ( 3 , 2 ) )
527 plot ( h c l u s t ( as . d i s t ( 1 − abs ( hunMales1 ) ) ,
528 method = ”ward” ) , xlab = ”” , sub = ”” ,
529 main = ”Males , Z−BMI=1” )
530 plot ( h c l u s t ( as . d i s t ( 1 − abs ( hunFemales1 ) ) ,
531 method = ”ward” ) , xlab = ”” , sub = ”” ,
532 main = ” Females , Z−BMI=1” )
533 plot ( h c l u s t ( as . d i s t ( 1 − abs ( hunMales2 ) ) ,
534 method = ”ward” ) , xlab = ”” , sub = ”” ,
535 main = ”Males , Z−BMI=2” )
536 plot ( h c l u s t ( as . d i s t ( 1 − abs ( hunFemales2 ) ) ,
537 method = ”ward” ) , xlab = ”” , sub = ”” ,
538 main = ” Females , Z−BMI=2” )
539 plot ( h c l u s t ( as . d i s t ( 1 − abs ( hunMales3 ) ) ,
540 method = ”ward” ) , xlab = ”” , sub = ”” ,
541 main = ”Males , Z−BMI=3” )
542 plot ( h c l u s t ( as . d i s t ( 1 − abs ( hunFemales3 ) ) ,
543 method = ”ward” ) , xlab = ”” , sub = ”” ,
544 main = ” Females , Z−BMI=3” )
545

546 par ( mfrow = c ( 3 , 2 ) )
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547 plot ( h c l u s t ( as . d i s t ( 1 − abs ( nhanesMales1 ) ) ,
548 method = ”ward” ) , xlab = ”” , sub = ”” ,
549 main = ”Males , Z−BMI=1” )
550 plot ( h c l u s t ( as . d i s t ( 1 − abs ( nhanesFemales1 ) ) ,
551 method = ”ward” ) , xlab = ”” , sub = ”” ,
552 main = ” Females , Z−BMI=1” )
553 plot ( h c l u s t ( as . d i s t ( 1 − abs ( nhanesMales2 ) ) ,
554 method = ”ward” ) , xlab = ”” , sub = ”” ,
555 main = ”Males , Z−BMI=2” )
556 plot ( h c l u s t ( as . d i s t ( 1 − abs ( nhanesFemales2 ) ) ,
557 method = ”ward” ) , xlab = ”” , sub = ”” ,
558 main = ” Females , Z−BMI=2” )
559 plot ( h c l u s t ( as . d i s t ( 1 − abs ( nhanesMales3 ) ) ,
560 method = ”ward” ) , xlab = ”” , sub = ”” ,
561 main = ”Males , Z−BMI=3” )
562 plot ( h c l u s t ( as . d i s t ( 1 − abs ( nhanesFemales3 ) ) ,
563 method = ”ward” ) , xlab = ”” , sub = ”” ,
564 main = ” Females , Z−BMI=3” )
565 #####
566 ### END −− Clus t e r Analys i s #
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B. Program for Modeling and Evaluating
the Performance of Tight Glycemic
Control Protocols

1 l ibrary ( gdata )
2 l ibrary ( lme4 )
3 l ibrary ( nlme )
4 l ibrary ( multcomp )
5 l ibrary ( v i o p l o t )
6

7 r e s u l t <− read . x l s ( ” r e s u l t . x l s ” )
8 r e s u l t [ r e s u l t==−1 ] <− NA
9 resultOST <− r e s u l t [ , c ( 1 , 4 , 1 5 , 16 , 8 , 1 0 , 1 2 , 1 4 ) ]

10 resultQUAD <− r e s u l t [ , c ( 1 , 4 , 1 5 , 1 6 , 7 , 9 , 1 1 , 1 3 ) ]
11 resultOSTlme <− make .rm( 1 : 4 , 5 : 8 , resultOST )
12 resultQUADlme <− make .rm( 1 : 4 , 5 : 8 , resultQUAD )
13 resultOSTlme$Class <− as . factor ( resultOSTlme$Class )
14 resultQUADlme$Class <− as . factor ( resultQUADlme$Class )
15 colnames ( resultOSTlme ) [ 1 ] <− ” Pat ient ”
16 colnames ( resultOSTlme ) [ 5 ] <− ” V a r i a b i l i t y ”
17 colnames ( resultOSTlme ) [ 6 ] <− ”Day”
18 colnames ( resultQUADlme ) [ 1 ] <− ” Pat ient ”
19 colnames ( resultQUADlme ) [ 5 ] <− ” V a r i a b i l i t y ”
20 colnames ( resultQUADlme ) [ 6 ] <− ”Day”
21 resultOSTlme$Day <− factor ( resultOSTlme$Day ,
22 labels = c ( 1 , 2 , 3 , 4 ) , ordered = F )
23 resultQUADlme$Day <− factor ( resultQUADlme$Day ,
24 labels = c ( 1 , 2 , 3 , 4 ) , ordered = F )
25 c l a s s l a b e l s <− c ( ”NOpC” , ”OpC” , ”NOpG” , ”OpG” , ”NOpO” , ”OpO” )
26 resultOSTlme$Class <− factor ( resultOSTlme$Class ,
27 labels = c l a s s l a b e l s ,
28 ordered = F)
29 resultQUADlme$Class <− factor ( resultQUADlme$Class ,
30 labels = c l a s s l a b e l s ,
31 ordered = F)
32 resultOSTlmeNA <− resultOSTlme [ ! i s . na( resultOSTlme$ V a r i a b i l i t y ) , ]
33 resultQUADlmeNA <− resultQUADlme [ ! i s . na( resultQUADlme$ V a r i a b i l i t y ) , ]
34 mains <− c ( ”Day 1” , ”Day 2” , ”Day 3” , ”Day 4+” )
35

36 resultRE3 <− read . csv ( ” resultRE3 . csv ” , header = F )
37 colnames ( resultRE3 ) <− c ( ” Pat ient ” , ” Class ” , ”Minute” , ” Estimate ” )
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38 resultRE3$ Pat ient <− as . factor ( resultRE3$ Pat ient )
39 resultRE3$Class <− factor ( resultRE3$Class , labels = c l a s s l a b e l s , ordered = F )
40 resultRE3$QUAD <− ( resultRE3$Estimate − 0 .5 ) ˆ2
41 resultRE3$OST <− resultRE3$Estimate > 0 .9
42

43 par ( mfrow=c ( 2 , 3 ) )
44 y l <− c ( 0 . 0 , 0 .12 )
45 x l <− c ( 0 , 60000 )
46 plot ( lowess ( x=resultRE3 [ resultRE3$Class==”NOpC” , ] $Minute ,
47 y=resultRE3 [ resultRE3$Class==”NOpC” , ] $QUAD) , xlab=”Time [ min ] ” ,
48 ylab=” V a r i a b l i t y ( Quadratic pena l ty ) ” , main=”Non−o p e r a t i v e − Cardiac ” , type=” l ”

,
49 ylim=yl , xl im=xl )
50 grid ( )
51 abline ( v = c ( 1 , 2 , 3 , 4 ) ∗ 24 ∗ 60 , l t y = ” dashed ” )
52 plot ( lowess ( x=resultRE3 [ resultRE3$Class==”NOpG” , ] $Minute ,
53 y=resultRE3 [ resultRE3$Class==”NOpG” , ] $QUAD) , xlab=”Time [ min ] ” ,
54 ylab=” V a r i a b l i t y ( Quadratic pena l ty ) ” , main=”Non−o p e r a t i v e − Gast r i c ” , type=” l ”

,
55 ylim=yl , xl im=xl )
56 grid ( )
57 abline ( v = c ( 1 , 2 , 3 , 4 ) ∗ 24 ∗ 60 , l t y = ” dashed ” )
58 plot ( lowess ( x=resultRE3 [ resultRE3$Class==”NOpO” , ] $Minute ,
59 y=resultRE3 [ resultRE3$Class==”NOpO” , ] $QUAD) , xlab=”Time [ min ] ” ,
60 ylab=” V a r i a b l i t y ( Quadratic pena l ty ) ” , main=”Non−o p e r a t i v e − Al l other ” ,
61 type=” l ” , yl im=yl , xl im=xl )
62 grid ( )
63 abline ( v = c ( 1 , 2 , 3 , 4 ) ∗ 24 ∗ 60 , l t y = ” dashed ” )
64 plot ( lowess ( x=resultRE3 [ resultRE3$Class==”OpC” , ] $Minute ,
65 y=resultRE3 [ resultRE3$Class==”OpC” , ] $QUAD) , xlab=”Time [ min ] ” ,
66 ylab=” V a r i a b l i t y ( Quadratic pena l ty ) ” , main=” Operat ive − Cardiac ” , type=” l ” ,
67 ylim=yl , xl im=xl )
68 grid ( )
69 abline ( v = c ( 1 , 2 , 3 , 4 ) ∗ 24 ∗ 60 , l t y = ” dashed ” )
70 plot ( lowess ( x=resultRE3 [ resultRE3$Class==”OpG” , ] $Minute ,
71 y=resultRE3 [ resultRE3$Class==”OpG” , ] $QUAD) , xlab=”Time [ min ] ” ,
72 ylab=” V a r i a b l i t y ( Quadratic pena l ty ) ” , main=” Operat ive − Gast r i c ” ,
73 type=” l ” , yl im=yl , xl im=xl )
74 grid ( )
75 abline ( v = c ( 1 , 2 , 3 , 4 ) ∗ 24 ∗ 60 , l t y = ” dashed ” )
76 plot ( lowess ( x=resultRE3 [ resultRE3$Class==”OpO” , ] $Minute ,
77 y=resultRE3 [ resultRE3$Class==”OpO” , ] $QUAD) , xlab=”Time [ min ] ” ,
78 ylab=” V a r i a b l i t y ( Quadratic pena l ty ) ” , main=” Operat ive − Al l other ” , type=” l ” ,
79 ylim=yl , xl im=xl )
80 grid ( )
81 abline ( v = c ( 1 , 2 , 3 , 4 ) ∗ 24 ∗ 60 , l t y = ” dashed ” )
82 dev . of f ( )
83

84 resultRE3 <− resultRE3 [ resultRE3$Minute < 8000 , ]
85

86 resultRaw <− read . csv ( ” resultRaw . csv ” , header = F)
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87

88 par ( mfrow = c ( 4 , 6 ) )
89 for ( i in 1 : 4 )
90 for ( j in 1 : 6 ) {
91 hist ( resultRaw [ resultRaw [ , 1 ] == i & resultRaw [ , 2 ] == j , ] [ , 3 ] , y lab = ”%” ,
92 main = paste ( c l a s s l a b e l s [ j ] , ” , ” , mains [ i ] ,
93 ” (n=” , length ( resultRaw [
94 resultRaw [ , 1 ] == i & resultRaw [ , 2 ] == j , ] [ , 3 ] ) , ” ) ” ,
95 sep = ”” ) , xlab = ” P e r c e n t i l e o f a c t u a l SI (n+1)” ,
96 xlim = c ( 0 , 1 ) , yl im = c ( 0 , 2) , breaks = 10 , f r e q = F, axes = F )
97 abline ( h = 1 , l t y = 2)
98 axis (1 , at = seq ( 0 , 1 , 0 . 1 ) , labels = seq ( 0 , 100 , 10 ) )
99 axis (2 , at = seq ( 0 , 2 , 0 . 5 ) , labels = seq ( 0 , 20 , 5 ) )

100 }
101 dev . of f ( )
102

103 par ( mfrow=c ( 2 , 4 ) )
104 for ( i in 1 : 4 ) {
105 v i o p l o t . formula ( V a r i a b i l i t y ˜ Class ,
106 data = resultOSTlmeNA [ resultOSTlmeNA$Day == i , ] ,
107 ylim = c ( 0 , 0 . 4 5 ) , col = ” white ” , colMed=” black ” )
108 t i t l e ( main = mains [ i ] , x lab = ” Diagnos i s group ” ,
109 ylab = ” V a r i a b i l i t y (One−s ided t h r e s h o l d pena l ty ) ” )
110 means <− with ( resultOSTlmeNA [ resultOSTlmeNA$Day == i , ] ,
111 tapply ( V a r i a b i l i t y , Class , mean ) )
112 points ( means , pch=18, cex = 1 .5 )
113 }
114 for ( i in 1 : 4 ) {
115 v i o p l o t . formula ( V a r i a b i l i t y ˜ Class ,
116 data = resultQUADlmeNA [ resultQUADlmeNA$Day == i , ] ,
117 ylim = c ( 0 , 0 . 2 ) , col = ” white ” , colMed=” black ” )
118 t i t l e ( main = mains [ i ] , x lab = ” Diagnos i s group ” ,
119 ylab = ” V a r i a b i l i t y ( Quadratic pena l ty ) ” )
120 means <− with ( resultQUADlmeNA [ resultQUADlmeNA$Day == i , ] ,
121 tapply ( V a r i a b i l i t y , Class , mean ) )
122 points ( means , pch=18, cex = 1 .5 )
123 }
124 dev . of f ( )
125

126 kruska l . t e s t ( V a r i a b i l i t y ˜ Class ,
127 data = resultOSTlmeNA [ resultOSTlmeNA$Day == 1 , ] ) $p . va lue
128 kruska l . t e s t ( V a r i a b i l i t y ˜ Class ,
129 data = resultQUADlmeNA [ resultQUADlmeNA$Day == 1 , ] ) $p . va lue
130 kruska l . t e s t ( V a r i a b i l i t y ˜ Class ,
131 data = resultOSTlmeNA [ resultOSTlmeNA$Day == 2 , ] ) $p . va lue
132 kruska l . t e s t ( V a r i a b i l i t y ˜ Class ,
133 data = resultQUADlmeNA [ resultQUADlmeNA$Day == 2 , ] ) $p . va lue
134 kruska l . t e s t ( V a r i a b i l i t y ˜ Class ,
135 data = resultOSTlmeNA [ resultOSTlmeNA$Day == 3 , ] ) $p . va lue
136 kruska l . t e s t ( V a r i a b i l i t y ˜ Class ,
137 data = resultQUADlmeNA [ resultQUADlmeNA$Day == 3 , ] ) $p . va lue
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138 kruska l . t e s t ( V a r i a b i l i t y ˜ Class ,
139 data = resultOSTlmeNA [ resultOSTlmeNA$Day == 4 , ] ) $p . va lue
140 kruska l . t e s t ( V a r i a b i l i t y ˜ Class ,
141 data = resultQUADlmeNA [ resultQUADlmeNA$Day == 4 , ] ) $p . va lue
142

143 KWD1QUAD <− aov ( V a r i a b i l i t y ˜ Class ,
144 data = resultQUADlmeNA [ resultQUADlmeNA$Day == 1 , ] )
145 KWD2QUAD <− aov ( V a r i a b i l i t y ˜ Class ,
146 data = resultQUADlmeNA [ resultQUADlmeNA$Day == 2 , ] )
147 summary( g l h t ( KWD1QUAD, l i n f c t = mcp( Class = ”Tukey” ) ) )
148 summary( g l h t ( KWD2QUAD, l i n f c t = mcp( Class = ”Tukey” ) ) )
149

150 fmQUAD<−lme (QUAD̃ Class+Minute−1, random = ˜Minute | Patient , data=resultRE3 )
151 fmQUADb <− update (fmQUAD, random = ˜ 1 | Pat ient )
152 anova(fmQUAD,fmQUADb)
153 fmQUADc <− update (fmQUAD, random = ˜Minute−1|Pat ient )
154 anova(fmQUAD,fmQUADc)
155 fmQUADcor <− update (fmQUAD, c o r r e l a t i o n = corCAR1( form = ˜Minute | Pat ient ) )
156 anova(fmQUAD, fmQUADcor)
157 fmQUADcor2 <− update (fmQUAD, c o r r e l a t i o n =
158 corCompSymm( form = ˜Minute | Pat ient ) )
159 anova(fmQUAD, fmQUADcor2)
160 hist ( resultRE3$QUAD)
161 resultRE3$QUAD<−log (4 ∗ resultRE3$QUAD/(1−4∗ resultRE3$QUAD) )
162 hist ( resultRE3$QUAD)
163 summary(fmQUAD)
164 summary( g l h t ( fmQUAD, l i n f c t = mcp( Class = ”Tukey” ) ) )
165

166 fmOST<−glmer (OST˜Class+Minute−1+(Minute | Pat ient ) , data=resultRE3 ,
167 family=binomial ( l ink = ” l o g i t ” ) )
168 fmOSTb<−glmer (OST˜Class+Minute +(1 | Pat ient ) , data=resultRE3 ,
169 family=binomial ( l ink = ” l o g i t ” ) ,
170 control = l i s t ( maxIter = 2000) ,REML=F)
171 anova(fmOST, fmOSTb)
172 fmOSTc<−glmer (OST˜Class+Minute+(Minute−1|Pat ient ) , data=resultRE3 ,
173 family=binomial ( l ink = ” l o g i t ” ) )
174 anova(fmOST, fmOSTc)
175 fmOSTcor <− update (fmOST, c o r r e l a t i o n = corCAR1( form = ˜Minute | Pat ient ) )
176 anova(fmOST, fmOSTcor )
177 summary( fmOST )
178 summary( g l h t ( fmOST, l i n f c t = mcp( Class = ”Tukey” ) ) )
179

180 hockey <− function (x , alpha1 , beta1 , beta2 , brk , eps = d i f f ( range ( x )/10) ) {
181 x1 <− brk − eps
182 x2 <− brk + eps
183 b <− ( x2∗beta1 − x1∗beta2 )/ ( x2 − x1 )
184 cc <− ( beta2 − b)/(2 ∗x2 )
185 a <− alpha1 + beta1∗x1 − b∗x1 − cc ∗x1ˆ2
186 alpha2 <− − beta2∗x2 + ( a + b∗x2 + cc ∗x2 ˆ2)
187 l e b r k <− ( x <= brk − eps )
188 gebrk <− ( x >= brk + eps )
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189 eqbrk <− ( x > brk − eps & x < brk + eps )
190 r e s u l t <− rep (0 , length ( x ) )
191 r e s u l t [ l e b r k ] <− alpha1 + beta1∗x [ l e b r k ]
192 r e s u l t [ eqbrk ] <− a + b∗x [ eqbrk ] + cc ∗x [ eqbrk ]ˆ2
193 r e s u l t [ gebrk ] <− alpha2 + beta2∗x [ gebrk ]
194 r e s u l t
195 }
196

197 ta<−tapply ( resultRE3$QUAD, resultRE3$Patient , length )>48
198 resultRE3$ok<−sapply ( resultRE3$Patient , function ( x ) {return ( ta [ x ] ) })
199

200 nll1NOpC<−nlsLMList (QUAD̃ hockey ( Minute , a , b , c , brk ) | Patient ,
201 data=resultRE3 [ resultRE3$ok==TRUE, ] ,
202 start=l i s t ( a =0.1 ,b=−6e−06,c=6e−06, brk =100) ,
203 control=l i s t ( maxiter =1000) , lower=c(0 ,− In f ,− In f , 0 ) ,
204 upper=c ( In f , In f , In f , I n f ) , subset=Class==”NOpC” )
205 nll1NOpG<−nlsLMList (QUAD̃ hockey ( Minute , a , b , c , brk ) | Patient ,
206 data=resultRE3 [ resultRE3$ok==TRUE, ] ,
207 start=l i s t ( a =0.1 ,b=−6e−06,c=6e−06, brk =100) ,
208 control=l i s t ( maxiter =1000) , lower=c(0 ,− In f ,− In f , 0 ) ,
209 upper=c ( In f , In f , In f , I n f ) , subset=Class==”NOpG” )
210 nll1NOpO<−nlsLMList (QUAD̃ hockey ( Minute , a , b , c , brk ) | Patient ,
211 data=resultRE3 [ resultRE3$ok==TRUE, ] ,
212 start=l i s t ( a =0.1 ,b=−6e−06,c=6e−06, brk =100) ,
213 control=l i s t ( maxiter =1000) , lower=c(0 ,− In f ,− In f , 0 ) ,
214 upper=c ( In f , In f , In f , I n f ) , subset=Class==”NOpO” )
215 nll1OpC<−nlsLMList (QUAD̃ hockey ( Minute , a , b , c , brk ) | Patient ,
216 data=resultRE3 [ resultRE3$ok==TRUE, ] ,
217 start=l i s t ( a =0.1 ,b=−6e−06,c=6e−06, brk =100) ,
218 control=l i s t ( maxiter =1000) , lower=c(0 ,− In f ,− In f , 0 ) ,
219 upper=c ( In f , In f , In f , I n f ) , subset=Class==”OpC” )
220 nll1OpG<−nlsLMList (QUAD̃ hockey ( Minute , a , b , c , brk ) | Patient ,
221 data=resultRE3 [ resultRE3$ok==TRUE, ] ,
222 start=l i s t ( a =0.1 ,b=−6e−06,c=6e−06, brk =100) ,
223 control=l i s t ( maxiter =1000) , lower=c(0 ,− In f ,− In f , 0 ) ,
224 upper=c ( In f , In f , In f , I n f ) , subset=Class==”OpG” )
225 nll1OpO<−nlsLMList (QUAD̃ hockey ( Minute , a , b , c , brk ) | Patient ,
226 data=resultRE3 [ resultRE3$ok==TRUE, ] ,
227 start=l i s t ( a =0.1 ,b=−6e−06,c=6e−06, brk =100) ,
228 control=l i s t ( maxiter =1000) , lower=c(0 ,− In f ,− In f , 0 ) ,
229 upper=c ( In f , In f , In f , I n f ) , subset=Class==”OpO” )
230

231 par ( mfrow=c ( 2 , 2 ) )
232 boxplot ( l i s t ( ”NOpC”=coef ( nll1NOpC ) [ , 1 ] ,
233 ”NOpG”=coef ( nll1NOpG ) [ , 1 ] ,
234 ”NOpO”=coef ( nll1NOpO ) [ , 1 ] ,
235 ”OpC”=coef ( nll1OpC ) [ , 1 ] ,
236 ”OpG”=coef ( nll1OpG ) [ , 1 ] ,
237 ”OpO”=coef ( nll1OpO ) [ , 1 ]
238 ) , y lab=” V a r i a b i l i t y at the breakpoint ”
239 )
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240 boxplot ( l i s t ( ”NOpC”=coef ( nll1NOpC ) [ , 4 ] ,
241 ”NOpG”=coef ( nll1NOpG ) [ , 4 ] ,
242 ”NOpO”=coef ( nll1NOpO ) [ , 4 ] ,
243 ”OpC”=coef ( nll1OpC ) [ , 4 ] ,
244 ”OpG”=coef ( nll1OpG ) [ , 4 ] ,
245 ”OpO”=coef ( nll1OpO ) [ , 4 ]
246 ) , y lab=” P o s i t i o n the breakpoint ”
247 )
248 boxplot ( l i s t ( ”NOpC”=coef ( nll1NOpC ) [ ,2 ]− coef ( nll1NOpC ) [ , 3 ] ,
249 ”NOpG”=coef ( nll1NOpG ) [ ,2 ]− coef ( nll1NOpG ) [ , 3 ] ,
250 ”NOpO”=coef ( nll1NOpO ) [ ,2 ]− coef ( nll1NOpO ) [ , 3 ] ,
251 ”OpC”=coef ( nll1OpC ) [ ,2 ]− coef ( nll1OpC ) [ , 3 ] ,
252 ”OpG”=coef ( nll1OpG ) [ ,2 ]− coef ( nll1OpG ) [ , 3 ] ,
253 ”OpO”=coef ( nll1OpO ) [ ,2 ]− coef ( nll1OpO ) [ , 3 ]
254 ) , y lab=” Slope b e f o r e the break po int ” , yl im = c(−2e−4 ,1.5 e−4)
255 )
256 abline ( h = 0 , l t y = ” dashed ” )
257 boxplot ( l i s t ( ”NOpC”=coef ( nll1NOpC ) [ , 2 ]+ coef ( nll1NOpC ) [ , 3 ] ,
258 ”NOpG”=coef ( nll1NOpG ) [ , 2 ]+ coef ( nll1NOpG ) [ , 3 ] ,
259 ”NOpO”=coef ( nll1NOpO ) [ , 2 ]+ coef ( nll1NOpO ) [ , 3 ] ,
260 ”OpC”=coef ( nll1OpC ) [ , 2 ]+ coef ( nll1OpC ) [ , 3 ] ,
261 ”OpG”=coef ( nll1OpG ) [ , 2 ]+ coef ( nll1OpG ) [ , 3 ] ,
262 ”OpO”=coef ( nll1OpO ) [ , 2 ]+ coef ( nll1OpO ) [ , 3 ]
263 ) , y lab=” Slope a f t e r the break po int ” , yl im = c(−4e−5,3e−5)
264 )
265 abline ( h = 0 , l t y = ” dashed ” )
266 dev . of f ( )
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